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Abstract: The Chengdu-Chongqing urban agglomeration (CUA) faces considerable air quality con-
cerns, although the situation has improved in the past 15 years. The driving effects of population, land
and economic urbanization on PM2.5 concentrations in the CUA have largely been overlooked in pre-
vious studies. The contributions of natural and socio-economic factors to PM2.5 concentrations have
been ignored and the spillover effects of multi-dimensional urbanization on PM2.5 concentrations
have been underestimated. This study explores the spatial dependence and trend evolution of PM2.5

concentrations in the CUA at the grid and county level, analyzing the direct and spillover effects
of multi-dimensional urbanization on PM2.5 concentrations. The results show that the mean PM2.5

concentrations in CUA dropped to 48.05 µg/m3 at an average annual rate of 4.6% from 2000 to 2015;
however, in 2015, there were still 91% of areas exposed to pollution risk (>35 µg/m3). The PM2.5 con-
centrations in 92.98% of the area have slowly decreased but are rising in some areas, such as Shimian
County, Xuyong County and Gulin County. The PM2.5 concentrations in this region presented a
spatial dependence pattern of “cold spots in the east and hot spots in the west”. Urbanization was
not the only factor contributing to PM2.5 concentrations. Commercial trade, building development
and atmospheric pressure were found to have significant contributions. The spillover effect of multi-
dimensional urbanization was found to be generally stronger than the direct effects and the positive
impact of land urbanization on PM2.5 concentrations was stronger than population and economic
urbanization. The findings provide support for urban agglomerations such as CUA that are still
being cultivated to carry out cross-city joint control strategies of PM2.5 concentrations, also proving
that PM2.5 pollution control should not only focus on urban socio-economic development strategies
but should be an integration of work optimization in various areas such as population agglomeration,
land expansion, economic construction, natural adaptation and socio-economic adjustment.

Keywords: PM2.5 concentrations; urbanization; spillover effect; spatial regression method;
Chengdu-Chongqing urban agglomeration (CUA)

1. Introduction

While China’s rapid urbanization has significantly improved people’s living standards,
social well-being and economic development, it has also increased the concerns of PM2.5 air
pollution caused by industrial production agglomeration, disorderly urban expansion and
automobile exhaust emissions [1,2]. Long-term exposure to PM2.5 increases the survival
risk of residents and causes nearly 1.3 million premature deaths in China every year [3].
The rapid transmission of PM2.5 pollution and its components is explicitly linked to human
well-being, affecting public health, causing global warming and threatening regional
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sustainable development [4]. Cities are the primary sources of PM2.5. Previous studies
exploring the correlation between urbanization and PM2.5 concentration have been used
to develop and support China’s urban air quality optimization strategies [5,6]. However,
given the cross-regional transmission of PM2.5 components due to atmospheric circulation,
cross-regional trade and the enhanced integration of urbanization activities (e.g., industrial
economy, public life and urban expansion), PM2.5 pollution is affected not just by local
urbanization but also by the spillover effects of urbanization (i.e., SEU, which refers to the
external benefits of urbanization on PM2.5 concentrations in other regions) activities from
neighboring areas [7–9].

Previous studies have largely explored the direct effects of urbanization (i.e., DEU)
on PM2.5 concentrations using the Pearson correlation coefficient and linear regression
model, focusing on the spatial dependence of urbanization and PM2.5 concentrations at
the administrative district level [10,11]. However, the spillover effects of urbanization and
the spatial agglomeration pattern of PM2.5 concentrations at the grid level have generally
been overlooked [12]. Spatial regression models, such as the spatial error model (SEM),
spatial lag model (SLM) and spatial Durbin model (SDM), can realize the integration
of endogenous and exogenous nature of the driving effects and identify the direct and
spillover effects of urbanization on PM2.5 spatial distribution [13]. Moreover, in the study
of the spatial distribution pattern of PM2.5 concentrations, integrating the analysis objects
at the grid and administrative unit levels would be extremely useful in the decision-making
reference value and refined expressions.

Some studies have briefly discussed the impact of different types of urbanization
(e.g., population, economic and land urbanization) on air quality and the atmospheric
environment [14,15]. With reforms in the household registration system and the rise of
small cities, China’s population urbanization (PU) level has rapidly increased, resulting
in the widespread use of kitchen fumes and cars and generating large amounts of PM2.5
pollutants in daily life [16,17]. Rapid economic urbanization (EU) has boosted urban
populations and the economic carrying capacities of central cities but has also caused
high PM2.5 emissions from industrial production and energy consumption of large diesel
engines [18]. Studies have also shown the impact of urban commercial cooperation and
transnational trade on increasing and spreading PM2.5 pollution levels [19]. In addition,
the rapid rise in urban residents, high building density and increased impervious surface
coverage (i.e., land urbanization or spatial urbanization) in China’s cities have generated
large amounts of road, construction and storage yard dusts and have intensified urban heat
island effects with affecting the settlement and diffusion of fine particles [20–22]. These
studies highlight that different dimension of urbanization can have differentiated effects
on PM2.5 concentrations.

However, most of the studies have focused on a specific aspect of urbanization. The
comprehensive and systematic assessment of urbanization and driving mechanism analysis
have been largely overlooked [23]. Realizing the transformation of driving analysis objects
from single-dimensional to multi-dimensional urbanization is crucial in understanding the
complex driving mechanisms of urbanization on PM2.5 agglomeration and diffusion.

As a highly integrated city cluster, urban agglomerations have become an important
form of urban development in China. The Yangtze River Delta urban agglomeration,
the Beijing-Tianjin-Hebei urban agglomeration and the Guangdong-Hong Kong-Macao
Greater Bay Area have become important urban clusters in the world, with concentrated
populations, highly developed economies and complete urban structures [24]. However,
air pollution levels in these urban agglomeration areas are higher and more dangerous than
in other regions. For example, China’s Air Pollution Prevention and Control Action Plan
(2013–2017) stated that the Beijing-Tianjin-Hebei, Yangtze River Delta, Pearl River Delta
and Chengdu-Chongqing urban agglomeration (CUA) need to implement special emission
limits for air pollutants to control regional air quality [25]. The CUA is an emerging
urban agglomeration approved by the State Council of China in 2016. It is located in
the strategic hub area where China’s “Belt and Road Initiative” and the Yangtze River
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Economic Belt meet (Figure 1) [26]. According to the National Bureau of Statistics of China,
the urbanization levels of Chongqing and Chengdu in 2015 were 62.6% and 70.6% and the
average PM2.5 concentrations in the main urban areas were 54.0 µg/m3 and 64.2 µg/m3,
respectively. More than ten air pollution incidents have been recorded in this area in recent
years [27]. At present, there are obvious research gaps on the PM2.5 driving mechanism
of China’s emerging urban agglomerations, including in the CUA, although these urban
agglomerations are essential for China to achieve economic growth and urbanization
transformation in the future [28].

Figure 1. Study area.

Taking CUA as the research area, the objectives of this study are as follows: (1) to
identify the spatial autocorrelation and spatio-temporal trend evolution of PM2.5 concen-
trations in the CUA; (2) estimate the driving influence of urbanization, natural factors,
socio-economic factors and other control variables on the spatial distribution of PM2.5
concentrations; and (3) compare the direct and spillover effects of multi-dimensional ur-
banization on PM2.5 concentrations. This study aims to explore the driving mechanism of
PM2.5 concentrations in the CUA given its rapid urbanization and evaluates the influence of
the cross-regional urbanization activities on PM2.5 concentrations. The results can provide
support for coordinating the relationships between urban construction, air quality and the
sustainable development of the CUA.

2. Study Area and Materials
2.1. Study Area

The CUA is centered on Chongqing and Chengdu and encompasses the cities of
Zigong, Luzhou, Deyang, Mianyang, Suining, Neijiang, Leshan, Nanchong, Meishan,
Yibin, Guang’an, Dazhou, Ya’an and Ziyang [29]. To ensure a sufficient sample size in
the spatial regression model, the regression analysis was carried out at the county level,
containing a total of 142 sample units (Figure 1). Considering the data availability, the study
period was set to 2000–2015; all spatial data projections were set to Krasovsky 1940 Albers
and extracted into 142 administrative regions based on Zonal Statistics tool of ArcGIS
(Table 1).
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Table 1. Variable category, abbreviation and unit.

Variable Category Variable Abbreviation Measurement Unit

Dependent variable PM2.5 concentrations PM2.5 µg/m3

Urbanization (key explanatory variable)
Population urbanization pop people/km2

Land urbanization land %
Economic urbanization gdp 10,000 yuan/km2

Control variable

Elevation dem m
Slope slo ◦

Average annual temperature tem ◦C
Average relative humidity hum %RH

Average air pressure ap Pa
Average wind speed wind m/s

Normalized Difference Vegetation Index NDVI -
Average annual precipitation pre mm

Per capita retail sales of consumer goods rscg yuan
Agricultural fertilizer application afa t
Per capita real estate investment rei yuan

2.2. PM2.5 Concentrations

The Atmospheric Composition Analysis Organization (ACAG) provided the corrected
PM2.5 concentrations (V4.GL.03, 0.05◦ × 0.05◦, contains “all ingredients”) of the CUA
satellite-derived geographic weighted regression (GWR) from 2000 to 2015 (http://fizz.
phys.dal.ca/~atmos/martin/?page_id=1751 (accessed on 7 June 2021)) [30]. Python 2.7
(http://www.python.org (accessed on 20 June 2021)) was used for vector cropping and in
obtaining the annual average series PM2.5 concentrations for all pixels.

2.3. Urbanization

Based on recommendations from existing research, this study selected three indicators
(i.e., population, land and economic urbanization) to characterize the level of urbanization
in the CUA [14]. Population urbanization is a basic aspect of urbanization and is often
defined by the proportion of the non-agricultural population, reflecting the changes in
urban spatial structure caused by population migration from rural into urban areas. In this
study, the permanent urban population percentage was used to characterize the level of
population urbanization. The data were obtained from the National Bureau of Statistics of
China, “Sichuan Statistical Yearbook” and the “Chongqing Statistical Yearbook” 2000–2015 [31].
Land urbanization is the process of transforming land-use attributes from agricultural
land to urban construction land. It is often accompanied by the differentiation of urban
land structures and the fragmentation of green spaces and is usually indicated by the
proportion of built-up area [12]. The land-use dataset was provided by the Resources and
Environmental Sciences, Chinese Academy of Sciences and was based on Landsat8 remote
sensing images. Using visual interpretation, six primary land-use types (i.e., farmland,
woodland, grassland, waters, residential land and unused land) and 25 secondary types
(https://www.resdc.cn/ (accessed on 10 June 2021)) were generated and used in this study.

Urbanization is not limited to the basic forms, such as population agglomeration and
land expansion, but also involves changes in the economic structure, such as industrial
transformation and scale production. We measured economic urbanization using GDP
density [32]. Previous urbanization studies have supported the use of GDP density as
a proxy for non-agricultural economic data, indicating the intensity of socio-economic
activities in urbanization [33]. The spatialized dataset was generated based on the GDP
statistics at the county level and incorporated land-use types, nighttime light intensity and
the density of residential areas closely related to human economic activities [34]. The GDP
density grid data were obtained from the Resources and Environmental Sciences, Chinese
Academy of Sciences (2000, 2015) (1 km × 1 km), with a data unit of 10,000 yuan/km2

(https://www.resdc.cn/ (accessed on 11 June 2021)).

http://fizz.phys.dal.ca/~atmos/martin/?page_id=1751
http://fizz.phys.dal.ca/~atmos/martin/?page_id=1751
http://www.python.org
https://www.resdc.cn/
https://www.resdc.cn/
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2.4. Control Variables

Aside from urbanization, the accumulation and dispersion of PM2.5 are affected by fac-
tors, such as land-use types, meteorological conditions and degree of forest coverage [14,35].
For example, Duan et al. [36] found that the PM2.5 concentrations of Lushan Mountain
in China vary due to the altitude and slope. Cheng et al. [37] confirmed that the average
temperature, air pressure and relative humidity have significant negative effects on PM2.5
concentrations in Lanzhou, China. Zheng et al. [38] concluded that precipitation is one of
the main elements to remove aerosol particles in the atmosphere.

In order to improve the fitting effect and experimental scientificity of the spatial re-
gression model, we selected the elevation (dem), slope (slo), average annual temperature
(tem), average relative humidity (hum), average air pressure (ap), average wind speed
(wind), normalized vegetation coverage index (ndvi) and average annual precipitation
(pre) as natural control variables. The altitude and slope data were derived from the
GDEMV2 DEM of the Computer Network Information Center of the Chinese Academy
of Sciences, with 30 m spatial resolution (2000, 2015) (http://www.gscloud.cn (accessed
on 15 June 2021)). The spatial distribution data for the temperature, relative humidity,
air pressure, wind speed and precipitation were derived from the meteorological spa-
tial dataset provided by the National Earth System Science Data Center of China (2000,
2015) (https://www.resdc.cn/ (accessed on 15 June 2021)). The NDVI spatial distribu-
tion data were derived from MOD13A3, with a spatial resolution of 1 km (2000, 2015)
(https://ladsweb.modaps.eosdis.nasa.gov/search/order/1/MOD13A3--6 (accessed on
16 June 2021)).

Some socio-economic variables have also been found to impact PM2.5 concentrations.
For example, Wang et al. [39] concluded that air pollutant emissions are related to the goods
and services consumed, as the production of goods often requires inputs of raw materials
and energy forms produced by heavy industry and the spread of pollutant components
is accelerated through cross-regional trade. Qian et al. [40] found that increased building
density affects the urban meteorological environment, leading to rapid precipitation and
condensation of urban air pollutants. Andrea et al. [41] found that by reducing agricultural
pollutant emissions, especially the use of chemical fertilizers, a relative reduction in PM2.5
can be achieved. We selected per-capita retail sales of consumer goods (rscg), per-capita
real estate investment (rei) and agricultural fertilizer application (afa) to measure the impact
of socio-economic factors, such as commercial trade, the building development intensity
and agricultural operation intensity, on PM2.5. These data were obtained mainly from the
“Sichuan Statistical Yearbook” and the “Chongqing Statistical Yearbook” on the statistics of
socio-economic indicators at the county level.

3. Methods

Figure 2 shows the technical framework of this research and outlines the research
structure, data sources and methods of this study.

3.1. Spatial Dependence Pattern and Spatio-temporal Trend Analysis

The spatial dependence pattern and evolution trend of PM2.5 concentrations in the
CUA were analyzed at the grid and county administrative levels. The global autocor-
relation Moran’s I, calculated using ArcGIS 10.6 (produced by Environmental Systems
Research Institute, RedLands, US), was used to analyze the spatial agglomeration of PM2.5
concentrations in urban agglomerations [42]. The hot spot and cold spot analyses were
used to identify the hot spot and cold spot distributions of PM2.5 concentrations in local
regions [43]. The global Moran’s I calculation formula is as follows:

I =

n
n
∑

i=1

n
∑

j 6=1
Wij(xi− x)(xj− x)

n
∑

i=1

n
∑

j=1
Wij

n
∑

i=1
(xi− x)2

(1)

http://www.gscloud.cn
https://www.resdc.cn/
https://ladsweb.modaps.eosdis.nasa.gov/search/order/1/MOD13A3--6
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where xi and xj are the PM2.5 concentrations values of the i and j units and Wij is the
spatial weight matrix. The values of I always fall within the [−1, +1]; the greater the
absolute value, the stronger the correlation. Moran’s I values significantly above zero
indicate positive spatial dependence, values significantly below zero indicate negative
spatial dependence and zero means no agglomeration. In addition, we used the hot spot
analysis tool (Getis-OrdGi* index) in ArcGIS to measure the high/low clustering mode of
PM2.5 concentrations using the expression:

Gi∗(d) =
n

∑
i=1

Wij(d)xi/
n

∑
i=1

xj (2)

The spatial relations and spatial weights were determined based on Fixed Distance
and Euclidean distance methods based on the suitability comparison of the results by using
different methods. When Gi*(d) exceeds zero, the observation unit belongs to a hot spot
area—that is, the concentrated area with high PM2.5 concentrations. When the value is less
than zero, the observation unit belongs to a cold spot area—that is, the concentrated area
with low PM2.5 concentrations.

In addition, the Theil–Sen trend method was used to measure the spatio-temporal
variation trends of the PM2.5 concentrations in the CUA [44]. This method was imple-
mented in Python, a robust non-parametric statistical algorithm with strong resistance to
measurement errors. The calculation formula is as follows:

SPM2.5 = Median
( xi − xj

i− j

)
, 2000 ≤ i<j ≤ 2015 (3)

where S is the median slope of the n(n−1)/2 data combinations and xi and xj are the PM2.5
concentration values of a grid in years i and j. Values significantly greater than zero indicate
increasing PM2.5 concentrations, while values significantly less than zero suggest declining
PM2.5 concentrations.

Figure 2. Technical framework of this research.

3.2. Spatial Regression Model

Given the spatial dependence of PM2.5 concentrations, spatial effects were incorpo-
rated into the regression simulation and the spatial regression models were established
in place of ordinary least squares (OLS) regression. Spatial regression models can show
the interaction effects of endogenous and exogenous variables [45]. The first were the
endogenous interactions between dependent variables, which could be described as the
PM2.5 pollution in neighboring areas that caused the change of PM2.5 concentrations in a
specific location through the migration effect and reflect the pollution externality of PM2.5
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contaminants through the spatial interaction mechanism. The SEM can be used to identify
the error impact of dependent variables [46]. The second were the exogenous interaction
effects between independent variables, which could be described as the spatial spillover ef-
fect of independent variables. It means that independent explanatory variables in a specific
location (e.g., urban activity and natural source factors) have external benefits and may
impact PM2.5 concentrations in neighboring locations, consistent with the cross-regional
effects of factors, such as urbanization [47]. The SLM can be used to reveal the spatial
spillover effect of independent variables.

The SDM integrates the interpretation function of the SEM and SLM, allowing for
the assessment of internal spatial dependence of the dependent variable and the external
spatial dependence of the independent variable (the calculation formulas of SDM and SLM
are not explained in detail, please refer to the study of Du et al. [48]. In this study, the
SDM was used to analyze the impact factors of PM2.5 concentration and the influence of
multi-dimensional urbanization on PM2.5 concentrations. The formula is as follows:

Y = ρWY + Xβ + WXθ + αKn + ε (4)

where Y is a dependent variable of order n ∗ 1; X is an explanatory variable of order
n ∗ k, including key explanatory variables (urbanization) and control variables (natural
and socio-economic variables); ρ, α, β and θ are parameters to be estimated; ε is a normally
distributed disturbance term with a diagonal covariance matrix; W is the spatial weight
matrix reflecting the location relationship of the region; WY is the spatial lag dependent
variable; and WX is the spatial lag independent variable.

To improve the rationality of model fitting, the following aspects were considered:
(1) urbanization and the control variables are assumed to be the driving factors of PM2.5
concentrations in the CUA. This study focused the analysis on urbanization. (2) Using
SPSS23.0 (produced by IBM SPSS Statistics, Amunk, NY, USA), the variables were tested for
multicollinearity. The results showed that the Condition Index and Variance Inflation Factor
(VIF) of tem, hum, afa and pre were all over the threshold and were therefore eliminated.
(3) All variables were normalized to eliminate heteroscedasticity. (4) The optimal model
selection principle was established. Based on the research of Du et al. [48], after the
Lagrangian multiplier (LM) and residual spatial autocorrelation passed the significance
test, the likelihood ratio (LR) test was used to determine whether SDM can be reduced to
SLM and SEM. If ρβ + θ = 0 passes the significance test, SDM can be simplified to SEM. If
θ = 0 passes the significance test, SDM can be simplified to SLM. If both are rejected, SDM is
most suitable for the study’s fitting analysis. Spatial regression analysis was implemented
in the MATLAB (produced by MathWorks, Natick, MA, USA) Spatial Regression Toolbox.

4. Results
4.1. Spatial Dependent Pattern and Evolution Trend of the PM2.5 Concentrations

Figure 3 shows the spatial distribution pattern of PM2.5 concentrations in the CUA
from 2000 to 2015. The overall distribution pattern of PM2.5 concentrations in the CUA
was relatively stable. In 2000, the PM2.5 concentration was relatively high in Northwest
China and was relatively low in the southeast. From 2005–2015, cities such as Jiang, Zigong
and Meishan, formed the core of high concentration value areas, forming a distribution
pattern with a high concentration in the southwest and a low concentration in the southeast.
The overall PM2.5 concentrations in the CUA have decreased significantly. Moreover, in
2000 and 2015, the average PM2.5 concentrations in the grid layer were 102.06 µg/m3 and
48.05 µg/m3, respectively, equivalent to a mean annual decrease of 4.6%.

For the given study period, the CUA had a large area with PM2.5 concentrations
exceeding 35 µg/m3. According to the World Health Organization (WHO) Air Quality
Guidelines (2005), long-term exposure to environments with PM2.5 concentrations exceed-
ing 35 µg/m3 have considerably higher mortality risk than those with less than 10 µg/m3.
In 2000, more than 99% of the CUA had concentrations of more than 35 µg/m3, while
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the proportion decreased to 91% in 2015 (Figure 4). The proportion was still very high,
indicating that air pollution was still a major problem in this area.

Figure 3. Spatial distribution of PM2.5 concentrations in CUA from 2000 to 2015: spatial interpolation
was achieved using the natural break point classification of ArcGIS.

Figure 4. Classification of area proportion of PM2.5 concentrations classification in CUA from 2000 to
2015. The results are based on the calculation of the percentage of the grid. AVG was obtained after
averaging the PM2.5 concentrations over the study period.
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The Theil–Sen trend analysis shows that most in the CUA experienced a convergence
of PM2.5 concentrations from 2000 to 2015 (Figure 5). For the given study period, 92.98% of
the areas experienced a slowly descend in PM2.5 concentrations, particularly in Suining,
Leshan, Ya’an, Mianyang and Dazhou. The PM2.5 concentrations in 5.66% of the agglomer-
ation had sharply declined, primarily in the main urban area of Chengdu, eastern Meishan,
northern Leshan, Ziyang, Guang’an and the main urban area of Chongqing. In 1.36% of the
agglomeration, the PM2.5 concentrations had slowly increased, mainly in Shimian, Xuyong
and Gulin counties.

Figure 5. Evolution trend of Theil–Sen index of PM2.5 concentrations in CUA from 2000 to 2015.

To evaluate the spatial dependence pattern of PM2.5 concentrations in the CUA, the
overall Moran’s I from 2000 to 2015 was calculated at the county administrative level
(Figure 6). The results show that the Moran’s I of the PM2.5 concentrations were all greater
than zero, with an average value of 0.578. This suggests that the spatial distribution of
PM2.5 concentrations in the CUA has a significant positive spatial dependence (z-scores
in each year are more than 2.58 and p-values are less than 0.01) and that high-polluting
cities are often adjacent. Figure 7 shows the distribution of cold and hot spots of PM2.5
concentrations in the CUA in 2000 and 2015. Consistent with the changes in the spatial
distribution, the spatial heterogeneity of cold and hot spots of PM2.5 concentrations was
significant from 2000 to 2015, presenting a spatial dependence pattern of “cold spots in the
east and hot spots in the west”. In 2000, Hanyuan-Anyue-Langzhong was largely used as
the node forming a “reverse-C” shape of cold/hot spot boundaries. The hot spots were
concentrated in highly polluted areas, such as Chengdu, Deyang, Suining, Meishan and
Mianyang, in the western part of the Chengdu-Chongqing urban agglomeration. In 2015,
the hot and cold dividing boundary was transformed into a “ring”-shaped structure with
Ebian, Mianzhu, Nanchuan and Gulin as the nodes. The center of the hot spot moved south
and the cold spot only included Dazhou, Mianyang, Nanchong and the northern part of
Chongqing (such as Wanchuan, Yunyang, Liangping) after shrinking. From 2000 to 2015,
a large number of cold spot cities changed to non-significant areas and their proportion
dropped from 29.57% to 19.72%, while hot spot areas remained above 30% (Figure 7).
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Figure 6. Moran’s I of global autocorrelation from 2000 to 2015.

Figure 7. Distribution of cold and hot spots of PM2.5 concentrations in CUA in 2000 and 2015.

4.2. Driving Impact of Urbanization on PM2.5 Concentrations

The PM2.5 concentrations showed significant spatial dependence; therefore, the spatial
effects have to be considered when measuring the driving factors of PM2.5 concentrations.
Meanwhile, in the trend analysis, the PM2.5 concentrations in the main urban areas of
Chengdu and Chongqing decreased significantly, which arouses our attention to the driving
influence of urbanization on the spatial distribution of PM2.5 concentrations. To explore
the impact of urbanization on the spatial distribution of PM2.5 concentrations, we used
multi-dimensional urbanization as the key explanatory variable and the natural and socio-
economic parameters as control variables in generating the spatial regression model. To
demonstrate the spatial regression optimal model selection process, take the population
urbanization as an example.

The first step is to confirm whether spatial effects should be introduced into the
regression model. Both LM-SLM and LM-SEM rejected the null hypothesis, indicating
no spatial lag term and spatial error term at the 1% confidence level. The residual space
autocorrelation test shows that the residual Moran’s I of spatial regression is closer to zero
than OLS. Both tests proved the necessity that spatial regression models are introduced.
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Then, when the substitutability of the SLM and SEM models were tested using the LR,
we found that both the LR-SLM and the LR-SEM were statistically significant at the 1%
confidence level. This means that using SDM in the regression analysis can better reveal
the driving mechanism of PM2.5 concentrations than SLM or SEM and simultaneously
characterize the interaction of variable endogeneity and exogeneity and the differential
impact of urbanization on PM2.5 concentrations in local and neighboring areas. Finally, the
results of the SDM were analyzed.

Table 2 shows the results of the SDM calculation for population urbanization and
comprehensive urbanization (lncu) for 2000 and 2015. Among them, referring to the study of
Du et al. [12], the comprehensive urbanization index (the urbanization of each dimension
was standardized, added and averaged and was again standardized) was introduced
into the SDM to reflect the impact of the comprehensive urbanization level on the PM2.5
concentrations. Using population urbanization as an example, the results show that the
coefficients of lnpop and W*lnpop for 2000 and 2015 were significantly greater than zero
and showed an increasing trend (Table 2, columns 2 and 3). This indicates that the increase
in population urbanization has a significant positive impact on the spatial distribution
of PM2.5 concentration. This finding is also applicable to comprehensive urbanization
(Table 2, columns 5 and 6).

Table 2. SDM estimates of population and comprehensive urbanization of CUA for 2000 and 2015.

Variables SDM_2000 SDM_2015 Variables SDM_2000 SDM_2015

lnpop 0.012 ** 0.028 * lncu 0.078 *** 0.127 **
lndem −0.140 * −0.624 ** lndem −0.038 * −0.640 **
lnslo 0.075 −0.107 ** lnslo 0.066 −0.099 *
lnap 0.797 *** 0.495 ** lnap 0.830 *** 0.498 ***
lnwind −0.012 ** 0.317 lnwind −0.018 * 0.330
lnndvi −0.031 ** −0.050 *** lnndvi −0.079 ** −0.097 *
lnrscg 0.018 ** 0.114 ** lnrscg 0.032 *** 0.157 ***
lnrei 0.207 *** −0.022 lnrei −0.001 −0.021
W*lnpop 0.018 ** 0.019* W*lncu 0.202*** 0.127*
W*lndem 0.173 * 0.579 * W*lndem 0.049 0.587 *
W*lnslo −0.139 ** −0.210 ** W*lnslo −0.095 ** −0.223**
W*lnap −0.861 *** −0.562 W*lnap −0.896 *** −0.571 **
W*lnwind −0.033 * −0.113 ** W*lnwind −0.032 * −0.121 **
W*lnndvi 0.105 * 0.232 ** W*lnndvi 0.166 ** 0.285 ***
W*lnrscg 0.123 * −0.027 W*lnrscg 0.205 ** −0.038
W*lnrei 0.243 *** 0.096** W*lnrei 0.107 ** 0.077 **
R2 0.756 0.948 R2 0.853 0.951
log-likelihood 313.256 319.107 log-likelihood 304.427 320.664
LR-SLM 40.132 *** 60.236 *** LR-SLM 10.256 *** 27.892 ***
LR-SEM 32.195 *** 45.371 *** LR-SEM 9.681 *** 15.297 ***

Note: cu indicates comprehensive urbanization, which was obtained as follows: first, the mean standardized
economic, land and population urbanization was calculated; second, the sum value was standardized to obtain
the final comprehensive urbanization. *, ** and *** indicate the significance at the confidence level of 10%, 5% and
1%, separately.

In addition, the comparison of regression coefficients showed (Table 2, columns 2 and
3) that population agglomeration was not the only gain factor for the PM2.5 concentration
growth in the CUA. The control variables, such as the slope, commercial trade, air pressure
and building development intensity, were all positive driving factors that caused the
CUA’s relatively high concentrations in 2000, with regression coefficients of 0.075 (lnslo),
0.018 (lnrscg), 0.797 (lnap) and 0.207 (lnrei). NDVI and elevation had a significant impact on
preventing the increase of PM2.5 concentrations in the region, especially in 2015 when the
regression coefficients were –0.050 (lnndvi) and –0.624 (lndem). The significant decrease of
PM2.5 concentrations in the CUA in 2015 (Figure 3) may be related to the rapid convergence
of the driving influence of lnap and lndem on PM2.5. The gain effect of average air pressure
decreased by 37.892% compared to 2000, while the suppression effect of elevation increased
by 345.714%.
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4.3. Difference between the Direct and Spillover Effect of Multi-Dimensional Urbanization

Table 2 shows the difference in the regression coefficient between the weighted vari-
ables and the original variables, verifying that urbanization under the spatial effect has
a differential impact on PM2.5 concentrations of local and neighboring areas. To explore
the differential effects of urbanization in local and neighboring areas, we constructed SDM
models using multi-dimensional urbanization and the PM2.5 concentration as independent
and dependent variables, analyzing whether the population, land and economic urban-
ization have the same impact on PM2.5 concentrations and its direct and spillover effects.
Table 3 lists the direct and spillover impact of multi-dimensional urbanization for 2000
and 2015.

Table 3. The impact of multi-dimensional urbanization on PM2.5 concentration in 2000 and 2015.

Row
Number Type of Urbanization Variables Indicator

Abbreviation
Direct Effect Spillover Effect

2000 2015 2000 2015

1 Population urbanization Percentage of permanent
urban population lnpop 0.003

(0.078)
0.083 ***
(2.685)

2.266 *
(4.871)

1.370 *
(2.545)

2 land urbanization Ratio of urban land area lnland 0.220 ***
(1.990)

0.209 ***
(3.447)

10.785 **
(2.240)

3.717 *
(2.761)

3 economic urbanization GDP density lngdp 0.179 *
(1.757)

0.160 **
(2.120)

6.915 **
(1.823)

6.337 *
(1.879)

4 Comprehensive urbanization Based on PU, LU and EU lncu 0.169 ***
(2.820)

0.155 ***
(2.969)

7.328 *
(1.683)

2.151 **
(2.318)

Notes: t-statistics in parentheses. *, ** and *** indicate the significance at the confidence level of 10%, 5% and 1%, separately.

We found that the impact of the direct and spillover effect of urbanization on PM2.5
concentrations was generally: land urbanization > economic urbanization > population
urbanization. The impact of multi-dimensional urbanization on PM2.5 concentrations was
declining both locally and in neighboring areas. This shows that urban land expansion
has greater contributions to the PM2.5 concentration than economic construction and
urban–rural population conversion. The general decline in the influence of urbanization
indicates that the driving factors of PM2.5 distribution may be more diversified.

In terms of population urbanization, the direct effect was not significant in 2000. The
elastic coefficient of lnpop was 0.083 in 2015, significant at a 1% confidence level. The
spillover effect was statistically significant for the two periods with elastic coefficients
of 2.266 and 1.370, equivalent to a decrease of 39.54%. In terms of land urbanization,
with a confidence level of 1%, the elastic coefficients of the direct effect and spillover
effect of lnland from 2000 to 2015 have converged, decreasing by 5% and 65.54%, but the
direct effect remains the first for multi-dimensional urbanization. In terms of economic
urbanization, the elastic coefficients of the direct effects and spillover effects for lngdp from
2000 to 2015 have also converged, decreasing by 10.6% and 8.36%. Moreover, we found
that the impact of population, land, economic and comprehensive urbanization on the
PM2.5 concentrations in neighboring cities was stronger than local urbanization, which
means that the spillover effect of urbanization is significantly stronger than the direct effect.
For example, in 2000 and 2015, the elastic coefficients of the direct effect of comprehensive
urbanization on PM2.5 concentrations were 0.169 and 0.155 (1% confidence level), which
were only 2.31% and 7.21% of the spillover effect in those periods.

5. Discussion
5.1. Explanation of the Driving Influence of Urbanization on PM2.5 Concentrations

Why was the influence of urbanization on the PM2.5 concentration in 2000–2015 not
pronounced? As shown in Table 2, the population urbanization and comprehensive ur-
banization of the region are significantly weaker than the gain contributions of the control
variables, such as the slope, air pressure, commercial trade and building development
intensity to the PM2.5 concentrations. There are two possible reasons for this phenomenon.
First, PM2.5 concentrations result from multiple factors, including social, economic and
ecological factors, not just due to urbanization-related human activities [49]. For example,
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CUA areas are mostly basins with low slopes. Studies have confirmed that strong down-
drafts are formed over the basins in this area. The temperature inversion near the ground
and the de-ground temperature inversion effect formed after the high airflow sinks inhibit
the upward diffusion of PM2.5 pollutants and cause the slope to have a strong positive
impact on PM2.5 concentrations [50].

The second is the impact of the spatial difference arising from the layout center of multi-
dimensional urbanization and PM2.5 concentrations. Figure 8 shows the spatial distribution
of population, land and economic urbanization. Comparing Figures 3 and 8, we found that
the high-value urbanization centers represented by the main urban areas of Chongqing
(Yuzhong District, Nan’an District, Yubei District, Jiangbei District) have relatively low
PM2.5 concentrations. The difference in spatial distribution between urbanization centers
and pollution centers weakens the explanatory force of the multi-dimensional urbanization
in the regression fitting.

Figure 8. The spatial distribution of multi-dimensional urbanization.

5.2. Differential Impact of Multi-Dimensional Urbanization on PM2.5 Concentrations

The direct and spillover effects of multi-dimensional urbanization on PM2.5 concen-
trations significantly vary. In terms of population urbanization, the elastic coefficient of
DEU was not significant in 2000 and in 2015, it was ranked last among the urbanization
aspects (Table 3, row 1). This may be related to the inconsistency of the spatial distribution
of population urbanization and PM2.5 concentrations, which weakens the direct influence
of population urbanization. Comparing Figures 3 and 8, the high-level population urban-
ization regions, such as Ziliujing District, Dadukou District, Jiangbei District and Nan’an
District, have not formed high-value PM2.5 agglomeration and their concentrations are
lower than the mean value of CUA in 2000 (102.06 µg/m3) and 2015 (48.05 µg/m3). This
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observation has also been adapted to the current situation of population urbanization
policy and green industrial development of CUA [51]. Taking 2015 as an example, the
population urbanization level of Chongqing’s main urban areas, such as Yuzhong Dis-
trict (100%), Dadukou District (97.2%) and Jiangbei District (95.3%), ranked at the top.
The construction of large-scale settlements and new urban areas has accelerated urban
population agglomeration. Under the new urbanization policies, these regions adhere to
green, low-carbon and ecological development, strengthen energy conservation, promote
emission reduction and implement eco-environmental protection measures. Taking NO2
emissions and smoke in the main urban area of Chongqing as an example, both values
decreased by 60.62% and 94.14% from 2000 to 2015 (data from the Chongqing Statistical
Yearbook). Meanwhile, the radiation capacity of advanced manufacturing and modern
service industries in the main urban area of Chongqing has rapidly increased and green
industrialization has accelerated. The rapid agglomeration of the urban population, im-
provements in resident lifestyles and the significant weakening of the ecological predatory
effect due to modern green industry have considerably reduced the air pollution effect of
population urbanization in the region [52,53].

The SEU elasticity coefficient of population urbanization was significant. We argue that
the fact that the cross-regional movement of people under the complex urban system has
strengthened the transmission effect of PM2.5 concentrations can explain this phenomenon
(Table 3, row 1). Lin et al. [54] and Shen et al. [55] concluded that the construction of urban
systems, coupled with population mobility and the agglomeration of rural populations
into cities, has changed the geographical distribution and scale of pollutants, resulting in
considerable regional air quality problems. According to the Chengdu Statistical Yearbook
and Chongqing Statistical Yearbook, from 2000 to 2015, the permanent residents of Chengdu
and Chongqing increased by 4.582 million and 8.245 million and the growth rates were
75.55% and 81.32%, respectively. The agglomeration and flow of the urban population
increased domestic pollution, resulting in higher population-related PM2.5 emissions in
neighboring areas.

The elastic coefficients of DEU and SEU of land urbanization are generally at the top
of multi-dimensional urbanization under statistical significance. This may be related to the
regional land expansion demand and the urban heat island effect [56,57]. Due to national
strategic support (e.g., China’s western development strategy, the Yangtze River Economic
Belt and CUA), the CUA has expanded considerably to satisfy increased residential housing
demand [58]. According to the National Bureau of Statistics of China and Figure 8, the
average value of per capita real estate investment in fixed assets in the CUA increased
from CNY 476.09 in 2000 to CNY 7272.32 in 2015, with an average annual growth rate of
19.93%. Similarly, the average level of land urbanization increased from 4.94% to 8.94%.
Together with atmospheric circulation and urban wind, the increased building construction
and road dust exacerbated the air pollution of the local city and caused gain effects on the
PM2.5 concentrations of neighboring towns [59]. The rapid increase in building density
and impermeable surfaces further constricted urban green spaces and vegetation coverage,
affecting the adsorption effect on fine particles and influencing the accumulation and
diffusion of pollutants through the heat island effect [60,61].

Although the direct and spillover effects of economic urbanization have converged, the
elastic coefficient remains relatively high. The direct effect shows that economic urbaniza-
tion is an important indicator affecting PM2.5 concentrations. For the given research period,
the average level of economic urbanization in the CUA rose from 6,203,500 yuan/m2 to
67,685,900 yuan/m2 (Figure 8). The rapid development of the urban economy was ac-
companied by the rise in industrial production, which has brought about substantial dust
pollution and aggravated the local PM2.5 concentrations through various complex mecha-
nisms [62,63]. The industry structure of the CUA, led by the secondary industry and its
role as a demonstration zone for industrial transfer in eastern China, has promoted greater
pressure on energy conservation, emission reduction and environmental governance in
the region [64]. The spillover effects may be related to improved regional transportation
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economy and developments in cross-regional trade [65]. As the connecting point of “the
Belt and Road initiative” and the Yangtze River Economic Belt, the CUA is the fourth
key area in China’s comprehensive transportation network [66]. For the study period, the
region integrated airports, highways, railways and port container transportation, gradually
building a transportation network that radiates domestic and foreign regions and the
increased local traffic pollution intensified PM2.5 levels in neighboring cities [67]. Similarly,
based on the transportation system, trade connection between CUA and domestic and
foreign markets has strengthened rapidly, causing accelerated transmission of pollutant
components under the trade globalization, which further intensify the risk of air pollution
in neighboring areas [19].

In conclusion, land urbanization is the best indicator reflecting the impact of multi-
dimensional urbanization on PM2.5 concentrations, which is particularly evident in its
spillover effects. We argue that the possible reason is that land is the spatial carrier of
urban economic development and population agglomeration. Given the policies of the
Chinese government promoting the construction of national central cities (e.g., Chengdu,
Chongqing), metropolitan areas (e.g., Chengdu metropolitan area, Chongqing metropoli-
tan area) and urban agglomerations, land expansion and the transformation of land use
properties in the CUA have accelerated, further fragmenting urban green spaces and threat-
ening environmental habitats [68–70]. With the support of China’s special institutional
environment and rapid urbanization, land urbanization has a more prominent impact on
PM2.5 concentrations.

5.3. Policy Implications, Limitations and Applicability

Although the PM2.5 concentrations in the CUA have significantly declined from 2000
to 2015, the impact of urbanization on air pollution should not be underestimated, par-
ticularly its spillover effects in neighboring areas. The relationship between urbanization
and air quality should be carefully coordinated, focusing on the spillover effects of ur-
banization on air quality. More work should be carried out to promote the construction
of green cities and improvements in air quality. First, policymakers and environmental
protection organizations must consider the complex relationship between urbanization and
urban ecosystems from the system theory perspective and the human–land coordination
concept. Urban development must be optimized in terms of population agglomeration,
land expansion and economic construction. For example, emission monitoring of heavy
industries should be improved and a system that monitors dust and air quality on con-
struction sites should be developed. The creation and protection of green spaces should
be incorporated in new construction works and the construction of pollution prevention
and control, treatment and disposal facilities should be integrated into urban planning.
Second, the spillover effects of urbanization should be given more attention. Each county
within the CUA should focus on modern urban systems and strengthen joint action for air
pollution control based on the WHO’s Air Quality Guidelines and China’s Air Pollution
Prevention and Control Law. The sharing of pollution monitoring and control should
be further strengthened and developing a pollution emission list should be considered.
Regions should strengthen cooperation towards clean transportation, optimized urban
spatial layout, environmental sustainability, industrial waste remediation and pollution
reduction in order to build a circular and sustainable “blue sky urban agglomeration”.

There are still some shortcomings in this study. First, the driving effect of multi-
dimensional urbanization has been explored in this study, but the objective demand of
urban planning for the urbanization speed and the negative impact of air pollution on
urbanization were not considered. Future studies should make more efforts to explore
how to achieve the unity of urban air quality improvement and the healthy development
of urbanization under the dual goals of urban development and residential happiness.
Second, the spatial regression model considers the influence of spatial dependence on
the driving effect. However, it does not detect the driving factors of the PM2.5 concen-
trations of a single research unit and the spillover effects on specific areas. In the future,



Int. J. Environ. Res. Public Health 2021, 18, 10609 16 of 19

spatial regression models and geographic weighted regression can be combined to better
analyze the driving effect of urbanization on PM2.5 concentrations at different levels and
analyze the coordinated development of urbanization and air quality from a global and
local perspective.

Despite these shortcomings, this research has strong practical and application value.
This is the first time a practical analysis of the direct and spillover effects of urbanization on
PM2.5 concentrations has been carried out in CUA using a multi-dimensional urbanization
perspective. The research on the driving impact of urbanization on PM2.5 can also be
extended to other similar emerging urban agglomerations in China to further explore the
coordinated relationship between urbanization and air quality in urban agglomerations.
Commercial trade, building development, agricultural operations and other natural indica-
tors can also be used as control variables in driving mechanism research of urban activities
on carbon emissions and other related fields.

6. Conclusions

In this study, control variables such as the wind speed, relative humidity, temperature,
air pressure, commercial trade and building development intensity were included in the
regression system and the spatial regression analysis of PM2.5 was carried out from the grid
and administrative levels. It aims to reveal the difference between the direct and indirect
effects of the multi-dimensional urbanization of the CUA on PM2.5 concentrations in the
context of rapid urbanization. The highlights of the results are as follows. The average
annual decline of PM2.5 concentrations in the CUA reached 4.6%, but the concentration
in 91% of the regions still exceeded 35 µg/m3 in 2015. The spatial distribution pattern
of “high in the southwest and low in the southeast” was gradually formed. The spatial
autocorrelation of PM2.5 concentrations was further elaborated and the PM2.5 concentra-
tions have a significant positive spatial dependence, forming a spatial dependence pattern
of “cold spots in the east and hot spots in the west”. Analysis of influence differences
showed that urbanization was not the only factor intensifying PM2.5 pollution; commercial
trade, the average air pressure and building development intensity were found to have
a significant impact on air quality. The direct and spillover effects of multi-dimensional
urbanization on PM2.5 concentrations were significantly different. The driving effect of
land urbanization was found to be stronger than economic and population urbanization,
particularly the spillover effects on PM2.5 concentrations in neighboring areas.
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