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Cortical network hyperexcitability is an inextricable feature of Alzheimer’s disease (AD)
that also might accelerate its progression. Seizures are reported in 10–22% of patients
with AD, and subclinical epileptiform abnormalities have been identified in 21–42%
of patients with AD without seizures. Accurate identification of hyperexcitability and
appropriate intervention to slow the compromise of cognitive functions of AD might
open up a new approach to treatment. Based on the results of several studies,
epileptiform discharges, especially those with specific features (including high frequency,
robust morphology, right temporal location, and occurrence during awake or rapid eye
movement states), frequent small sharp spikes (SSSs), temporal intermittent rhythmic
delta activities (TIRDAs), and paroxysmal slow wave events (PSWEs) recorded in long-
term scalp electroencephalogram (EEG) provide sufficient sensitivity and specificity in
detecting cortical network hyperexcitability and epileptogenicity of AD. In addition,
magnetoencephalogram (MEG), foramen ovale (FO) electrodes, and computational
approaches help to find subclinical seizures that are invisible on scalp EEGs.
We performed a comprehensive analysis of the aforementioned electrophysiological
biomarkers of AD-related seizures.
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INTRODUCTION

Brain rhythms are fundamental in maintaining normal cognition and behavior, and neuronal
hyperexcitability has emerged as an important electrical abnormality that could not only lead to
memory failure in the early stage of Alzheimer’s disease (AD) but also contribute to the progression
of the disease (Noebels, 2011; Vossel et al., 2013; Busche and Konnerth, 2015, 2016; Palop and
Mucke, 2016). Once neuronal hyperexcitability of the cerebral cortex is established, it can manifest
as epileptic seizures or subclinical epileptiform discharges. Seizures are reported in 10–22% of
patients with AD (Friedman et al., 2011; Vossel et al., 2013; Cretin et al., 2016; Sarkis et al., 2016),

Abbreviations: 5xFAD, 5x familial AD; AD, Alzheimer’s disease; AEDs, antiepileptic drugs; aMCI, amnesic mild cognitive
impairment; APOE4, the E4 variant of apolipoprotein E; AUROC, area under receiver operating characteristic; BBBd, blood-
brain barrier dysfunction; EEG, electroencephalogram; eLORETA, exact low-resolution brain electromagnetic tomography;
FO, foramen ovale; MEG, magnetoencephalogram; mTL, mesial temporal lobe; PSWEs, paroxysmal slow wave events; REM,
rapid eye moment; SSS, small sharp spikes; TIRDA, temporal inter mitten rhythmic delta activity.
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and subclinical epileptiform activities have been found in
more than 40% of patients with AD in a recent prospective
electroencephalogram (EEG) study (Vossel et al., 2016).

The presence of seizure and subclinical epileptiform activities
have been shown to contribute to impaired memory and
attention, especially cognitive fluctuation (Palop and Mucke,
2009; Vossel et al., 2016). A greater extent of neuronal
hyperactivity tends to occur in the earliest stages of AD compared
with later stages, which has been shown from both fMRI studies
in humans and neuronal activity studies in mouse models of
AD (Zott et al., 2018). “Antiepileptogenic” therapies in AD
appear to be feasible in order to delay the progression of
the disease. Although they are easy to implement, performing
these treatments in all patients with AD presents a problem
as the majority of patients with AD would not have any
benefit, though the subset of patients with AD who have
epileptiform activity might benefit greatly from early treatment
with antiepileptic drugs (AEDs). Hence, effective treatment
first requires the detection and suppression of seizures and
subclinical epileptiform activity. In this study, we performed
a comprehensive analysis of the potential electrophysiological
biomarkers of AD-related seizures in humans and discuss their
feasibility in clinical practice and their potential to predict the
subsequent development of clinical seizures and epilepsy.

SCALP ELECTROENCEPHALOGRAM

Epileptiform Discharges
The best-known biomarker of hyperexcitability in humans is
the epileptiform discharge, which is defined as a paroxysmal
EEG graphoelement (spike or sharp wave) with a duration of
20–200 ms that is clearly distinct from ongoing background
EEG activity followed by slow waves (Noachtar and Remi, 2009)
(Figure 1A). On scalp EEGs, visible subclinical epileptiform
discharges occur in 9–21% of patients with AD who had no prior
history of epilepsy or seizure, a higher rate than 0–5% of healthy
controls (Vossel et al., 2016; Brunetti et al., 2020; Lam et al.,
2020). Long-term EEG detection has found that epileptiform
discharges in patients with AD mainly occur during a sleep state
and are largely lateralized to the temporal lobe, especially the
left temporal lobe.

Epileptiform discharges that had more robust morphological
features including significantly larger trough voltage, peak-to-
trough voltage, and slope of falling half-wave of the peak are
more strongly associated with clinical seizures in AD (Lam et al.,
2020). The guiding significance of robust epileptiform discharges
is similar to giant spikes (simultaneous spikes in all channels,
with massive voltages > ± 10 SD from the filtered baseline in
at least one channel) observed in transgenic mice with APP/PS1
mutations (Gureviciene et al., 2019). The same indicative effect
being strongly associated with clinical seizures has also been seen
in right temporal epileptiform discharges (100% specificity and
43% sensitivity) (Lam et al., 2020).

The detection rate of epileptic discharges in patients with
AD by scalp EEG is significantly correlated with recording
time. Approximately, 62% of patients with AD showed epileptic

discharges in EEG recordings lasting 24 h (Horvath et al., 2018)
and only 3% in 20 min of eyes-closed EEG recordings (Liedorp
et al., 2010). Most epileptiform discharges from patients with
AD occur during sleep, requiring overnight EEG monitoring
for detection. Epileptiform discharges occurred most frequently
during N2 sleep, while awake and rapid eye moment (REM) states
are the least permissive states for the expression of epileptiform
discharges in patients with focal epilepsy (Sammaritano et al.,
1991; Malow et al., 1997; Diaz-Negrillo, 2013), and the results
of EEG monitoring in patients with AD are consistent with this.
While epileptiform discharges detected during awake or REM
states were suggestive for clinical seizures (85.7% specificity and
85.7% sensitivity) (Lam et al., 2020), the study by Lam et al.
(2020) also pointed out that patients with AD who had high
frequencies of epileptiform discharges were more likely to have
generalized convulsions.

Lam et al. (2017a) found that spikes (sharply contoured
transients, clearly distinguishable from, and usually interrupting
background activities, with a duration of <70 ms) from patients
with aMCI were largely lateralized to the left mesial temporal lobe
(mTL), whereas they were largely lateralized to the right mTL in
moderate patients with AD. Thus, they proposed that there might
be left hemisphere hyperactivity predisposition and left mTL
susceptibility in the early stages of AD. Data from anatomical and
functional connectivity modalities also support this; the result
may also be mediated in part by the E4 variant of apolipoprotein
E (APOE4) allele (Thompson et al., 2003; Damoiseaux et al., 2009;
Donix et al., 2013; Wessa et al., 2016; Yang et al., 2017; Liu et al.,
2018; Zott et al., 2018).

Studies in animal models with AD have established a direct
link between neuronal hyperactivity and propagation of amyloid
and tau pathology (Cirrito et al., 2005; Busche et al., 2012; Pooler
et al., 2013; Wu et al., 2016). Reyes-Marin and Nunez (2017)
also found that the frequency of epileptiform-like discharges was
significantly correlated with the number of amyloid-β plaques
in APP/PS1 mice. The results of these animal studies illustrate
that the asymmetry in temporal lobe hyperexcitability might be
related to an asymmetric cascade of AD pathology.

Finally, there is growing evidence that scalp EEG epileptiform
discharges in patients with AD have a variable association with
clinical seizures (Vossel et al., 2016; Lam et al., 2020). With
an infrequent frequency (<10 per 24 h), these epileptiform
discharges typically arise locally from the lateral temporal cortex
or propagate to the surface from deep mTL foci (Bakker et al.,
2012; Lam et al., 2017a). Thus, to some extent, scalp EEG
epileptiform discharges alone are limited, and they may not be
the optimal biomarkers for epileptogenicity in AD.

Small Sharp Spikes
Small sharp spikes (SSSs), also known as benign sporadic sleep
spikes (White et al., 1977), are low amplitude (30–50 uV), short
duration (<50 ms) spikes that occur during early drowsiness, and
N1 and N2 sleep stages (Figure 1B). They are widely distributed
in bilateral brain hemispheres typically seen independently over
the bi-frontotemporal regions but can also occur unilaterally. In
addition, SSSs are usually considered as a benign variant of EEG,
which has no association with epilepsy. However, recent studies
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have indicated that SSS-like waveforms in the scalp might be
related to mTL epileptiform discharges, especially unilateral SSS-
like waveforms (Lam et al., 2017a; Issa et al., 2018). According to
the study by Lam et al. (2020) unilateral (left or right temporal
region) SSS-like waveforms with high frequency (>100 per 24 h)
are associated with clinical seizure in AD. However, pinpointing
SSSs as an electrophysiological biomarker of seizure in patients
with AD requires further validation in more well-designed
studies to distinguish pathological SSSs from benign SSSs.

Temporal Intermittent Rhythmic Delta
Activity
Temporal intermittent rhythmic delta activity (TIRDA) refers to
the delta activity distributed in the temporal lobe with a frequency
of 2.5–3.0 Hz and a sinusoidal or serrated waveform that occurs
repeatedly and intermittently and has a strong association with
mesial temporal lobe epilepsy (mTLE) (Reiher et al., 1989;
Gambardella et al., 1995; Normand et al., 1995; Gennaro et al.,
2003) (Figure 1C). TIRDA occurs in 26% of patients with AD-
related epilepsy (Lam et al., 2020). Although occurring at a lower
frequency in patients with AD without epilepsy, TIRDA has
been associated with higher diagnostic confidence compared to
epileptiform discharges (positive predictive value for determining
epileptiform, 83.3 vs. 61.5%) (Lam et al., 2020). Like epileptiform
discharges, TIRDA is more likely to occur during N2 sleep and in
the left temporal location, while TIRDA that does occur during
awake or REM states is more strongly associated with clinical
seizures in AD (Lam et al., 2020). What is more, the lateralization
of TIRDA matches that of epileptiform discharges in patients
with AD. However, because of its low frequency (<10 per 24 h)
of occurrence in AD, the utility of TIRDA as a quantitative
biomarker is somewhat limited (Lam et al., 2020).

Paroxysmal Slow Cortical Activity
Slowing of scalp EEG activity has been observed in AD by
studying early quantitative EEG power changes in patients with
AD (Musaeus et al., 2018), and the EEG slowing correlates with
decreased cognition in patients with AD and unimpaired older
adults (Stomrud et al., 2010; Musaeus et al., 2018). The EEG
slowing might be a potential sign of neural network dysfunction.
Milikovsky et al. (2019) analyzed the temporal characteristics
of EEG slowing from patients with AD and found that cortical
slowing is in part composed of transient paroxysmal slowing of
the cortical network. This transient paroxysmal slowing of the
cortical network is called paroxysmal slow wave events (PSWEs),
which refer to “events” when the median power frequency is
lower than 6 Hz for at least 5 consecutive s on the scalp EEG
(Milikovsky et al., 2019) (Figure 1D). These PSWEs were also
obtained in patients with epilepsy, animal models of AD, and
animal models of epilepsy.

Investigating PSWE characteristics in aged mice, young
5xFAD mice, and young rats with epilepsy, Milikovsky et al.
(2019) found that there was a spatial correlation between
PSWEs and blood-brain barrier dysfunction (BBBd). They also
observed a causal link between BBBd and PSWE in animal
models by infusing albumin into the lateral ventricle of rats

and then detecting the PSWEs in epidural recordings after a
month of infusion. Their results indicate that PSWEs can be
an indicator for the subclinical seizure-like activity that reflects
microvascular pathology. Hence, PSWE detection in routine
scalp EEG recordings might be an affordable and sensitive
diagnostic indicator for subclinical seizures among patients with
AD and as a pharmacodynamic measure for AEDs. However, we
must realize that seizure and epileptiform activity mostly occur in
the mTL in patients with AD and are often undetectable by scalp
EEG recording. Thus, more effective approaches that can detect
epileptiform discharges in the mTL are needed to improve the
efficiency of scalp EEG monitoring.

MAGNETOENCEPHALOGRAPHY

Magnetoencephalography (MEG), which is thought to be more
sensitive to discharges of tangential sulcal sources than EEG
with a high temporal and spatial resolution (Oishi et al., 2002),
has also been widely used as a non-invasive tool to assess mTL
activity and localized epileptogenic lesions in an epilepsy non-
invasive tool (Enatsu et al., 2008; Kaiboriboon et al., 2010;
Wennberg et al., 2011; Wennberg and Cheyne, 2014). Although
the main application field of MEG is the presurgical evaluation
of drug-resistant epilepsy, MEG also provides a complementary
approach to scalp EEG in detecting cortical network dysfunction
in patients with AD. Vossel et al. (2016) prospectively assessed the
epileptiform activities in 33 patients with AD and 19 age-matched
healthy controls, by 1-h resting MEG recordings and overnight
scalp EEG recordings. Vossel et al. (2016) found that visible
epileptiform discharges on MEG occurred in 33.3% of patients
with AD, much higher than that of 21.1% on overnight scalp
EEGs. Although the specificity of MEG might not be as high as
that of overnight EEG (11% of healthy controls had epileptiform
discharges visible on MEG while had them on overnight EEG),
patients with epileptiform activity on MEG or overnight EEG
had significantly faster rates of cognitive decline than those
without epileptiform activity (Vossel et al., 2016). These findings
suggest that MEG is an effective electrophysiological biomarker
of cortical hyperexcitability in patients with AD with much higher
sensitivity than scalp EEG. Interestingly, epileptiform discharges
detected by MEG were more right-sided compared with the
more left-sided epileptiform discharges detected by scalp-EEG
(Vossel et al., 2016). Different detection capabilities or different
interpretation techniques may contribute to the discordance, but
the principle behind this remains unclear.

Importantly, epileptiform discharges in patients with AD
mainly occur during a sleep state, while the MEG recording
cannot exceed a few hours at a time. Thus, it is nearly impossible
to capture natural sleep or paroxysmal events during a sleep
state by MEG. Considering the high requirement of equipment
maintenance and the high costs of MEG examination, it is
difficult to carry out MEG as a routine examination in general
patients with AD. However, for patients with high suspicion of
cortical hyperexcitability without visible epileptiform discharge
on scalp EEG, MEG examination can be chosen to individually
guide the usage of AEDs.
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FIGURE 1 | Characterization of spike, small sharp spike (SSS), temporal intermittent rhythmic delta activities (TIRDA), and paroxysmal slow-wave event (PSWE).
(A–C) Representative examples of spike, SSS, and TIRDA from the right temporal region in three patients with AD from our own ward, respectively. Scalp electrodes
were placed using the international 10–20 system, sampling at 200 Hz. EEG channels (top to bottom): F8-ave, T4-ave, and T6-ave. Calibration bars: 100 µV and
500 ms. (D) A PSWE detected in a patient with AD. Traces from electrodes P3 (upper trace) and P4 (averaged as reference) are shown. The segment within the
dashed rectangle of P3 is shown magnified. The median power frequency is presented below each trace. Segments below 6 Hz (dashed line) are marked in red.
From Milikovsky et al. (2019). Reprint with permission from The American Association for the Advancement of Science (AAAS).

TABLE 1 | Electrophysiological biomarkers of AD-related increase of cortical excitability.

Characteristics associated
with clinical seizure

Advantages Disadvantages

Scalp EEG Non-invasive

Epileptiform
discharges

Robust morphology, right
temporal location, occur during
awake or REM state, and
higher frequency

Simple to implement in clinical
work

Required long recording time
and insensitive to epileptic
discharges from deep mTL foci

Liedorp et al., 2010; Bakker
et al., 2012; Vossel et al., 2016;
Lam et al., 2017a, 2020;
Horvath et al., 2018

SSSs Unilateral SSS-like waveforms
and frequent frequency (>100
per 24 h)

Simple to implement in clinical
work

Hard to distinguish pathologic
from benign SSSs

Lam et al., 2017a, 2020; Issa
et al., 2018

TIRDA Occur during awake or REM
state

High diagnostic confidence Infrequently frequency (<10 per
24 h)

Lam et al., 2020

PSWEs – No requirement for long
recording time

Hard to distinguish Milikovsky et al., 2019

MEG – Non-invasive and sensitive to
discharges of tangential sulcal
sources

Low specificity, high
requirement of equipment, and
only be monitored for a short
time at a time

Oishi et al., 2002; Vossel et al.,
2016

FO electrodes Occur during non-REM sleep
state

High quality, long-term
recording, capture samples
from deep temporal activities,
and no skull defect

High cost, semi-invasive, and
request for good neurosurgical
skills of electrode placement

Sheth et al., 2014; Lam et al.,
2017a, 2019

Computational
approaches

– Non-invasive and short
monitoring time

Request for validation with large
clinical data sets

Lam et al., 2016, 2017b;
Babiloni et al., 2020

AD, Alzheimer’s disease; SSS, small sharp spikes; TIRDA, temporal inter mitten rhythmic delta activity; PSWEs, paroxysmal slow wave events; EEG, electroencephalogram;
MEG, magnetoencephalogram; FO, foramen ovale; mTL, mesial temporal lobe; REM, rapid eye moment.
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FORAMEN OVALE ELECTRODES

Foramen ovale (FO) electrodes are a semi-invasive alternative
to stereo-EEG electrodes. After general endotracheal anesthesia
is induced, a single multi-contact FO electrode is positioned
adjacent to each mTL inserted through the cheek skin to the
ipsilateral natural aperture (FO) in the skull (Sheth et al., 2014).
High-quality, long-term recordings can be obtained directly from
the mTL using FO electrodes (Sperling et al., 1986; Fernández
Torre et al., 1999). As FO electrodes will cause no skull defect,
scalp EEG recording can be carried out simultaneously with FO
electrodes. Furthermore, as mentioned above, since the mTL is
the most affected location in patients with AD and FO electrodes
that are accurate in capturing samples from deep temporal
activities might be the best method for assessing subclinical
discharges in patients with AD (Lam et al., 2019).

Lam et al. (2017a) used bilateral FO electrode recordings
in two patients with AD (one had aMCI and another had
moderate dementia; both had cerebrospinal fluid biomarker-
confirmed AD) for the first time. The FO electrode recordings of
both patients with AD demonstrated abundant, sleep-activated
(especially non-REM sleep) spikes, and over 95% of the spikes
were invisible on the simultaneous scalp EEG. In addition, three
silent mTL seizures were captured on FO electrode recordings,
while no visible evidence was found on scalp EEG in the
patient with aMCI. They also found that mTL spikes on FO
electrode recordings in the patient with aMCI occurred at up
to a 10-fold rate compared with the patient with moderate
dementia, supporting the concept that a greater extent of
neuronal hyperactivity had developed during the earliest stages
of AD rather than later stages (Zott et al., 2018). Existing
studies indicate that mTL epileptiform discharges detected by FO
electrodes mostly occur during a sleep state in both humans and
mouse AD models (Lam et al., 2017a; Brown et al., 2018) but
non-REM sleep in humans (Lam et al., 2017a; Brown et al., 2018)
and REM sleep in mouse models with AD (Kam et al., 2016;
Brown et al., 2018). Although FO electrodes offer high quality and
long-term recordings of mTL activity, their utility as a screening
tool for epileptiform discharges in patients with AD is limited
because of their high cost, potential risks (for example, central
nervous system infection and bleeding), and the requirement of
good neurosurgical skills for electrode placement.

COMPUTATIONAL APPROACHES

For patients with AD, routine scalp EEG monitoring (20–40 min)
is both necessary and feasible for the purpose of observing
brain rhythms, but it is less helpful in recording epileptiform
activity (Liedorp et al., 2010). However, performing overnight
EEG, MEG, or FO electrode recordings is not feasible for the
reasons of hospital resources, willingness to monitor patients,
and high costs. As such, scientists have developed non-invasive
and inexpensive methods, which can be widely implemented for
diagnosing epileptiform activity.

Many studies have demonstrated that though there is a lack of
visible epileptiform activity on scalp EEG, non-specific subtle and

quantitative changes in local or long-distance networks induced
by mTL spikes or seizures (Tyvaert et al., 2009; Vulliemoz et al.,
2011; Cunningham et al., 2012; Aghakhani et al., 2015; Khoo
et al., 2017; Naftulin et al., 2018) can be detected indirectly using
artificial intelligence approaches. In a proof-of-principle study,
Lam et al. (2016) analyzed the EEG data of 25 patients with
epilepsy who underwent scalp EEG recording and FO electrode
recording. By dividing scalp EEG recording into epochs and
extracting coherence features of each epoch, they trained a seizure
detector which correctly identified 40% of scalp-negative seizures
(seizures detected by FO electrode recording but invisible on
the scalp EEG), with a positive predictive value of 75% (Lam
et al., 2016). In another publication by the same authors (Lam
et al., 2017b), they extracted scalp EEG spectral power as an
input feature and trained a machine learning algorithm that
correctly identified 50% of scalp-negative seizures, with a positive
predictive value of 94%. Studies by other researchers (Nayak et al.,
2004; Koessler et al., 2015) also pointed out that mTL spikes
or seizures might be detected by quantitative EEG signatures
though they are invisible on a scalp EEG. Babiloni et al. (2020)
found that higher temporal delta source activities are more
strongly associated with clinical seizures in AD by estimating
regional EEG cortical sources using exact low-resolution brain
electromagnetic tomography (eLORETA) freeware. They used
the area under receiver operating characteristic (AUROC) curves
to index the accuracy of eLORETA solutions in identifying
seizures and found an accuracy of 69% (Babiloni et al., 2020).

Development of computational approaches that accurately
identify spikes or seizures from scalp EEG or MEG is underway
(Lam et al., 2016, 2017b; Spyrou et al., 2016; Pizzo et al., 2019).
However, this might be difficult to validate with large clinical data
sets of combined scalp EEG/MEG and intracranial (especially
FO electrode) recordings. Once the computational approaches
become established, patients with AD may obtain more accurate
guidance on antiepileptic therapy.

DISCUSSION

Patients with AD have an increased risk of seizures, compared
to an age-matched control population, and they are over 10
times more likely to develop epilepsy, especially patients with
early onset familial AD (Amatniek et al., 2006; Pandis and
Scarmesa, 2012). The significance of interictal epileptiform
activities in patients with AD is still controversial, and they are
biomarkers of hyperexcitability, but their relation to seizures
is actually unknown. Interictal epileptiform activities may
compromise memory formation and consolidate themselves,
even in the absence of seizures. There are also studies
that contend that seizures might be a critical part of AD
pathogenesis (Scarmeas et al., 2009). Numerous studies (Reyes-
Marin and Nunez, 2017; Gureviciene et al., 2019) in animal
models also suggest the importance of detecting these events,
finding that a high number of interictal spikes increases the
risk of seizures.

However, one thing most studies agree on is that patients
with AD with seizures or subclinical epileptiform activity
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experience faster cognitive declines over time (Vossel et al., 2016),
and patients with AD might benefit from antiepileptic therapy.
Moreover, the identification of biomarkers of epileptogenesis in
patients with AD is a prerequisite for designing and developing
targeted therapeutic approaches.

CONCLUSION

To date, human studies have identified several candidate
EEG biomarkers as follows: epileptiform discharges (especially
those with specific features, including high frequency, robust
morphology, right temporal location, and occurrence during
awake or REM states), frequent SSSs, TIRDA, and PSWEs
recorded by scalp EEG (Table 1). In addition, MEG, FO
electrodes, and computational approaches help to find subclinical
seizures that are invisible on scalp EEG electrodes in patients with
AD (Table 1). However, these findings require further study in
humans as well as in animals to validate them and determine
which are reliable and feasible electrophysiological biomarkers of
epileptogenicity in patients with AD.
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