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Throughout history, the welfare and prosperity of civilizations have depended on
the development of novel, more advanced materials. Today, the need for new materials
is greater than ever, and the criteria for successful materials are becoming more stringent.
On the one hand, growing awareness of the urgent need to reduce humans’ environmental
footprint and reduce energy consumption is putting the focus on environmentally friendly
synthetic methods which use as little energy as possible. On the other hand, low-cost,
widely available materials are needed, especially in the biomedical field. Meeting both sets
of requirements, however, is no easy task.

Nevertheless, examples of such materials are readily available. Materials synthesized
by different organisms are produced from inexpensive raw materials, in low-energy and
environmentally friendly processes [1,2]. Interestingly, the properties of many such biologi-
cal materials are still unmatched by any engineered material [3–6]. However, biological
materials are the result of an evolutionary process, usually highly specialized and therefore
not necessarily optimized for all properties [3,7]. Moreover, they are formed from a limited
number of constituents [8], which motivates and challenges materials scientists to improve
on nature’s work.

Biomimetic synthesis is therefore receiving increasing attention, which is accompanied
by advances in the understanding of natural synthetic pathways in various tissues. The
term biomimetic is derived from the ancient Greek words bios, meaning life, and mimesis,
meaning to imitate [9], and was coined by Otto H. Schmittt in 1969 [10]. In biomimetic
synthesis, two aspects of natural processes can be mimicked: the specific properties or
synthetic pathways of natural materials [11]. To date, biomimetic principles have been
successfully applied in a wide range of fields, such as medicine [9], pharmaceuticals [12],
robotics [13], bioelectronics [14], catalysis [15], energy [16], environmental protection [17],
synthesis of nanomaterials [18], etc.

Among the various biological processes that inspire the development of novel ma-
terials, biomineralization, the formation of hard tissues by different organisms, takes a
special place in the field [4,19,20]. In biomineralization, the organic matrix and/or soluble
biomolecules exert strict control over the formation of the inorganic phase, including the
control of its composition, morphology, and nucleation sites [1,2]. As a result, such tissues
are organic–inorganic composites with complex, hierarchical structures (from the nano- to
the micrometer scale), which differ in their properties from geological analogs of the same
mineral counterparts [6]. Among the tissues that have attracted the most attention, due to
their properties and functions they perform in organisms, are bone and nacre.

Bone is a family of composite materials whose basic structural unit is the collagen
fibril mineralized with biological apatite [21–24]. Starting from the basic components, i.e.,
the mineral phase, collagen, non-collagenous proteins, proteoglycans, and water, to tissues
and organs, nine different hierarchical levels can be distinguished [21]. Recent studies
using the focused ion-beam electron microscope and serial surface view method revealed
that the majority of the bone is composed of ordered arrays of mineralized collagen fibrils
and macromolecules associated with them, while a minor part is composed of relatively
disordered individual collagen fibrils with crystals located within and possibly between
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the fibrils [21]. Such structural organization results in a material with high strength and
fracture toughness [5].

Nacre forms the inner layer of many shells and pearls. The nacre is structured from
layers of submicrometer-sized aragonite tablets, often referred to as “bricks”, interconnected
with organic components, the “mortar”. This “mortar” composed of β-chitin, diverse
proteins and small organic molecules (polysaccharides, lipids, pigments, etc.) acts as a
viscoelastic glue [6,25]. As a result, the strength of nacre is up to 3000 times higher than
that of geological aragonite, which has no organic matter in its structure [2,8,26].

Although the interest in elucidating the underlying principles of biomineralization
and their application in materials synthesis was initially motivated by the need to repair
damaged hard tissue, it soon became apparent that this knowledge can be successfully
applied in different fields, such as biosensing, drug delivery semiconductors, transportation,
civil engineering, energy conversion and storage [6,20,27].

The papers presented in this Special Issue address several topics of interest for the de-
sign and application of biomimetic organic–inorganic composite materials in biomedicine.

The investigation of the role that individual amino acids (AAs) have in the precipita-
tion process of calcium phosphates (CaPs) has been proposed as a way to both deepen the
understanding of biomineralization [28] and to find a biomimetic route to improve the bioac-
tivity of CaPs [29]. Despite extensive work in this area, the effect of individual AAs is still
not fully understood due to conflicting results in the literature. Moreover, most of the inves-
tigations were performed on hydroxyapatite. Motivated by this, Mihelj Josipović et al. [30]
investigated the influence of charged, polar, and non-polar AAs on calcium phosphate
growth, initiated with octacalcium phosphate and dicalcium hydrogenphosphate dihydrate
crystal seeds in metastable solution at physiological pH. It was shown that the influence of
individual AAs on the rate of seeded growth and the properties of the solid phase formed
depended on the type of seed applied.

Due to their similarity to bone structure and/or composition, mineralized, biodegrad-
able, porous 3D scaffolds are receiving increasing attention in the field of bone tissue
engineering [31,32]. Among these scaffolds, those based on collagen sponges (Col) are of
special interest. Santhakuar et al. [33] described the preparation of collagen sponges coated
with amorphous calcium phosphate (ACP) and low-crystalline apatite (Ap) and compared
their bone regeneration capabilities in rat cranial defect model. Despite the fact that it was
previously shown that the Col-ACP composite does induce apatite formation in SBF [34], it
did not have beneficial effects on the healing of cranial effects, unlike the Col-Ap composite.
The poor performance of the Col-ACP composite was attributed to several factors including
an acidified environment as a consequence of postoperative inflammation and/or secretion
of acid by osteoclasts resulting in increased solubility of ACP, the circulation of body fluid,
type of the bone defect [33].

Another polymer of great interest for biomedical applications is hyaluronic acid [35].
This is a polysaccharide that constitutes an extracellular matrix in various parts of the
human body, such as the joints, eyes, and skin [36,37]. In addition to its chemical and
structural properties, its biocompatibility makes it a valuable capping, dispersing and
templating agent for different biomedical applications [38]. Sikkema et al. [38] summa-
rized the advances in the preparation, properties and applications of organic–inorganic
hyaluronic-acid-based composite gels, films, coatings, scaffolds, biocements, bioceramics,
bioglasses, and particles.

The physical and chemical properties of the surface of biomaterials and biomedical
devices are among the key factors that determine the success of their application. To
improve their biocompatibility, the biomaterial surfaces can be modified by various physical
and chemical methods [39,40]. Arango-Satander [41] reviewed biomimetic topographic
surface modifications of biomaterials aimed at reducing bacterial adhesion and improving
cell attachment. The results of surface modifications inspired by the skin of various animals
(shark, gecko), insects (dragonfly, planthopper) and plant surfaces (lotus, rose petals,
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floating fern, rice and taro leaves) were summarized and their potential as non-chemical
alternatives to improve biomaterial performance was discussed.

These articles illustrate the wealth of research topics in the field of biomimetic organic–
inorganic composites and contribute to the development of a framework for the rational
design and synthesis of such materials.

Funding: This research was funded by the Croatian Science Foundation, Grant HRZZ- IP-2018-01-1493.
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