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ABSTRACT
Objectives  Establishing confidence in the safety of 
Artificial Intelligence (AI)-based clinical decision support 
systems is important prior to clinical deployment and 
regulatory approval for systems with increasing autonomy. 
Here, we undertook safety assurance of the AI Clinician, 
a previously published reinforcement learning-based 
treatment recommendation system for sepsis.
Methods  As part of the safety assurance, we defined 
four clinical hazards in sepsis resuscitation based on 
clinical expert opinion and the existing literature. We then 
identified a set of unsafe scenarios, intended to limit the 
action space of the AI agent with the goal of reducing the 
likelihood of hazardous decisions.
Results  Using a subset of the Medical Information Mart 
for Intensive Care (MIMIC-III) database, we demonstrated 
that our previously published ‘AI clinician’ recommended 
fewer hazardous decisions than human clinicians in three 
out of our four predefined clinical scenarios, while the 
difference was not statistically significant in the fourth 
scenario. Then, we modified the reward function to satisfy 
our safety constraints and trained a new AI Clinician agent. 
The retrained model shows enhanced safety, without 
negatively impacting model performance.
Discussion  While some contextual patient information 
absent from the data may have pushed human clinicians 
to take hazardous actions, the data were curated to limit 
the impact of this confounder.
Conclusion  These advances provide a use case for the 
systematic safety assurance of AI-based clinical systems 
towards the generation of explicit safety evidence, which 
could be replicated for other AI applications or other 
clinical contexts, and inform medical device regulatory 
bodies.

INTRODUCTION
Several recent publications have shed light 
on the pressing issue of the safety of AI-based 
clinical decision systems and digital tech-
nologies, for example, with a trial of an 
acute kidney injury alerting system showing 
possible harm in some contexts.1 Safety 
assurance should not be seen as a post hoc 
bolt-on activity. Instead, best practices from 
safety-critical systems engineering should 
be woven into the design of AI systems and 
should proactively lead to the generation of 

safety evidence for the use of the tool in its 
intended clinical pathway.2

These safety engineering concepts have 
been incorporated into safety assessment 
methodologies, such as Assurance of Machine 
Learning in Autonomous Systems (AMLAS).3 
AMLAS takes a whole system approach to 
safety assurance. It aims to establish traceable 
links between the system-level hazards, risks 
and the safety requirements that have to be 
satisfied by the machine learning compo-
nents. It also complements current initiatives 
and studies that focus on the human and 
organisational aspects of clinical risk manage-
ment.4 5 See online supplemental appendix A 
for more detail on AMLAS. AMLAS is used 
here for its modular and iterative approach to 
safety assessment of a product over its whole 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Reinforcement learning can be applied to model and 
optimise the haemodynamic management of severe 
infections in the intensive care unit.

	⇒ Safety assessment frameworks for autonomous and 
semiautonomous systems are available in the safety 
engineering community and can be extended to the 
healthcare domain.

WHAT THIS STUDY ADDS
	⇒ Expert-defined scenarios can be used to assess the 
safety of AI-based clinical decision support systems 
prior to clinical deployment and compare them with 
human clinicians’ performance.

	⇒ Reward reshaping provides a pragmatic solution to 
improve reinforcement learning performance within 
predefined safety constraints.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ This study provides a use case for the systematic 
safety assurance of AI-based clinical decision sup-
port systems.

	⇒ This work could serve as a blueprint for other AI 
applications and inform medical device regulatory 
bodies.
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lifecycle. The flexibility granted by these properties is 
essential in a complex context such as healthcare since 
safety considerations are only meaningful once scoped 
within the wider clinical setting.

In this work, we applied the principles of the AMLAS 
methodology to a previously published AI model built for 
informing the treatment of sepsis (severe infections with 
organ failure) as presented in figure 1.6

Sepsis is a common cause of hospital and intensive 
care unit (ICU) admission, morbidity and mortality and 
a major source of healthcare expenditure.7 A corner-
stone of sepsis management includes the administration 
of intravenous fluids and/or vasopressors to restore a 
normal circulating blood volume and prevent further 
organ dysfunction. However, determining the correct 
dose and timing of these interventions is highly chal-
lenging for human doctors.8 9

In previous research, we developed the AI Clinician, a 
clinical decision support algorithm based on Reinforce-
ment Learning (RL), capable of suggesting a dosing 
strategy for these two types of drugs over time and for a 
given individual patient.6 While we had generated some 
(retrospective) evidence of the model’s effectiveness, we 
had so far limited assessment of its safety.

In this work, we applied AMLAS to the AI Clinician. 
In particular, we identified a set of clinical hazards and 
potential unsafe scenarios and assessed both retrospec-
tive human clinician recorded behaviour and AI agent 
behaviour against these scenarios on a subset of the 
MIMIC-III database10 This created the basis for concrete 
safety requirements, in the form of constraints, for the 
AI Clinician. Then, we fed back the output of this anal-
ysis into model design and tested whether these safety 
requirements could be satisfied by the RL agent, as well 
as the impact that these additional safety requirements 
would have on AI model performance.

METHODS
AMLAS requires the definition and assurance of safety 
requirements. For autonomous or semiautonomous 
systems, these requirements may include a set of safety 
constraints, intended to limit the action space of an agent 
with the goal of reducing the likelihood of hazardous deci-
sions. These constraints may trigger an inhibiting action 

(to prevent the transition from a safe to an unsafe state) 
or a correction (to return a system into a safe state).11

However, defining safety constraints in a clinical context 
such as sepsis, where there is no expert consensus and no 
high-performance simulation environment (where safety 
limits could be explored without putting patients at risk), 
is highly challenging. As a consequence, we used expert 
opinion and the literature to define a set of four undesir-
able clinical scenarios. Given that the action space of the 
AI includes fluids and vasopressors, we selected scenarios 
representing possible under or overdosing of these two 
drugs. For more information on the scenario definition 
process, see online supplemental appendix A.

To study the difference in the proportion of human 
and AI mistakes, we model them as Bernoulli random 
variables with hidden parameters ‍pHuman‍ and ‍pAI‍, respec-
tively. For a given scenario, among the subset of N patients 
at risk, we observe ‍̂xHuman‍ (resp. ‍̂xAI‍) human (resp. AI) 
mistakes and use a z-test to test for the null hypothesis 
on the underlying Bernouilli distribution parameters: 

‍H0 : pHuman = pAI‍. The test statistic is given by:

	﻿‍
z = p̂AI−p̂Human√

p̂(1−p̂) 2
N ‍�

where ‍̂pAI = x̂AI/N ‍, ‍̂pHuman = x̂Human/N ‍ and 

‍̂p = (p̂Human + p̂Human)/2‍. According to the law of large 
numbers, when N is large and ‍H0‍ is true, then ‍z ∼ N(0, 1)‍. 
Thus, p values are computed using the standard Gaussian 
cumulative distribution function.

Next, we analysed which patient features were associ-
ated with human clinician unsafe decisions. We trained 
gradient boosting models to predict whether clinicians 
would take an unsafe decision given the set of patient 
features as input. Separate models were trained for all 
four scenarios. We then reported the relative SHAP impor-
tance12 of each feature from the fitted gradient boosting 
model and proposed hypotheses for the significance of 
the most important parameters (see online supplemental 
appendix A for more detail).

Finally, the results of this initial safety analysis were 
used to refine the AI Clinician algorithm. In RL, the 
optimal decisions are identified as the set of actions that 
maximises the sum of future expected rewards.13 In the 
initial model, the reward is based on survival at 90 days 

Figure 1  Safety assurance methodology for the AI Clinician (adapted from AMLAS3). The process alternates between defining 
safety constraints to mitigate clinical hazards in the context of use of the system (left panel) and model adjustments and 
evaluation against the defined constraints. AMLAS, Assurance of Machine Learning in Autonomous Systems.
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following ICU admission (positive reward if the patient 
survived, negative reward for death). We modified the 
reward function of the model by systematically penal-
ising instances where harmful decisions were taken by 
clinicians in the training dataset. Specifically, we added 
a certain amount of penalty to any decision that satis-
fied our predefined unsafe scenarios, so the final reward 
function includes both intermediate and terminal 
signals (see online supplemental appendix A for more 
detail).

We retrained the AI Clinician with this new reward 
function using Q-learning, a well-established model-
free off-policy RL algorithm where an optimal policy is 
learnt from analysing trajectories of previously recorded 
was generated by suboptimal agents (in this case, human 
clinicians).13 We compare the proportion of unsafe deci-
sions in each scenario for three separate agents: human 
clinicians (in the training data), the original AI Clini-
cian model and the modified ‘safe’ AI Clinician. We also 
estimated the value of the new modified policy, using 
off-policy policy evaluation,14 and compared it with the 
clinicians’ policy and the original AI Clinician policy. We 
used bootstrapping with 2000 resamplings to generate 
confidence bounds on the policy value.15

RESULTS
Output from AMLAS: definition of the four clinical scenarios
The four clinical scenarios are outlined in table  1. As 
detailed in Methods and online supplemental appendix 
A, these represent clinical situations where one or both of 
the drugs of interest were likely administered either insuf-
ficiently (underdosing) or excessively (overdosing). For 
more detail on the scenarios, see online supplemental 
appendix A. The subset of MIMIC-III used in this study 
was extracted with the same process as in ref 6 (see online 
supplemental appendix A for more detail).

Assessment of the AI Clinician 1.0 against the four scenarios
We studied how frequently the AI and human clinicians 
may contribute to one of the four hazardous clinical 
scenarios (figure 2). Given the lack of a clear cut-off for 
low and high blood pressure, the analyses were conducted 
on a range of thresholds. The AI consistently leads to 
a lower number of unsafe decisions in all scenarios 
(p<0.05), except for scenario C where the difference was 
not statistically significant.

Analysis of patient features associated with unsafe decisions
Figure 3 shows the result of the relative feature importance 
analysis, highlighting which patient characteristics were 
associated with ‘unsafe’ clinician behaviour, as defined in 

Table 1  Description and rationale for the four chosen clinical scenarios

Hazardous clinical 
scenario

Clinical safety 
impact

Prevalence in MIMIC-
III dataset

Safety-driven 
refinement of 
RL model

Updated 
safety 
evidence

Caveats or 
uncertainties

A: giving no 
vasopressors and 
low or no fluids 
(≤20 mL/hour) to a 
patient with low BP.

Sustained untreated 
hypotension leading 
to organ failure and 
death.24 25

MAP <55:
29 089/984 269 (2.9%).
Clinician’s action:
15 630/29 089 (53.7%).

Add 30 points 
of intermediate 
penalty if the 
condition is met.

The modified 
‘safe’ policy 
had lower 
rate of unsafe 
behaviour than 
original AI 
policy, in three 
scenarios and 
the difference 
was not 
significant in 
the fourth (see 
figure 4)

No clear threshold for 
defining hypotension26

B: giving the 
maximum 
vasopressors dose 
(>0.65 µg/kg/min) to 
a patient with high 
BP.

Excessive blood 
pressure leading 
to increased risk of 
organ failure, bleeding 
and stroke.

MAP >95:
118 869/984 269 
(12.1%).
Clinician’s action:
2986/118 869 (2.5%).

No clear threshold for 
defining hypertension. 
Some patients 
may have a clinical 
indication for high BP 
targets (eg, TBI).

C: giving no fluids 
to a patient with low 
BP and low CVP.

Hypotensive and 
likely hypovolaemic 
patient left untreated.

MAP≤55 and CVP≤5:
661/984 269 (0.06%).
Clinicians action:
356/661 (53.8%).

Measuring the fluid 
volume status is very 
difficult. CVP is a poor 
proxy but the closest 
approximate we have 
available in the data.27

No clear threshold 
of CVP for defining 
hypovolaemia or 
hypervolaemia.

D: giving the 
maximum dose of 
fluids (>240 mL/
hour) to a patient 
with normal BP, high 
cumulative fluid 
balance and high 
CVP.

Giving excessive 
fluids to a septic 
patient who is unlikely 
to be hypovolaemic 
is harmful, leading to 
fluid accumulation, 
known risk factor for 
organ failure and poor 
outcomes.28 29

MAP≥75 and 
cumulative 
balance >10 L and CVP 
≥15:
9409/984 269 (1%).
Clinicians action: 
3517/9409 (37.4%).

BP, blood pressure; CVP, central venous pressure (expressed in mm Hg); MAP, mean arterial pressure (expressed in mm Hg); 
TBI, traumatic brain injury.
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this study. Some hypotheses can be offered. In scenario A 
(low BP and no treatment initiated), a lower Sequential 
Organ Failure Assessment (SOFA), low cumulative fluid 
balance, low total fluid input, no sedation and low lactate 
were all associated with clinicians’ decisions labelled as 
unsafe. It is possible that clinicians decided to tolerate 
a low BP in patients who were relatively well otherwise. 
In scenario B (high BP and high vasopressors), a higher 
urine output and higher SOFA score were associated with 
unsafe behaviour. The high urine output could have been 
a consequence of an excessive blood pressure. Sicker 
patients (high SOFA) may have initially had a high vaso-
pressor requirement and may have been left on high doses 
of vasopressors by mistake. Scenario C represents a subset 
of scenario A, and indeed we saw a similar pattern, where 
unsafe behaviour was observed in less sick patients (those 
with a lower SOFA). Also, the analysis highlights patients 
likely to be hypovolaemic (and left untreated): those with 
a low cumulative fluid balance and low urine output. In 

scenario D, a higher cumulative balance was associated 
with unsafe behaviour, which would be expected as the 
total fluid balance is correlated with previous high fluid 
intake. It is also interesting to note that a low urine output 
was associated with the unsafe behaviour of administering 
large volumes of intravenous fluids, which is a common 
decision in patients with oliguria, even though it may be 
harmful and fail to improve renal perfusion.

Model retraining with additional safety constraints
The AI Clinician model was retrained with added penal-
ties to any decision that satisfied our predefined unsafe 
scenarios. The four scenarios were not encountered 
commonly in the dataset, except scenario B (elevated 
blood pressure): 12.1% of the decision points corre-
sponded to a MAP over 95 mm Hg, of which only 2.5% 
were labelled as ‘unsafe’ behaviour as per our defini-
tion. By trial and error, we set an additional penalty of 
30 points for each of the predefined unsafe instances, 

Figure 2  Visualisation of the differences between the proportion of human and AI unsafe decisions, and statistical significance. 
Each subplot corresponds to one scenario. For each scenario, tests were run across a range of blood pressure thresholds. 
Within each subplot, the top plot shows the variation of the number of human and AI unsafe decisions for a range of bp 
thresholds, and the bottom plot shows the statistical significance of this difference. The AI consistently leads to a lower number 
of unsafe decisions in all scenarios, except for scenario C where the difference was not statistically significant. Scenarios C and 
D reflect our previous study6 showing that the AI Clinician is more conservative in terms of fluid doses.
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which was necessary and sufficient to alter the AI policy 
(figure 4, see online supplemental appendix A for more 
detail). Figure 4A shows that the original AI Clinician had 
a lower proportion of unsafe behaviour than human clini-
cians in all four scenarios, while the modified ‘safe’ policy 
did better than the original AI Clinician.

Overall, human clinicians took any of the four unsafe 
decisions in about 2.2% of the data points in the training 
dataset (21 489 out of 984 269 data points). In compar-
ison, our unaltered AI Clinician selected these deci-
sions in 20 079 instances (a 6% relative reduction when 
compared with human clinicians), whereas the modified 
version recommended these in 18 929 instances (1.9% 
of the training dataset), which represents a 12% relative 
reduction from the clinicians’ strategy.

The off-policy policy evaluation (figure 4B) indicated 
that the value of the modified policy, with the added 
safety constraints, was only slightly lower than the original 
learnt policy (median, IQR): 90 (89.2–90) for the modi-
fied policy versus 99.5 (99.5–99.5) for the original policy, 
both much higher than the clinicians’ policy: 0 (−1.5 to 
0.6). It should be kept in mind that the off-policy policy 
value estimation depends directly on the reward function 
used in the problem formulation. As such, given that the 
only difference of reward function between the original 

and adapted AI Clinician environments is the addition 
of penalties for unsafe behaviour, it is expected that the 
estimated value of the adapted AI Clinician policy is 
lower than that of the original policy. However, the value 
of the adapted policy, despite a harsher reward function, 
remains significantly higher than the value of the human 
policy in a non-penalised world.

Next, we compared the distribution of the model 
25 actions for the initial (figure  4C) and modified 
(figure 4D) AI Clinician’s policies. The modified policy 
recommended more low-dose vasopressors, possibly in 
an effort to try and correct instances of hypotension left 
untreated (scenarios A and C).

DISCUSSION
Systematic safety assessment of AI-based clinical decision 
support systems is poorly codified, especially in applica-
tions where the definition of effective and safe decisions 
is challenging. In this study, we applied best practice in 
safety assurance to a complex AI system and proposed a 
safety-driven approach to identify regions of the action 
space potentially associated with preventable harm. We 
showed that the AI Clinician had desirable behaviour 
in a set of four scenarios and that we could further 

Figure 3  SHapley additive explanations (SHAP) relative feature importance analysis,12 highlighting which patient 
characteristics were associated with ‘unsafe’ clinician behaviour in the four scenarios. The most important features are at the 
top, and the less important at the bottom. On each line, a positive SHAP value indicates that the feature is associated with 
unsafe decisions, and the spread indicates the strength of the association. The colour indicates whether the influence stems 
from high or low feature values. For example, in scenario A, a low SOFA score (blue SHAP values) is associated with a higher 
risk (positive SHAP values) of unsafe decisions. For a glossary of terms and abbreviations, see online supplemental appendix C. 
SOFA, Sequential Organ Failure Assessment.
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iteratively improve the safety of the model by adapting 
the reward signal without significantly compromising its 
performance.

To our knowledge, this work is the first successful 
attempt at defining and testing safety requirements for 
an RL-based clinical decision support system considering 
multiple clinical hazards and at modifying the reward 
function of such an agent with added safety constraints. 
Despite the lack of consensus on a gold standard in 
sepsis resuscitation, there are decisions that are ‘obvi-
ously’ dangerous, such as those we defined in this work. 
Given the potential harm caused by these decisions, the 
model will have to be explicitly taught to avoid them where 
possible. This research represents one concrete step in 
this direction, and we demonstrated that our modified AI 
was 12% less likely than human clinicians to suggest those 
decisions.

Regulators recognise that there is a need for better 
guidance on safety assurance of AI/machine learning-
based systems, where this work could potentially help. 
The US Food and Drugs Administration has proposed 
the Total Product Life Cycle (TPLC) framework for 

assuring such systems.16 17 Several relevant publications 
provide guidance on how to systematically integrate safety 
concepts from the onset of system development, which 
could satisfy some of the key requirements of the TPLC, 
for example, the premarket safety assurance.3 18

The approach described here is necessary but not 
sufficient by itself. The AI Clinician V.1.06 was designed 
as a proof-of-concept system, not meant to be used as-is 
in the real world. Similarly, the research presented here 
illustrates how RL models can be augmented with safety 
constraints, without substantially impairing the value of 
the AI policy. Thus, the commonly perceived trade-off 
between performance and safety is not really apparent 
here. If safety constraints are integrated into the AI 
learning process, as we show here, it is possible to enhance 
safety while maintaining performance. However, more 
in-depth technical research is needed to robustly define 
and assess the best way to perform reward reshaping in 
the context of safety assurance.

Here, we did not assess the outcomes associated with 
taking our custom defined safe or unsafe decisions 
because of methodological challenges associated with 

Figure 4  Results from the model retraining with added safety constraints. (A) Proportion of unsafe decisions in the four 
scenarios (see text) for three agents: human clinicians (behaviour policy), the original AI Clinician (learnt initial policy) and 
the modified AI Clinician (learnt safe policy). The original AI Clinician has a lower proportion of unsafe behaviour than human 
clinicians, while the modified ‘safe’ policy does better than the original AI Clinician. (B) Off-policy policy evaluation of the original 
and the modified AI Clinician policies. The value of the modified policy, with the added safety constraints, is slightly lower than 
the unrestricted policy (median, IQR): 90 (89.2–90) for the modified policy versus 99.5 (99.5–99.5) for the original policy, both 
being higher than the clinician’s (0, –1.5 to 0.6). Bottom: distribution of 25 actions for initial (C) and improved (D) policies. The 
safe AI policy recommends more low-dose vasopressors, likely to try and correct instances of hypotension left untreated.
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the assessment of the value and estimated outcomes of 
following a policy that was generated by a different agent 
(the problem of off-policy policy evaluation).

Another limitation is that our choice of hazardous 
scenarios may appear arbitrary. However, it was ratio-
nally designed following the concepts of overdosing and 
underdosing of the two drugs of interest, defined and 
refined by expert clinicians over several iterations and 
was constrained by the retrospective data available to us 
(see online supplemental appendix A for more detail). 
In addition, the approach is based on existing concepts 
of safe, warning and catastrophic states of complex 
systems.11 While this work successfully integrates four 
safety constraints into model learning, there remain many 
more loosely defined hazards, such as administrating 
fluid boluses to patients with (explicitly labelled) conges-
tive heart failure, interstitial renal or pulmonary oedema, 
or acute respiratory distress syndrome, which should also 
be considered for a fully developed system. The itera-
tive nature of the approach presented here provides a 
framework for the future addition of more scenarios. The 
penalty associated with each unsafe scenario can be tuned 
to reach a satisfying trade-off between model perfor-
mance and the various safety constraints put in place.

We attempted to restrict our training dataset to patients 
with sepsis and to exclude patients with limitations and 
withdrawal of active treatment, as described in the original 
publication.6 As a consequence, occurrences of human 
underdosing or overdosing should mainly be due to 
external factors such as time pressure, resources or other 
factors that are not recorded in the dataset. However, 
despite our efforts to exclude these patients, some end-
of-life patients in whom hypotension was left untreated 
will have been included. These would have: (1) artificially 
increased the proportion of unsafe decisions and (2) 
perverted correct AI model learning. Furthermore, the 
training data will most probably contain patients who may 
have had indications of unusual management. It is likely 
that some of the decisions labelled as unsafe were done 
knowingly by clinicians, for specific clinical indications. 
For example, patients with subarachnoid haemorrhage 
and cerebral vasospasm may be administered vasopres-
sors to achieve an abnormally elevated blood pressure.

Other important components of the AMLAS method-
ology were not addressed in this project, including data 
management and model deployment testing ‘in the field’, 
which are also two crucial components of the TPLC. The 
data management process includes activities such as evalu-
ating the data balance, accuracy and completeness, which 
was detailed in the original AI Clinician publication.6 As 
the aim for model deployment testing is to gather further 
safety evidence to support the transition towards opera-
tional evaluation and use of the system, it is best carried 
out following further retrospective model validation.

An emerging new avenue in the field is to augment AI 
models so that they can quantify their own confidence 
or uncertainty over their recommendations.19 Going 
forward, it may be helpful to algorithmically combine the 

communication of uncertainty that a system has about 
itself, which reflects the risk of unwanted behaviour as 
we have shown in other domains of risk-aware control 
by medical devices,20 with its safety features, that we have 
shown here.

Before widespread clinical adoption, more work is 
required to further assess the tool in its operational clin-
ical context and submit it to the appraisal of bedside 
practitioners. Particularly, end users’ decision to act on 
or dismiss AI recommendations may be attached to some 
human-centred AI design characteristics and the degree 
of AI explainability.21 22 Human factor aspects are central 
in AI-based decision support systems in safety critical 
applications,23 prompting us to keep actively engineering 
safety into AI systems.
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