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ABSTRACT We aimed to develop a deep learning algorithm detecting 10 common abnormalities
(DLAD-10) on chest radiographs, and to evaluate its impact in diagnostic accuracy, timeliness of reporting
and workflow efficacy.

DLAD-10 was trained with 146717 radiographs from 108053 patients using a ResNet34-based neural
network with lesion-specific channels for 10 common radiological abnormalities (pneumothorax,
mediastinal widening, pneumoperitoneum, nodule/mass, consolidation, pleural effusion, linear atelectasis,
fibrosis, calcification and cardiomegaly). For external validation, the performance of DLAD-10 on a same-
day computed tomography (CT)-confirmed dataset (normal:abnormal 53:147) and an open-source dataset
(PadChest; normal:abnormal 339:334) was compared with that of three radiologists. Separate simulated
reading tests were conducted on another dataset adjusted to real-world disease prevalence in the
emergency department, consisting of four critical, 52 urgent and 146 nonurgent cases. Six radiologists
participated in the simulated reading sessions with and without DLAD-10.

DLAD-10 exhibited area under the receiver operating characteristic curve values of 0.895-1.00 in the
CT-confirmed dataset and 0.913-0.997 in the PadChest dataset. DLAD-10 correctly classified significantly
more critical abnormalities (95.0% (57/60)) than pooled radiologists (84.4% (152/180); p=0.01). In
simulated reading tests for emergency department patients, pooled readers detected significantly more
critical (70.8% (17/24) versus 29.2% (7/24); p=0.006) and urgent (82.7% (258/312) versus 78.2% (244/312);
p=0.04) abnormalities when aided by DLAD-10. DLAD-10 assistance shortened the meantsp time-to-
report critical and urgent radiographs (640.5£466.3 versus 3371.0£1352.5s and 1840.3+1141.1 versus
2127.1£1468.2 s, respectively; all p<0.01) and reduced the mean+sp interpretation time (20.5+22.8 versus
23.5+23.7 s; p<0.001).

DLAD-10 showed excellent performance, improving radiologists’ performance and shortening the
reporting time for critical and urgent cases.
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Introduction

Chest radiographs are the most frequently performed radiological examination [1, 2], and the large work
burden hampers timely diagnoses, interferes with the clinical workflow and increases the misinterpretation
rate [3]. In recent years, deep learning technology has been widely applied for chest radiograph
interpretation [4-9]. Various algorithms have shown good performance in specific task-based analyses,
including detection of lung nodules/masses, pneumothorax and pulmonary tuberculosis [5-9]. These
algorithms may increase radiologists’ detection performance and improve their confidence, but it remains
unclear whether these algorithms could decrease radiologists’ work burden and facilitate timely diagnoses.

Radiologists’ interpretation of a radiograph can be typically divided into four processes: 1) detection and
localisation of clinically relevant abnormalities, 2) comparison with previous radiographs (if any), 3) final
interpretation with differential diagnoses, and 4) generation of a radiology report. In this study, we focused
on the first step, and developed an automated algorithm that can detect and localise common abnormal
findings on chest radiographs. Several algorithms covering multiple abnormalities have been reported, but
the coverage of findings was limited [10, 11] or the performance was unsatisfactory compared with
radiologists [12, 13].

Thus, the purpose of our study was to develop a deep learning-based algorithm for 10 common
radiological abnormalities (DLAD-10), and to evaluate and compare its performance with that of
radiologists. In addition, we investigated whether DLAD-10 could boost the detection performance and
workflow efficacy of radiologists on simulated reading tests for patients visiting the emergency department.

Materials and methods
This retrospective study was approved by our institutional review boards and the requirement for patients’
informed consent was waived.

Development of the DLAD-10

DLAD-10 was developed for 10 abnormalities, selected to cover a majority of thoracic diseases [14]:
pneumothorax, mediastinal widening, pneumoperitoneum, nodule/mass, consolidation, pleural effusion,
linear atelectasis, fibrosis, calcification and cardiomegaly. These abnormalities were defined in accordance
with the Fleischer Society glossary [15]. Specifically, “mediastinal widening” indicated enlargement of the
aortic shadow, suggesting aortic disease [16], and “fibrosis” indicated focal fibrotic change rather than
diffuse reticular opacities, suggesting interstitial lung disease (ILD) [15]. The study design is summarised
in figure 1.

Development dataset

For the development of DLAD-10, 146717 chest radiographs (143768 posteroanterior and 2949
anteroposterior projection; 90317 normal and 56400 abnormal) from 108053 patients (55394 males and
52659 females; meantsp age 56.1+14.5 years) taken between March 2004 and December 2017 were
retrospectively collected from Seoul National University Hospital (Seoul, Republic of Korea) (see
supplementary table E1 for chest radiograph scanner information). Some of the dataset was used in our
previous studies [6, 11], but the algorithm was re-designed and trained to perform a different task. Every
chest radiograph was reviewed by at least one of 20 board-certified radiologists (labelling group; 7-14 years
of experience) and image-level labels were obtained for each of the 10 abnormalities. Each abnormality
was then localised (pixel-level annotation) by the labelling group (details described in the supplementary
material). Training was conducted in a semisupervised manner, in which all radiographs were assigned at
least one label for the 10 abnormalities, but some were not annotated for the exact location. Details on the
numbers of chest radiographs are provided in supplementary table E2.

Deep learning algorithm

The model used a ResNet34-based deep convolutional neural network [17]. The final layer output 10
different abnormality-specific channels, each representing the probability map for the corresponding
abnormality (supplementary figure E1). We inserted an Attend-and-Compare Module in the intermediate
layers to improve detection performance [18]. During the training, the AutoAugment algorithm [19]
combined with conventional image processing techniques such as brightness/contrast adjustment, blurring
and random cropping was applied to augment the training dataset. During the inference process, each
chest radiograph image was split into patches and the network prediction of the image patches was
aggregated to create a prediction result for the whole image. Binary cross-entropy was used as the loss
function, stochastic gradient descent was used as the optimiser, the learning rate was 0.01-0.001 and up to
40 epochs were used (details described in the supplementary material).
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FIGURE 1 Development and validation of DLAD-10. SNUH: Seoul National University Hospital; ILD: interstitial lung disease; CT: computed
tomography. See main text and supplementary figure E1 for details of the training stage.
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Internal validation

For internal validation, 2523 chest radiographs (2311 posteroanterior and 212 anteroposterior projection;
747 normal and 1776 abnormal) from 2523 patients not included in the development dataset were
collected, all with image-level labels for the 10 abnormalities (table 1). The area under the receiver
operating characteristic curve (AUROC) was calculated for each abnormality, and binary classification
cut-offs yielding 90% and 95% specificity and sensitivity were obtained.

Urgency categorisation of chest radiographs

We categorised the 10 abnormalities covered by DLAD-10 according to their clinical urgency following a
previous study [20]. “Critical” abnormalities were defined as findings requiring immediate management
within 12-24 h (pneumothorax, pneumoperitoneum and mediastinal widening), “urgent” abnormalities
were defined as nonemergent findings that nonetheless require a prompt evaluation of the disease
aetiology (nodule/mass, consolidation and pleural effusion) and “nonurgent” abnormalities were defined as
those that do not change patients’ management (linear atelectasis, fibrosis and calcification). Cardiomegaly
was not categorised, as its clinical significance is generally not solely decided by chest radiography. Chest
radiographs containing multiple abnormalities with different urgency categories were classified as
belonging to the most urgent category (figure 2a).

External validation

External validation was conducted using two independent datasets. First, a temporally independent dataset
consisting of 190 chest radiographs (169 posteroanterior and 21 anteroposterior projection) taken from
January to December 2018 from 190 patients (101 males and 89 females; mean+sp age 59.4+14.5 years),
accompanied with same-day computed tomography (CT) scans as the reference standard, was collected
from Seoul National University Hospital (SNUH dataset). The dataset was curated and labelled by one
thoracic radiologist (J.G.N.; 6 years of experience) to contain 20-40 chest radiographs for each
abnormality; the cases were consecutively selected for each abnormality (supplementary table E3). The
reference standard of cardiomegaly was only applied to posteroanterior images (n=169) according to the
cardiothoracic ratio (cut-off 0.5) [21, 22], while CT was referenced for the other nine abnormalities.
Additionally, an open dataset (PadChest) consisting of 673 chest radiographs labelled by the labelling
group was used for the other external validation test [23]. The numbers of chest radiographs for individual
abnormalities are presented in supplementary table E3.

Using the 190 same-day CT-confirmed dataset (SNUH dataset), we performed a reader test, in which
three thoracic radiologists (J.H.H., JJH.L. and EJH. 7-10years of experience) participated in a
comparative analysis with DLAD-10. The three radiologists were not involved in the labelling process

TABLE 1 Results of DLAD-10 and selected thresholds for each abnormality from the internal validation test

Critical Urgent Nonurgent Cardiomegaly
Pneumo- Pneumo- Mediastinal Nodule Consolidation Pleural Atelectasis Fibrosis Calcification
thorax peritoneum widening effusion
Positive cases n 384 152 86 507 414 164 208 218 208 215
Negative cases n 2139 2371 2437 2016 2109 2359 2315 2305 2315 2308
AUROC 0.996 0.996 0.966 0.936 0.925 0.933 0.935 0.893 0.952 0.963
Threshold selection
Optimal 0.38" 0.15% 0.21% 0.45 0.54 0.13 0.37 0.18 0.43 0.15%
Sensitivity % 96.4 97.4 93.0 84.8 88.7 97.6 86.5 89.5 88.0 92.1
Specificity % 98.1 98.9 91.0 88.2 81.2 78.8 85.1 77.5 91.5 89.2
Sensitivity 90% 0.31 0.48 0.30 0.20 0.16 0.14
Sensitivity 95% 0.08 0.21% 0.32* 0.13% 0.10 0.04 0.1 0.10
Specificity 90% 0.50 0.78 0.63 0.53 0.70% 0.37 0.23
Specificity 95% 0.74 0.70 0.91 0.84 0.73% 0.86 0.67# 0.66

AUROC: area under the receiver operating characteristic curve.

#. selected threshold value for each abnormality. The optimal thresholds

corresponding to the Youden index were selected for critical abnormalities and cardiomegaly, as they yielded satisfactory sensitivity and
specificity. For urgent abnormalities, threshold values yielding 95% sensitivity were selected. The specificities at the corresponding thresholds
were 71.4%, 72.5% and 79.4% for nodules, consolidation and pleural effusion, respectively. For nonurgent abnormalities, 95% specificity was
selected for atelectasis and calcification (corresponding sensitivities 61.5% and 81.3%, respectively). For fibrosis, the threshold yielding 90%
specificity was selected (corresponding sensitivity 60.6%), as the threshold of 95% specificity yielded suboptimal sensitivity (39.9%).
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during the algorithm development. Each radiologist reviewed 190 chest radiographs independently and
decided whether each abnormality was present on each chest radiograph.

Simulated reading test for emergency department patients

Dataset for the simulated reading test

To investigate the boosting effect of diagnostic accuracy, the timely diagnosis of clinically relevant
diseases and the workflow efficacy of DLAD-10 in real clinical situations, chest radiographs taken from
patients who visited the emergency department of Seoul National University Hospital in 2018 and had
same-day CT scans as a reference standard were collected (supplementary table E4). Among the 1455
chest radiographs from 1178 patients, 202 chest radiographs from 202 patients (95 males and 107
females; meantsp age 57.6+17.9 years) were selected to match the previously reported disease prevalence
of patients visiting the emergency department [24]. Of these chest radiographs, 72.3% (146/202) were
clinically insignificant cases and 27.7% (56/202) were clinically relevant cases, including pneumonia
(35.7% (20/56)), pulmonary oedema (10.7% (6/56)), active tuberculosis (7.1% (4/56)), ILD (5.4% (3/56)),
nodule/mass (17.9% (10/56)), pleural effusion without any other abnormality (12.5% (7/56)), mediastinal
mass (1.8% (1/56)), rib fracture (1.8% (1/56)), pneumothorax (3.6% (2/56)), acute aortic syndrome (1.8%
(1/56)) and pneumoperitoneum (1.8% (1/56)). The corresponding CT images served as a reference
standard for all diseases, while PCR results were additionally used for active pulmonary tuberculosis. The
clinically relevant cases were categorised into critical (pneumothorax, aortic dissection and
pneumoperitoneum) and urgent (pneumonia, pulmonary oedema, active tuberculosis, ILD, isolated
pleural effusion, mediastinal mass and rib fracture) diseases following the same criteria used for
abnormality categorisation [25].

Integration of DLAD-10 into the picture archiving and communication system and reader test

The results of DLAD-10 were integrated into our institution’s picture archiving and communication
system (PACS) (Gx; Infinitt Healthcare, Seoul, Republic of Korea), so that readers could adjust their
worklist on the PACS and rearrange the order of chest radiographs according to abnormal findings or
probability scores yielded by DLAD-10 at their discretion. For the abnormal findings, the most emergent
finding of a chest radiograph image was displayed on the worklist along with its probability
(supplementary figure E2). When a reader opened the image, two chest radiographs were displayed: one
without the DLAD-10 results (original chest radiograph) and the other with all abnormal findings
localised by DLAD-10 with their probability scores (figure 2).

Six readers, including two thoracic radiologists (7 years of experience), two board-certified general
radiologists (6 years of experience) and two radiology residents who had experience in reading emergency
department chest radiographs, participated in the reader test. None of the readers was involved in the
labelling process on DLAD-10 development. Each reader interpreted the 202 chest radiographs twice at a
4-week interval, once with DLAD-10 results (DLAD-10-aided reading session) and once without
DLAD-10 results (conventional reading session). In the conventional reading session, 202 chest
radiographs were listed in the PACS worklist in random order and the readers interpreted them
sequentially. In the DLAD-10-aided reading session, the readers were able to rearrange the list of chest
radiographs according to the urgency and probability score provided by DLAD-10. They were instructed
to interpret the more urgent cases first (supplementary figure E2). Reporting was conducted in the same
manner as the routine reading process performed in the emergency department. After reviewing the
images, each reader made formal reports of three to four lines of text, including abnormal findings and
possible differential diagnoses. Three of the six readers performed the conventional reading session before
the DLAD-10-aided reading session, while the other three performed the DLAD-10-aided reading session
first (supplementary figure E2). The time taken for interpretation of each chest radiograph by each reader
was recorded on the PACS. From these recordings, the interpretation time taken for each chest radiograph
and the time taken from the start of the reading session to the interpretation of each chest radiograph
(time-to-report) were calculated (supplementary figure E2c).

Statistical analyses

The AUROCs of DLAD-10 in classifying each abnormality in the internal validation dataset and two
external validation datasets were calculated. The optimal thresholds corresponding to the Youden index [26]
and thresholds yielding 90% and 95% sensitivity and specificity for each abnormality were obtained from
the internal validation test, and were applied in the external validation and simulated reading test. The
sensitivity and specificity of DLAD-10 were compared with those of the pooled three radiologists in the
external validation test using generalised estimated equations. For the simulated reading test, the urgency
categorisation accuracy for each disease was calculated for DLAD-10 and the readers. The accuracy of the
readers in two reading sessions was compared using the McNemar test. Interpretation time and
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FIGURE 2 Examples of DLAD-10 output. a) Each of 10 possible abnormalities was localised and displayed with its probability score. Urgency
categorisation was performed based on the most urgent abnormality. This image was categorised as critical as it contained pneumothorax (Ptx)
(in addition to nodule (Ndl) and pleural effusion (PEf)). b] A 47-year-old female patient visited the emergency department complaining of vague
chest pain. A small pneumoperitoneum (Ppm] was detected by DLAD-10, while no readers detected the lesion in the conventional reading
session. In the DLAD-10-aided reading session, all readers detected pneumoperitoneum. c] A 24-year-old male patient visited the emergency
department due to left chest pain. A small left pneumothorax (Ptx) was detected by DLAD-10. Three readers reported pneumothorax in the
conventional reading session and all six readers reported it in the DLAD-10-aided reading session. The arrows on the computed tomography
scans in b) and c] indicate the corresponding abnormalities visualised on the chest radiographs.

time-to-report taken for each chest radiograph were measured and compared between the two reading
sessions using the paired t-test. Statistical analyses were performed with scikit-learn version 0.19.0 [27],
MedCalc version 15.8 (MedCalc, Ostend, Belgium) and SPSS version 25 (IBM, Armonk, NY, USA).

Results

Internal validation test

DLAD-10 showed AUROCs of 0.893-0.996 in the internal validation dataset (table 1). The threshold for
each abnormality was selected based on its clinical significance and sensitivity/specificity: pneumothorax
0.38, pneumoperitoneum 0.15, mediastinal widening 0.21, nodule/mass 0.32, consolidation 0.32, pleural
effusion 0.13, linear atelectasis 0.73, fibrosis 0.70, calcification 0.67 and cardiomegaly 0.15. High sensitivity
thresholds (sensitivity >93%) were selected for critical (pneumothorax, pneumoperitoneum and
mediastinal widening) or urgent (nodule/mass, consolidation and pleural effusion) abnormalities, and high
specificity thresholds (specificity >90%) were selected for nonurgent abnormalities (linear atelectasis,
fibrosis and calcification) (table 1 and figure 1).

External validation tests

DLAD-10 showed AUROCsS of 0.895 (cardiomegaly) to 1.00 (pneumoperitoneum) for each abnormality in
the CT-confirmed SNUH dataset and 0.913 (linear atelectasis) to 0.997 (pneumothorax) in the PadChest
dataset (table 2). Compared with thoracic radiologists, DLAD-10 generally showed higher sensitivities,
while radiologists were more specific (table 3). DLAD-10 showed comparable performance to the
radiologists in terms of AUROCs for most abnormalities, while the performance of most radiologists was
located below DLAD-10’s performance curve for critical abnormalities (figure 3). DLAD-10 correctly
categorised chest radiographs containing critical abnormalities better than the pooled radiologists (95.0%
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TABLE 2 External validation results of DLAD-10

SNUH dataset
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PadChest open dataset

Total chest radiographs
Reference standard

Pneumothorax
Pneumoperitoneum
Mediastinal widening
Nodule
Consolidation
Pleural effusion
Atelectasis

Fibrosis

Calcification
Cardiomegaly

190

Same-day CT or cardiothoracic
ratio (cardiomegaly)

0.999 (100, 98.2)
1.00 (100, 98.8)
0.978 (83.3, 93.6)
0.943 (95.7, 71.9)
0.916 (82.4, 78.2)
0.944 (86.5, 87.6)
0.909 (67.9, 94.4)
0.972 (78.9, 95.3)
0.923 (76.2, 97.0)
0.895 (61.1, 93.4)

673
Radiologists
(labelling group)
0.997 (100, 95.2)
0.994 (87.5, 98.8)
0.953 (100, 80.1)
0.932 (90.6, 74.6)
0.967 (98.3, 74.7)
0.981 (98.1, 85.1)
0.913 (87.9, 78.7)
0.971 (96.6, 86.8)
0.966 (91.7, 89.3)
0.913 (87.8, 81.8)

Data are presented as n or area under the receiver operating characteristic curve (sensitivity %, specificity

%). CT: computed tomography.

TABLE 3 Comparison of the performance of DLAD-10 and three thoracic radiologists in the

external validation test

DLAD-10 Pooled thoracic p-value
radiologists
Sensitivity and specificity for detecting
each abnormality
Pneumothorax (n=23)
Sensitivity 100 (23/23) 91.3 (63/69) <0.001
Specificity 98.2 (164/167) 99.6 (499/501) 0.10
Pneumoperitoneum (n=19)
Sensitivity 100 (19/19) 94.7 (54/57) 0.25
Specificity 98.2 (168/171) 99.8 (512/513) <0.01
Mediastinal widening (n=18)
Sensitivity 83.3 (15/18) 61.1 (33/54) 0.03
Specificity 93.6 (161/172) 98.1 (506/516) <0.001
Nodule (n=23)
Sensitivity 95.7 (22/23) 71.0 (49/69) 0.04
Specificity 71.9 (120/167) 90.6 (454/501) <0.001
Consolidation (n=34)
Sensitivity 82.4 (28/34) 60.8 (62/102) 0.01
Specificity 78.2 (122/156) 91.2 (427/468) <0.001
Pleural effusion (n=37)
Sensitivity 86.5 (32/37) 74.8 (83/111) 0.03
Specificity 87.6 (134/153) 95.4 (438/459) <0.001
Atelectasis or fibrosis (n=45)
Sensitivity 75.6 (34/45) 68.9 (93/135) 0.29
Specificity 90.3 (131/145) 83.9 (365/435) 0.02
Calcification (n=21)
Sensitivity 76.2 (16/21) 58.7 (37/63) 0.02
Specificity 97.0 (164/169) 96.8 (491/507) 0.89
Cardiomegaly (n=18)
Sensitivity 61.1(11/18) 35.2 (19/54) 0.02
Specificity 93.4 (141/151) 98.5 (446/453) 0.002
Urgency categorisation accuracy’
Critical (n=60) 95.0 (57/60) 84.4 (152/180) 0.01
Critical or urgent (n=110) 95.5 (105/110) 91.2 (301/330) 0.09
Normal/nonurgent (n=80) 80.0 (64/80) 88.3 (212/240) 0.03

Data are presented as % (n/N), unless otherwise stated. #. some patients had both atelectasis and fibrosis;
7. accuracy of correctly classifying chest radiographs according to their urgency category. p-values were
calculated using generalised estimating equations.
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FIGURE 3 Results of DLAD-10 and three thoracic radiologists for the Seoul National University Hospital external validation dataset: the area under
the receiver operating characteristic curve (AUROC) of DLAD-10 and the performance of each radiologist are presented for each abnormality.
al Pneumothorax, b) pneumoperitoneum, c] mediastinal widening, d) nodule, e) consolidation, f] pleural effusion, g] atelectasis or fibrosis,
h) calcification and i) cardiomegaly.

(57/60) versus 84.4% (152/180); p=0.01) (table 3). However, DLAD-10 was inferior to the pooled
radiologists for classifying normal or nonurgent cases (80.0% (64/80) versus 88.3% (212/240); p=0.03).

Simulated reading test for emergency department patients

Urgency categorisation accuracy

The performance of urgency categorisation was evaluated in terms of whether the readers detected critical
or urgent abnormalities corresponding to specific disease entities (urgency categorisation accuracy) (table 4
and supplementary table E5). Without DLAD-10 (conventional reading), the pooled readers correctly
detected only 29.2% (7/24) of critical cases, whereas they detected 70.8% (17/24) of critical cases in the
DLAD-10-aided reading session (p=0.03). DLAD-10 detected all critical cases, but some were ignored by
readers, particularly for mediastinal widening (supplementary table E5). For urgent cases, DLAD-10-aided
reading increased the detection rate (82.7% (258/312)) compared with conventional reading (78.2% (244/
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urgency categorisation accuracy between two reading sessions in the simulated reading test

Disease of patient Conventional reading session DLAD-10-aided reading session p-value*
Nonurgent Urgent  Critical Accuracy Nonurgent Urgent  Critical Accuracy
n n n % n n n %

Critical (n=4) 13 4 7 29.2 6 1 17 70.8 0.006*
Pneumothorax (n=2) 3 2 7 58.3 1 1 10 83.3 0.38
Pneumoperitoneum (n=1) 6 0 0 0.0 0 0 6 100.0
Aortic dissection (n=1) 4 2 0 0.0 5 0 1 16.7 1.00

Urgent (n=52) 68 244 0 78.2 50 258 4 82.7 0.04*
Pneumonia (n=20) 24 96 0 80.0 22 94 4 78.3 0.81
Pulmonary oedema (n=6) 1 35 0 97.2 1 35 0 97.2 1.00
Active tuberculosis (n=4) 8 16 0 66.7 3 21 0 87.5 0.13
ILD (n=3) 0 18 0 100.0 0 18 0 100.0
Nodule (n=10) 18 42 0 70.0 1M 49 0 81.7 0.04*
Pleural effusion (n=7) 7 35 0 83.3 6 36 0 85.7 1.00
Mediastinal mass (n=1) 4 2 0 33.3 1 5 0 83.3 0.25
Rib fracture (n=1) b 0 0 0.0 b 0 0 0.0

Nonurgent/normal (n=146) 801 72 3 91.4 822 54 0 93.8 0.03*

ILD: interstitial lung disease. p-values were calculated using the McNemar test. *: p<0.05.

312); p=0.04). The performance increment was the steepest for lung nodules/masses (81.7% (49/60) versus
70.0% (42/60); p=0.04). Interestingly, the categorisation accuracy for nonurgent/normal cases also
improved with DLAD-10 assistance (93.8% (822/876) versus 91.4% (801/876); p=0.03). Examples are
shown in figure 2b and c.

Time-to-report

In the conventional reading session, the mean+sp time-to-report for critical, urgent and nonurgent/normal
categories was 3371.0£1352.5, 2127.1£1468.2 and 2815.4+1475.9 s, respectively. In the DLAD-10-aided
reading session, in which chest radiograph prioritisation was done by embedding DLAD-10 results into
the PACS worklist, the time-to-report substantially decreased for critical (640.5+466.3 s; p<0.001) and
urgent (1840.3+1141.1 s; p=0.002) cases (table 5), while it significantly increased for nonurgent/normal
cases (3267.1+1265.7 s; p=0.007).

TABLE 5 Comparison of time-to-report between two reading sessions in the simulated reading test

Disease of patient Time-to-report s p-value
Conventional reading session DLAD-10-aided reading session
Critical (n=4) 3371.0£1352.5 (1473-6186) 640.5£466.3 (25-1562) <0.001
Pneumothorax (n=2) 4305.3£1131.9 (3105-6186) 644.3£577.7 (25-1562) <0.001

Pneumoperitoneum (n=1) 2898.7+799.3 (2163-3912) 641.5£383.4 (261-1190) 0.001

Aortic dissection (n=1) 1975.0£511.1 (1473-2546) 632.0£345.0 (261-1085) <0.001
Urgent (n=52) 2127.1£1468.2 (123-6227) 1840.3+1141.1 (44-5722) 0.002
Pneumonia (n=20) 1968.7£1262.2 (123-6090) 1512.8+1142.0 (66-5389) 0.002
Pulmonary oedema (n=6) 768.3+340.9 (154-1471) 1310.2+813.6 (133-2856) <0.001
Active tuberculosis (n=4) 2950.6+1669.7 (750-6009) 2248.7+844.9 (845-3603) 0.04
ILD (n=3) 2822.9£1162.0 (1419-5090) 1412.5£706.7 (166-2673) <0.001
Nodule (n=10) 2834.2+1514.7 (645-6227) 2496.8+1049.1 (206-5031) 0.12
Pleural effusion (n=7) 2349.0+£1596.0 (268-5667) 2157.0£991.2 (44-4258) 0.47
Mediastinal mass (n=1) 1115.2+255.4 (845-1387) 611.8+364.7 (248-1225) 0.01
Rib fracture (n=1) 454.0£115.8 (318-635) 3663.5+£1136.4 (2251-5772) 0.001
Nonurgent/normal (n=146) 2815.4+1475.9 (7-6624) 3267.1+£1265.7 (15-5776) <0.001

Data are presented as meantsp (range) time taken to report the corresponding chest radiographs since the
initialisation of each reading session. ILD: interstitial lung disease. p-values were calculated using the

paired t-test.
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Interpretation time of each radiograph

The meantsp interpretation time of the pooled readers decreased in the DLAD-10-aided reading session
compared with the conventional reading session (time per chest radiograph 20.5+22.8 versus 23.5+23.7 s;
p<0.001) and five of the six readers had a shorter mean interpretation time. With DLAD-10 assistance, the
pooled readers spent a significantly shorter time for nonurgent/normal cases (13.5+16.5 versus 17.9£16.4 s;
p<0.001) and a significantly longer interpretation time for critical cases (36.7+24.4 versus 23.0+15.2 s;
p=0.01) (supplementary table E2).

Discussion

In our study, DLAD-10 successfully detected 10 common abnormalities in two external validation datasets
with high AUROCSs, ranging from 0.895 to 1.00. On a CT-referenced external validation dataset, DLAD-10
showed better sensitivity than the thoracic radiologists for most abnormalities (eight out of 10). On the
simulated reading test for emergency department patients, the pooled readers increased their accuracy for
identifying critical and urgent cases when aided with DLAD-10, and had a lower false-positive rate for
nonurgent/normal cases. With DLAD-10 assistance, the readers spent a significantly shorter
time-to-report for critical and urgent cases. Pooled readers took a shorter interpretation time for
nonurgent/normal cases, resulting in an overall decrease in the mean reading time.

DLAD-10 was developed to assist radiologists or physicians in routine clinical practice. The training data
of DLAD-10 were curated by radiologists mostly without CT reference, intended to resemble radiologists’
performance, resulting in reasonable output for the readers [28, 29]. Another strength of DLAD-10 is that
it can localise most thoracic abnormalities with high accuracy. This characteristic of DLAD-10 can be
further modified to make an end-to-end algorithm generating a preliminary radiology report from a
radiograph, which may drastically reduce radiologists’ workload. No previous deep learning algorithms
have been capable of covering most clinically relevant abnormalities on chest radiographs with
radiologist-level performance. Most previously reported deep learning algorithms for chest radiographs
focused on specific tasks [5, 6, 9, 10], had insufficient coverage of abnormalities [7, 8] or showed limited
detection performance compared with radiologists [12, 13].

In this study, we integrated DLAD-10 results into a PACS worklist and tested the potential of a deep
learning algorithm as a prioritisation tool. We found that rearrangement of chest radiographs by
DLAD-10 pre-analysis enabled earlier reporting of critical or urgent chest radiographs. Further prospective
studies investigating the turnaround time are needed, but our study is meaningful as a pioneering report
showing the potential role of a deep learning algorithm as a prioritisation tool.

There was a substantial difference in the radiologists’ performance between the datasets. The detection rate
of critical chest radiographs by the thoracic radiologists was 84.4% (152/180) in the external validation test
SNUH dataset, while that in the simulated reading test for emergency department patients was 50.0% (4/8)
(29.2% (7/24) for pooled six readers). This difference may reflect a discrepancy between an experimentally
designed reader test and real clinical situations. The SNUH dataset included 31.6% (60/190) critical chest
radiographs, while the simulated reading test dataset contained few critical chest radiographs (2.0% (4/202)).
The higher performance gap between DLAD-10 and the radiologists in the simulated reading test suggests
that DLAD-10 may have a clinical impact in real-world situations.

DLAD-10 showed lower specificity than the radiologists in both the external validation and simulated
reading test. As the threshold values of DLAD-10 for critical and urgent abnormalities were selected to be
sensitive, its specificity was inevitably lower than the radiologists. However, DLAD-10 assistance reduced
the false-positive rate of the readers for nonurgent/normal cases (6.2% (54/876) versus 8.6% (75/876);
p=0.03), probably because the false-positive results of DLAD-10 were easy to discard (e.g. misclassifying
linear atelectasis as consolidation or fibrosis as a nodule).

Further improvements and modifications of DLAD-10 are warranted. Some important abnormalities,
including rib/vertebral fractures and central line/tube malposition, were not covered. Furthermore,
DLAD-10 did not differentiate diffuse reticular opacities representing ILD from consolidation. Although
DLAD-10 successfully detected most ILD cases as diffuse consolidation in the simulated reading test
(66.7% (2/3)), differentiation of reticular opacities from consolidation would be beneficial, as the clinical
management is different. Additionally, differential diagnosis and interval change evaluations should be
included in the next steps.

Our study has some other limitations. First, our validation datasets were retrospectively collected and
could have been affected by selection bias. Second, the criteria for urgency classification that we used could
be disputed by other researchers. Third, DLAD-10 did not cover lateral images. Last, the worklist
rearrangement on PACS based on chest radiograph urgency is a novel feature, which could be unfamiliar
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to the readers. Becoming accustomed to this function could contribute to further improvements of
efficacy.

In conclusion, our DLAD-10 deep learning algorithm detecting 10 common abnormalities showed
excellent performance on chest radiographs, helping radiologists to improve their performance and
advance the reporting time for critical and urgent cases.

Acknowledgements: The authors would like to express their appreciation for Hyewon Choi, Seung-Jin Yoo, Sewoo Kim,
Seungchul Han, Jihyuk Lee and Yuna Lee from Seoul National University Hospital (Seoul, Republic of Korea) for
participating in the simulated reading test. We also appreciate Lunit Inc. (Seoul, Republic of Korea) and Infinitt
Healthcare (Seoul, Republic of Korea) for providing technical support for our validation tests.

Author contributions: J.G. Nam: data curation, statistical analysis, manuscript writing; M. Kim: algorithm development,
manuscript writing (supporting); J. Park: algorithm development, manuscript writing (supporting); E.J. Hwang: data
curation, validation test, manuscript editing; J.H. Lee: data curation, validation test, manuscript editing; J.H. Hong:
validation test, manuscript editing; J.M. Goo: supervising, manuscript editing; C.M. Park: study conceptualisation and
organisation, supervising, manuscript writing.

Conlflict of interest: ].G. Nam reports grants from the National Research Foundation of Korea funded by the Ministry of
Science and ICT (NRF-2018R1A5A1060031), and from Seoul National University Hospital Research Fund
(03-2019-0190), during the conduct of the study. M. Kim is an employee of Lunit Inc., and was involved in the
development of the algorithm and writing the corresponding part of the manuscript, but did not have control over any
of the validation data submitted for publication. J. Park is an employee of Lunit Inc., and was involved in the
development of the algorithm and writing the corresponding part of the manuscript, but did not have control over any
of the validation data submitted for publication. E.J. Hwang has nothing to disclose. J.H. Lee has nothing to disclose.
J.H. Hong has nothing to disclose. ].M. Goo has nothing to disclose. C.M. Park reports grants from the National
Research Foundation of Korea funded by the Ministry of Science and ICT (NRF-2018R1A5A1060031), and from Seoul
National University Hospital Research Fund (03-2019-0190), during the conduct of the study.

Support statement: This work was supported by the National Research Foundation of Korea grant funded by the
Ministry of Science and ICT (grant NRF-2018R1A5A1060031) and the Seoul National University Hospital Research
Fund (grant 03-2019-0190). Funding information for this article has been deposited with the Crossref Funder Registry.

References

1 Mettler FA Jr, Mahesh M, Bhargavan-Chatfield M, et al. Patient exposure from radiologic and nuclear medicine
procedures in the United States: procedure volume and effective dose for the period 2006-2016. Radiology 2020;
295: 418-427.

2 United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and Effects of Ionizing
Radiation. Annex D. New York, United Nations, 2000.

3 White CS, Flukinger T, Jeudy J, et al. Use of a computer-aided detection system to detect missed lung cancer at
chest radiography. Radiology 2009; 252: 273-281.

4 Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med 2019; 25:
44-56.

5 Lakhani P, Sundaram B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis
by using convolutional neural networks. Radiology 2017; 284: 574-582.

6 Nam JG, Park S, Hwang EJ, et al. Development and validation of deep learning-based automatic detection
algorithm for malignant pulmonary nodules on chest radiographs. Radiology 2019; 290: 218-228.

7 Hwang EJ, Park S, Jin K-N, et al. Development and validation of a deep learning-based automatic detection
algorithm for active pulmonary tuberculosis on chest radiographs. Clin Infect Dis 2019; 69: 739-747.

8 Park S, Lee SM, Kim N, et al. Application of deep learning-based computer-aided detection system: detecting
pneumothorax on chest radiograph after biopsy. Eur Radiol 2019; 29: 5341-5348.

9 Hwang EJ, Hong JH, Lee KH, et al. Deep learning algorithm for surveillance of pneumothorax after lung biopsy:
a multicenter diagnostic cohort study. Eur Radiol 2020; 30: 3660-3671.

10 Park S, Lee SM, Lee KH, et al. Deep learning-based detection system for multiclass lesions on chest radiographs:
comparison with observer readings. Eur Radiol 2020; 30: 1359-1368.

11 Hwang EJ, Park S, Jin K-N, et al. Development and validation of a deep learning-based automated detection
algorithm for major thoracic diseases on chest radiographs. JAMA Netw Open 2019; 2: €191095.

12 Rajpurkar P, Irvin J, Ball RL, et al. Deep learning for chest radiograph diagnosis: a retrospective comparison of the
CheXNeXt algorithm to practicing radiologists. PLoS Med 2018; 15: €1002686.

13 Rajpurkar P, Irvin J, Zhu K, et al. Chexnet: radiologist-level pneumonia detection on chest x-rays with deep
learning. arXiv 2017; preprint [https:/arxiv.org/abs/1711.05225].

14 Ferkol T, Schraufnagel D. The global burden of respiratory disease. Ann Am Thorac Soc 2014; 11: 404-406.

15 Hansell DM, Bankier AA, MacMahon H, et al Fleischner Society: glossary of terms for thoracic imaging.
Radiology 2008; 246: 697-722.

16  Lai V, Tsang WK, Chan WG, et al. Diagnostic accuracy of mediastinal width measurement on posteroanterior and
anteroposterior chest radiographs in the depiction of acute nontraumatic thoracic aortic dissection. Emerg Radiol
2012; 19: 309-315.

17 He K, Zhang X, Ren S, et al. Deep residual learning for image recognition. 2016. https:/ieeexplore.ieee.org/
document/7780459 Date last accessed: 13 November 2020.

18  Kim M, Park ], Na S, et al. Learning visual context by comparison. arXiv 2020; preprint [https://arxiv.org/abs/
2007.07506].

https://doi.org/10.1183/13993003.03061-2020 11


https://www.crossref.org/services/funder-registry/
https://arxiv.org/abs/1711.05225
https://arxiv.org/abs/1711.05225
https://ieeexplore.ieee.org/document/7780459
https://ieeexplore.ieee.org/document/7780459
https://ieeexplore.ieee.org/document/7780459
https://arxiv.org/abs/2007.07506
https://arxiv.org/abs/2007.07506
https://arxiv.org/abs/2007.07506

19

20

21

22

23

24

25

26
27

28

29

LUNG IMAGING | J.G. NAM ET AL.

Cubuk ED, Zoph B, Mane D, et al. Autoaugment: learning augmentation strategies from data. 2019. https:/
openaccess.thecvf.com/content_ CVPR_2019/html/Cubuk_AutoAugment_Learning Augmentation_Strategies_
From_Data_ CVPR_2019_paper.html Date last accessed: 13 November 2020.

Annarumma M, Withey SJ, Bakewell R], et al. Automated triaging of adult chest radiographs with deep artificial
neural networks. Radiology 2019; 291: 196-202.

Hemingway H, Shipley M, Christie D, et al. Is cardiothoracic ratio in healthy middle aged men an independent
predictor of coronary heart disease mortality? Whitehall study 25 year follow up. BMJ 1998; 316: 1353-1354.
Zaman MJS, Sanders J, Crook AM, et al. Cardiothoracic ratio within the “normal” range independently predicts
mortality in patients undergoing coronary angiography. Heart 2007; 93: 491-494.

Bustos A, Pertusa A, Salinas J-M, et al. PadChest: a large chest x-ray image dataset with multi-label annotated
reports. Medical Image Analysis 2020; 66: 101797.

Hwang EJ, Nam ]G, Lim WH, et al. Deep learning for chest radiograph diagnosis in the emergency department.
Radiology 2019; 293: 573-580.

Raven MC, Lowe RA, Maselli ], et al. Comparison of presenting complaint vs discharge diagnosis for identifying
“nonemergency” emergency department visits. JAMA 2013; 309: 1145-1153.

Youden WJ. Index for rating diagnostic tests. Cancer 1950; 3: 32-35.

Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine learning in Python. /] Mach Learn Res 2011;
12: 2825-2830.

Majkowska A, Mittal S, Steiner DF, et al. Chest radiograph interpretation with deep learning models: assessment
with radiologist-adjudicated reference standards and population-adjusted evaluation. Radiology 2020; 294:
421-431.

McBee MP, Awan OA, Colucci AT, et al. Deep learning in radiology. Acad Radiol 2018; 25: 1472-1480.

https://doi.org/10.1183/13993003.03061-2020 12


https://openaccess.thecvf.com/content_CVPR_2019/html/Cubuk_AutoAugment_Learning_Augmentation_Strategies_From_Data_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Cubuk_AutoAugment_Learning_Augmentation_Strategies_From_Data_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Cubuk_AutoAugment_Learning_Augmentation_Strategies_From_Data_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Cubuk_AutoAugment_Learning_Augmentation_Strategies_From_Data_CVPR_2019_paper.html

	Development and validation of a deep learning algorithm detecting 10 common abnormalities on chest radiographs
	Abstract
	Introduction
	Materials and methods
	Development of the DLAD-10
	Development dataset
	Deep learning algorithm
	Internal validation

	Urgency categorisation of chest radiographs
	External validation
	Simulated reading test for emergency department patients
	Dataset for the simulated reading test
	Integration of DLAD-10 into the picture archiving and communication system and reader test

	Statistical analyses

	Results
	Internal validation test
	External validation tests
	Simulated reading test for emergency department patients
	Urgency categorisation accuracy
	Time-to-report
	Interpretation time of each radiograph


	Discussion
	References


