

Gold and BINOL-Phosphoric Acid Catalyzed Enantioselective Hydroamination/*N*-Sulfonyliminium Cyclization Cascade

Alex W. Gregory,[†] Pavol Jakubec,[†] Paul Turner,[‡] and Darren J. Dixon^{*,†}

Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K., and AstraZeneca R&D, Macclesfield, Mereside, Alderley Park, Cheshire SK10 4TG, U.K.

darren.dixon@chem.ox.ac.uk

Received June 25, 2013

ABSTRACT

ive bud reamination /// cultionuliminium evolution escende is reported using a combination of cold/() and chiral

A highly enantioselective hydroamination/*N*-sulfonyliminium cyclization cascade is reported using a combination of gold(I) and chiral phosphoric acid catalysts. An initial 5-*exo*-dig hydroamination and a subsequent phosphoric acid catalyzed cyclization process provide access to complex sulfonamide scaffolds in excellent yield and high enantiocontrol. The method can be extended to lactam derivatives, with excellent yields and enantiomeric excesses of up to 93% ee.

Enantioselective cascade processes exploiting one-pot combinations of gold and chiral binol phosphoric acid (**BPA**) catalysts to govern both the reaction pathway and stereocontrol are becoming useful in synthesis. Recently, reactions exploiting the ability of gold to facilitate cycloisomerization, isomerization, and tautomerism in combination with phosphoric acid or phosphate catalyzed hydrogenation, Pictet–Spengler, or (*N*-acyl) iminium ion cyclization processes have been reported.^{1,2} To this end, our group recently described a cascade process comprising alkynoic acid and tryptamine starting materials giving rise to polycyclic products with high enantioselectivities.³ In continuation of this work, we wished to examine the compatibility of a gold catalyzed hydroamination with an enantioselective phosphoric acid catalyzed *N*-sulfonyliminium cyclization, a sequence that has no precedent.

2013 Vol. 15, No. 17 4330–4333

ORGANIC LETTERS

[†]University of Oxford.

[‡]AstraZeneca R&D.

^{(1) (}a) Hashmi, S. K.; Hubbert, C. Angew. Chem., Int. Ed. 2010, 49, 1010. (b) Wang, C.; Han, Z.-Y.; Luo, H.-W.; Gong, L.-Z. Org. Lett. 2010, 12, 2266. (c) Liu, X.-Y.; Che, C.-M. Org. Lett. 2009, 11, 4204. (d) Rueping, M.; Antonchick, A. P.; Brinkmann, C. Angew. Chem., Int. Ed. 2007, 46, 6903. (e) Patil, N. T.; Mutyala, A. K.; Konala, A. K.; Tella, R. B. Chem. Commun. 2012, 48, 3094. (f) Liu, X.-Y.; Xiao, Y.-P.; Siu, F.-M.; Ni, L.-C.; Chen, Y.; Wang, L.; Che, C.-M. Org. Biomol. Chem. 2012, 10, 7208. (g) Wu, H.; He, Y.-P.; Gong, L.-Z. Adv. *Synth. Catal.* **2012**, *354*, 975. (h) Cai, Q; Liang, X.-W; Wang, S.-G; Zhang, J.-W; Zang, X.; You, S.-L. Org. Lett. **2012**, *14*, 5022. (i) Ren, L; Lei, T; Ye, J.-X.; Gong, L.-Z. Angew. Chem., Int. Ed. **2012**, *51*, 771. (j) Liu, X.-Y.; Che, C.-M. Org. Lett. 2009, 11, 4204. (k) Han, Z.-Y.; Xiao, H.; Chen, X.-H.; Gong, L.-Z. J. Am. Chem. Soc. 2009, 131, 9182. (1) Muratore, M. E.; Shi, L.; Pilling, A. W.; Storer, R. I.; Dixon, D. J. Chem. Commun. 2012, 48, 6351. (m) Enomoto, T.; Girard, A.-L.; Yasui, Y.; Takemoto, Y. J. Org. Chem. **2009**, 74, 9158. (a) Cai, Q.; Liu, C.; Liang, X.-W.; You, S.-L. Org. Lett. **2012**, 14, 4588. (o) Zhang, J.-W.; Xu, Z.; Gu, Q.; Shi, X.-X.; Leng, X.-B.; You, S.-L. Tetrahedron. 2012, 68, 5263. (p) Gómez-SanJuan, A.; Sotomayor, N.; Lete, E. Tetrahedron Lett. 2012, 53, 2157. (q) Aranzamendi, E.; Sotomayor, N.; Lete, E. J. Org. Chem. 2012, 77, 2986. (r) Rueping, M.; Volla, C. M. R.; Bolte, M.; Raabe, G. Adv. Synth. Catal. 2011, 353, 2853. (s) Duce, S.; Pesciaioli, F.; Gramigna, L.; Bernard, L.; Mazzanti, A.; Ricci, A.; Bartoli, G.; Bencivennia, G. Adv. Synth. Catal. 2011, 353, 860. (t) Rueping, M.; Volla, C. M. R. RSC Adv. 2011, 1, 79. (u) Rueping, M.; Raja, S.; Nunez, A. Adv. Synth. Catal. 2011, 353, 563. (v) Patil, N. T.; Raut, V. S.; Tella, R. B. Chem. Commun. 2013, 49, 570. (w) Wu, H.; He, Y.-P.; Gong, L.-Z. Org. Lett. 2013, 15, 460. (x) Courant, T.; Kumarn, S.; He, L.; Retailleau, P.; Masson, G. Adv. Synth. Catal. 2013, 355, 836. (y) Cai, Q.; Liang, X.-W.; Wang, S.; You, S.-L. Org. Biomol. Chem. 2013, 11, 1602. (z) Aillaud, I.; Barber, D. M.; Thompson, A. L.; Dixon, D. J. Org. Lett. 2013, 15, 2946. (aa) Cala, L.; Mendoza, A.; Fananas, F. J.; Rodriguez, F. Chem. Commun. 2013, 49, 2715.

⁽²⁾ For recent reviews on cascade and dual catalysis, see: (a) Rueping, M.; Koenigs, R. M.; Atodiresei, I. Chem.—Eur. J. 2010, 16, 9350. (b) Shao, A.; Zhang, H. Chem. Soc. Rev. 2009, 38, 2745. (c) Parra, A.; Reboredo, S.; Martín Castro, A. M.; Alemán J. Org. Biomol. Chem. 2012, 10, 5001. (d) Zhong, C.; Shi, X. Eur. J. Org. Chem. 2010, 16, 2999. (e) Loh, C. C. G.; Enders, D. Chem.—Eur. J. 2012, 18, 10212. (f) Grondall, C.; Jeanty, M.; Enders, D. Nat. Chem. 2010, 2, 167. (g) Du, Z.; Shao, Z. Chem. Soc. Rev. 2013, 42, 1337.

^{(3) (}a) Muratore, M. E.; Holloway, C. A.; Pilling, A. W.; Storer, I.; Trevitt, G.; Dixon, D. J. *J. Am. Chem. Soc.* **2009**, *131*, 10796. (b) Holloway, C. A.; Muratore, M. E.; Storer, R. I.; Dixon, D. J. Org. Lett. **2010**, *12*, 4720. (c) Raheem, I. T.; Thiara, P. S.; Peterson, E. A.; Jacobsen, E. N. J. Am. Chem. Soc. **2007**, *129*, 13404.

The proposed concept is depicted in Scheme 1 for an internal alkyl sulfonamide residue possessing a terminal alkyne **1**. Our initial choice of sulfonamide over carboxylic acid amide was influenced in part by their abundance in medicinally relevant compounds⁴ and by the lack of such motifs in enantioselective cascade processes. We envisaged a novel alkyne hydro-amination process to form isothiazolidine-1,1-dioxide (**2**), which could take place under gold(I) catalysis.^{5,6} Protonation would then afford the *N*-sulfonyliminium intermediate **3**, which through tight ion pairing/general base catalysis with the conjugate base of the chiral phosphoric acid would facilitate an enantiofacially selective cyclization, thus providing a novel route to polycyclic isothiazolidine-1,1-dioxide moieties of type **4** (Scheme 1).⁷⁻¹⁰ Herein we report our findings.

Proof of principle was first established after a brief screen of metal complexes by adding $[P(OPh)_3]AuCl$ (2 mol %) and AgOTf (2 mol %) in one portion to a mixture of sulfonamide **5a** and **BPA-1A** (10 mol \%, Table 1) in toluene at 50 °C (Scheme 2). The reaction furnished the

(5) (a) Wang, H.-F.; Yang, T.; Xu, P.-F.; Dixon, D. J. Chem. Commun. 2009, 3916. (b) Kothandaraman, P.; Rao, W.; Foo, S. J.; Chan, P. W. H. Angew. Chem., Int. Ed. 2010, 49, 4619. (c) Cheung, F. K.; Hayes, A. M.; Morris, D. J.; Wills, M. Org. Biomol. Chem. 2007, 5, 1093. (d) Barber, D. M.; Sanganee, H.; Dixon, D. J. Chem. Commun. 2011, 47, 4379. (e) Barber, D. M.; Sanganee, H. J.; Dixon, D. J. Org. Lett. 2012, 14, 5290. (f) Patil, N. T.; Shinde, V. S.; Sridhar, B. Angew. Chem., Int. Ed. 2013, 52, 2251.

(6) For recent reviews on gold catalysis, see: (a) Hashmi, S. K. Chem. Rev. 2007, 107, 3180. (b) Li, Z.; Brouwer, C.; He, C. Chem. Rev. 2008, 108, 3239. (c) Arcadi, A. Chem. Rev. 2008, 108, 3266. (d) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351. (e) Corma, A.; Leyva-Pérez, A.; Sabater, M. J. Chem. Rev. 2011, 111, 1657. (f) Rudolph, M.; Hashmi, A. S. K. Chem. Commun. 2011, 47, 6536. (g) Hashmi, A. S. K.; Hutchings, G. J. Angew. Chem., Int. Ed. 2006, 45, 7896. (h) Toste, F. D. Nature 2007, 446, 395–403. (i) Modern Gold Catalyzed Synthesis; Hashmi, A. S. K., Toste, F. D., Eds.; WILEY-VCH: Weinheim, 2012. (j) Furstner, A. Chem. Soc. Rev. 2009, 38, 3208.

(7) For recent reviews on phosphoric acid catalysis, see: (a) Rueping,
M.; Nachtsteim, B. J.; Ieawsuwan, W.; Atodiresei, I. Angew. Chem., Int. Ed. 2011, 50, 6706. (b) Terada, M. Synthesis 2010, 12, 1929. (c) Terada,
M. Chem. Commun. 2008, 4097. (d) Akiyama, T. Chem. Rev. 2007, 107, 5744. (e) Akiyama, T.; Itoh, J.; Fuchibe, K. Adv. Synth. Catal. 2006, 348, 999. (f) de Vries, J. G.; Mrsic, N. Catal. Sci. Technol. 2011, 1, 727.

(8) (a) Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004, 126, 5356.
(b) Uraguchi, D.; Sorimachi, K.; Terada, M. J. Am. Chem. Soc. 2004, 126, 11804. (c) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem., Int. Ed. 2004, 43, 1566.

(9) (a) Wang, B.-L.; Zhang, J.-X.; Li, N.-K.; Liu, G.-G.; Shen, Q.; Wang, X.-W. Tetrahedron Lett. **2011**, 52, 4671. (b) Kang, Q.; Zheng, X.-J.; You, S.-L. Chem.—Eur. J. **2008**, 14, 3539. (c) Kang, Q.; Zhao, Z.-A.; You, S.-L. J. Am. Chem. Soc. **2007**, 129, 1484. (d) Chen, L.-Y.; He, H.; Chan, W.-H.; Lee, A. W. M. J. Org. Chem. **2011**, 76, 7141. (e) Xing, C.-H.; Liao, Y.-X.; Ng, J.; Hu, Q.-S. J. Org. Chem. **2011**, 76, 4125. (f) Xu, F.; Huang, D.; Han, C.; Shen, W.; Lin, X.; Wang, Y. J. Org. Chem. **2010**, 75, 8677.

(10) Fleischmann, M.; Drettwan, D.; Sugiono, E.; Rueping, M.; Gschwind, R. M. Angew. Chem., Int. Ed. 2011, 50, 6364. **Scheme 2.** Proof of Principle Study in the *N*-Sulfonyliminium Cyclization Cascade

cascade products 6a and 7a (5-exo and 6-endo respectively in 9:1 ratio) with quantitative mass return at a faster rate than previously reported in N-acyliminium cyclization cascades.³ Unfortunately, no enantioselectivity was witnessed. However, we later confirmed that this was due to a competing gold catalyzed background reaction;¹¹ treatment of sulfonamide 5a with [P(OPh)₃]AuCl (3 mol %) and AgOTf (3 mol %) at 60 °C in toluene afforded cyclization products 6a and 7a in quantitative yield as a 9:1 mixture of regioisomers respectively.¹² A range of alternative alkynophilic Lewis acidic metal complexes were screened in an attempt to slow the undesirable background process. Pleasingly, with Echavarren's catalyst¹³ (8), 6awas afforded in 56% yield and 73% ee (Table 1, entry 4). A brief solvent screen (Table 1, entries 4-8) identified toluene as the best solvent for enantioselectivity when compared with other aprotic solvents.¹⁴ To further minimize the competitive gold catalyzed background reaction and improve efficiency, the loading of gold catalyst 8 was decreased to 2 mol % (Table 1, entry 9), which indeed resulted in an increase in product enantiomeric excess. Performing the reaction at 60 °C, rather than at 100 °C, afforded higher yields of the desired reaction product but with reduced enantiomeric excess (Table 1, entries 9 and 11). However, due to the increased lifespan of the gold catalyst under these conditions we were able to lower the gold catalyst loading even further to 0.5-1.0 mol %, which proved beneficial to both reaction yield and enantioselectivity (Table 1, entries 12 and 13). A subsequent screen of chiral BPA derivatives provided no enhancement in enantioselectivity (Table 1, entries 15–17) and confirmed **BPA-1A** was optimal for the enantioselective cascade process.

With optimized conditions in hand a variety of substituted indole sulfonamide derivatives were cyclized with good to excellent yields and enantioselectivities up to 96% ee (Figure 1). The reaction was found to tolerate electron-withdrawing halides at various positions around the ring (**6b** to **6f**) and the electron-deficient 5-nitrile derivative (**6g**), albeit at a slower reaction rate in the latter

(14) This may be due to its ability to increase tight ion pairing: Brak, K.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2013, 52, 534.

^{(4) (}a) Alemán, J.; Solar, V.; Alvarez-Valdés, A.; Ríos-Luci, C.; Padrón, J. M.; Navarro-Ranninger, C. *Med. Chem. Commun.* **2011**, *2*, 789. (b) Supuran, C. T.; Scozzafava, A. *Exp. Opin. Ther. Pat.* **2002**, *12*, 217.

^{(11) (}a) Bandini, M.; Bottoni, A.; Chiarucci, M.; Cera, G.; Miscione, G. P. J. Am. Chem. Soc. **2012**, *134*, 20690.

⁽¹²⁾ Treatment of alkyne **5a** with **BPA-1A** in refluxing toluene resulted in no reaction and showed only pure starting material.

^{(13) (}a) Nieto-Oberhuber, C.; Lopez, S.; Munoz, M. P.; Cardenas, D. J.; Bunuel, E.; Nevado, C.; Echavarren, A. M. *Angew. Chem., Int. Ed.* **2005**, *44*, 6146. (b) Perez-Galan, P.; Delpont, N.; Herrero-Gomez, E.; Maseras, F.; Echavarren, A. M. *Chem.—Eur. J.* **2010**, *16*, 5324. (c) Herrero-Gomez, E.; Nieto-Oberhuber, C.; Lopez, S.; Benet-Buchholz, J.; Echavarren, A. M. *Angew. Chem., Int. Ed.* **2006**, *45*, 5455.

Table 1. Optimization Studies

entry"LA cat.LA (mol %)BPA (mol %)acid (mol %)solventtemp (°C)yield (%) ^b ee (%)1[P(OPh)_3]AuOTf21A10toluene10026172°[NHC]AuOTf ^{dl} 71A10toluene10071523°Cu(OTf)_2201A10toluene10054174 ^f 851A10toluene10056735851A10(CH ₂ Cl) ₂ 6083466851A10MeCN6077537851A10hexane6014278851A10toluene100688710821A10toluene95688511811A10toluene60828112811A10toluene6084881380.51A10toluene60219215811B10toluene60834516811C10toluene607945		$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$entry^a$	LA cat.	LA(mol~%)	BPA (mol %)	acid (mol %)	solvent	$temp(^{\circ}C)$	yield $(\%)^b$	ee (%)
2^c [NHC]AuOTf'71A10toluene1007152 3^e Cu(OTf)2201A10toluene1005417 4^f 851A10toluene10056735851A10(CH2Cl)26083466851A10MeCN6077537851A10hexane6014278851A10toluene100688309821A10toluene100688710821A10toluene95688511821A10toluene60828112811A10toluene6078881380.51A10toluene6078881480.11A10toluene60219215811B10toluene60834516811C10toluene60857117811D10toluene607945	1	[P(OPh)3]AuOTf	2	1A	10	toluene	100	26	17
3^e Cu(OTf)_2201A10toluene1005417 4^f 851A10toluene10056735851A10(CH_2Cl)_26083466851A10MeCN6077537851A10hexane6014278851A10THF608309821A10toluene100688710821A10toluene95688511821A10toluene60828112811A10toluene6084881380.51A10toluene60219215811B10toluene60834516811C10toluene60857117811D10toluene608571	2^c	[NHC]AuOTf ^d	7	1 A	10	toluene	100	71	52
4 ^f 851A10toluene10056735851A10 $(CH_2Cl)_2$ 6083466851A10MeCN6077537851A10hexane6014278851A10toluene608309851A10toluene100688710821A10toluene95688511821A10toluene60828112811A10toluene6084881380.51A10toluene60219215811B10toluene60834516811C10toluene60857117811D10toluene607945	3^e	$Cu(OTf)_2$	20	1 A	10	toluene	100	54	17
5 8 5 1A 10 $(CH_2Cl)_2$ 60 83 46 6 8 5 1A 10 MeCN 60 77 53 7 8 5 1A 10 hexane 60 14 27 8 8 5 1A 10 hexane 60 83 0 9 8 5 1A 10 THF 60 83 0 9 8 2 1A 10 toluene 100 68 87 10 8 2 1A 10 toluene 95 68 85 11 8 2 1A 10 toluene 60 82 81 12 8 1 1A 10 toluene 60 84 88 13 8 0.5 1A 10 toluene 60 21 92 15 8 1 1B 10 toluene 60 85 71	4^{f}	8	5	1 A	10	toluene	100	56	73
6851A10MeCN6077537851A10hexane6014278851A10THF608309821A10toluene100688710821A10toluene95688511821A10toluene60828112811A10toluene6084881380.51A10toluene6078881480.11A10toluene60219215811B10toluene60834516811C10toluene60857117811D10toluene607945	5	8	5	1 A	10	$(CH_2Cl)_2$	60	83	46
7 8 5 1A 10 hexane 60 14 27 8 8 5 1A 10 THF 60 83 0 9 8 2 1A 10 toluene 100 68 87 10 8 2 1A 10 toluene 95 68 85 11 8 2 1A 10 toluene 95 68 85 12 8 1 1A 10 toluene 60 84 88 13 8 0.5 1A 10 toluene 60 78 88 14 8 0.1 1A 10 toluene 60 21 92 15 8 1 1B 10 toluene 60 83 45 16 8 1 1C 10 toluene 60 85 71 17 8 1 1D 10 toluene 60 79 45 <td>6</td> <td>8</td> <td>5</td> <td>1A</td> <td>10</td> <td>MeCN</td> <td>60</td> <td>77</td> <td>53</td>	6	8	5	1 A	10	MeCN	60	77	53
8 8 5 1A 10 THF 60 83 0 9 8 2 1A 10 toluene 100 68 87 10 8 2 1A 10 toluene 95 68 85 11 8 2 1A 10 toluene 60 82 81 12 8 1 1A 10 toluene 60 84 88 13 8 0.5 1A 10 toluene 60 78 88 14 8 0.1 1A 10 toluene 60 21 92 15 8 1 1B 10 toluene 60 83 45 16 8 1 1C 10 toluene 60 85 71 17 8 1 1D 10 toluene 60 79 45	7	8	5	1 A	10	hexane	60	14	27
9 8 2 1A 10 toluene 100 68 87 10 8 2 1A 10 toluene 95 68 85 11 8 2 1A 10 toluene 60 82 81 12 8 1 1A 10 toluene 60 84 88 13 8 0.5 1A 10 toluene 60 21 92 14 8 0.1 1A 10 toluene 60 83 45 15 8 1 1B 10 toluene 60 83 45 16 8 1 1C 10 toluene 60 85 71 17 8 1 1D 10 toluene 60 79 45	8	8	5	1 A	10	THF	60	83	0
10821A10toluene95688511821A10toluene60828112811A10toluene6084881380.51A10toluene6078881480.11A10toluene60219215811B10toluene60834516811C10toluene60857117811D10toluene607945	9	8	2	1 A	10	toluene	100	68	87
11821A10toluene60828112811A10toluene6084881380.51A10toluene6078881480.11A10toluene60219215811B10toluene60834516811C10toluene60857117811D10toluene607945	10	8	2	1A	10	toluene	95	68	85
12 8 1 1A 10 toluene 60 84 88 13 8 0.5 1A 10 toluene 60 78 88 14 8 0.1 1A 10 toluene 60 21 92 15 8 1 1B 10 toluene 60 83 45 16 8 1 1C 10 toluene 60 85 71 17 8 1 1D 10 toluene 60 79 45	11	8	2	1 A	10	toluene	60	82	81
13 8 0.5 1A 10 toluene 60 78 88 14 8 0.1 1A 10 toluene 60 21 92 15 8 1 1B 10 toluene 60 83 45 16 8 1 1C 10 toluene 60 85 71 17 8 1 1D 10 toluene 60 79 45	12	8	1	1 A	10	toluene	60	84	88
14 8 0.1 1A 10 toluene 60 21 92 15 8 1 1B 10 toluene 60 83 45 16 8 1 1C 10 toluene 60 85 71 17 8 1 1D 10 toluene 60 79 45	13	8	0.5	1 A	10	toluene	60	78	88
15 8 1 1B 10 toluene 60 83 45 16 8 1 1C 10 toluene 60 85 71 17 8 1 1D 10 toluene 60 79 45	14	8	0.1	1 A	10	toluene	60	21	92
16 8 1 1C 10 toluene 60 85 71 17 8 1 1D 10 toluene 60 79 45	15	8	1	1 B	10	toluene	60	83	45
17 8 1 10 toluene 60 79 45	16	8	1	1C	10	toluene	60	85	71
	17	8	1	1 D	10	toluene	60	79	45

^{*a*} All reactions proceeded for 20 h at 7 mM concentration (with respect to **5a**) unless otherwise stated. No change in regioselectivity (9:1, **6a:7a**) was witnessed throughout optimization. ^{*b*} Isolated yield. ^{*c*} Initial LA catalyst loading of 2 mol %; after 48 h additional LA was charged (5 mol %) and reacted for a further 12.5 h. ^{*d*} [NHC]AuOTf = {Au[1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene]OTf}. ^{*e*} 52 h reaction. ^{*f*} Reaction complete after 1 h.

case due to its poor solubility in the reaction solvent. Substrates containing electron-donating groups (**6h** to **6k**) were also found to work well. These derivatives demonstrated that all the possible positions around the carbocycle of the indole ring could be substituted without significant detriment to enantioselectivity or yield.

To further test the flexibility of this new methodology, attempts were made to perform the reaction cascade on the chain extended amide analogue **9a**. Pleasingly, using 5 mol % of **8** and 10 mol % **BPA-1A** in refluxing toluene gave desired product **10a** in 50% ee and 79% yield as a single regioisomer. Successful optimization of the enantioselectivity was achieved through lowering the loading of the gold catalyst (see Supporting Information); with 1 mol % of gold catalyst **8**, lactam **10a** was formed in 86% yield and 66% ee.

A collection of examples were examined to test the effects of electron withdrawing (10b) and donating (10c and 10d) substituents in this variant of our cascade process. Pleasingly the reactions proceeded with good to excellent yields and with enantiomeric excesses up to 93% (Figure 2).

From the data collected during the development of our method (Table 1) and literature precedent, we propose the mechanism of the reaction proceeds through two sequential and independent catalyzed transformations (Scheme 3). A gold(I) complex activates alkyne **5** through π acid/base interactions lowering the energy of the alkyne LUMO,¹⁵ which allows the sulfonamide to attack selectively in a *5-exo* fashion, presumably due to the gold alkyne bond being skewed toward the terminal end of the alkyne due

Figure 1. Substrate scope. ^{*a*}In all examples products of 5-*exo*cyclization (6) were separated from 6-*endo* cyclization regioisomers (7) by FCC (9:1 crude ratio). Compound 7a was fully characterized in order to confirm the structure of the minor regioisomer. ^{*b*} Reaction time 60 h.

to sterics.¹⁶ Protodeauration forms enesulfonamide **11**. At this juncture intermediate **11** can take two potential pathways: (i) gold catalyzed nonenantioselective *N*-sulfonyliminium cyclization via **12**^{17,18} or (ii) the enantioselective **BPA** catalyzed *N*-sulfonyliminium cyclization via **13**. Evidence

⁽¹⁵⁾ Schmidbaur, H.; Schier, A. Organometallics 2010, 29, 2.

Figure 2. Application to δ -lactam synthesis *via* a 6-*exo*-cyclization cascade.

Scheme 3. Proposed Cascade Mechanism

that the enantioselective reaction pathway passes through an *N*-sulfonyliminium intermediate (not a gold(I) phosphate catalyzed intermediate¹⁹) came from an independent study (Scheme 4). Ketone 14 was prepared and treated with **BPA-1A** at 10 mol % in refluxing toluene. Product **6a** was obtained in quantitative yield in 92% ee. That the sense and magnitude of the enantioselectivity in this reaction were the same as those in the cascade (Table 1, entry 14) points to a common intermediate **13**.

The absolute stereochemistry was assigned by single crystal X-ray diffraction of the 3-bromobenzylated compound, **15a** (derived from **6a**) and the lactam **10b** (Figure 3). The absolute stereochemical configurations of

(17) (a) LaLonde, R. L.; Brenzovich, W. E., Jr.; Benitez, D.; Tkatchouk,
E.; Kelley, K.; Goddard, W. A., III; Toste, F. D. *Chem. Sci.* 2010, *1*, 226.
(b) Liu, L.; Hammond, G. B. *Chem. Soc. Rev.* 2012, *41*, 3129.

Scheme 4. Evidence for N-Sulfonyliminium Intermediate

Figure 3. Thermal ellipsoid plot of 15a and 10b determined using single crystal X-ray diffraction data (1 equiv of 15a and solvent (10b) omitted for clarity). C, gray; Br, green; N, blue; O, red; S, yellow.

the remaining derivatives were assigned by analogy and match the configuration of our previous findings.³

In conclusion we have developed a highly enantioselective *N*-sulfonyliminium cyclization cascade that allows access to complex and unusual sulfonamide scaffolds in excellent yield. We have also proven that this methodology can be used to create different ring systems of various sizes with most cases providing excellent yields and enantiomeric excesses. Mechanistic understanding has allowed us to control the background gold catalyzed reaction. Investigations into the development of more diverse cores possessing a range of different tethered nucleophiles are underway in our laboratory, and the results will be disclosed in due course.

Acknowledgment. We gratefully acknowledge the EPSRC (Leadership fellowship to D.J.D.; studentship to A.W.G.; postdoctoral fellowship to P.J.) and AstraZeneca for funding. We thank David M. Barber and Alison Hawkins of the Department of Chemistry for X-ray structure determination and the Oxford Chemical Crystallography Service for the use of the instrumentation.

Supporting Information Available. Experimental procedures and characterization of compounds are available with copies of ¹H and ¹³C NMR spectra for all new compounds, as well as HPLC and X-ray data where applicable. This material is available free of charge via the Internet at http://pubs.acs.org.

^{(16) (}a) Soriano, E.; Marco-Contelles, J. Chem.—Eur. J. 2008, 14, 6771.
(b) Soriano, E.; Marco-Contelles, J. Acc. Chem. Res. 2009, 42, 1026.
(c) Li, G.; Zhang, Z.; Zhang, L. J. Am. Chem. Soc. 2008, 130, 3740.

⁽¹⁸⁾ We cannot rule out Lewis acid assisted Brønsted acid catalysis: Yang, T.; Campbell, L.; Dixon, D. J. J. Am. Chem. Soc. 2007, 129, 12070.

⁽¹⁹⁾ Raducan, M.; Moreno, M.; Boura, C.; Echavarren, A. M. Chem. Commun. 2012, 48, 52.

The authors declare no competing financial interest.