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ABSTRACT

Diverse retroviruses have been shown to package
host SRP (7SL) RNA. However, little is known
about the viral determinants of 7SL RNA packaging.
Here we demonstrate that 7SL RNA is more
selectively packaged into HIV-1 virions than are
other abundant Pol-III-transcribed RNAs, including
Y RNAs, 7SK RNA, U6 snRNA and cellular mRNAs.
The majority of the virion-packaged 7SL RNAs
were associated with the viral core structures and
could be reverse-transcribed in HIV-1 virions and
in virus-infected cells. Viral Pol proteins influenced
tRNAlys,3 packaging but had little influence on
virion packaging of 7SL RNA. The N-terminal basic
region and the basic linker region of HIV-1 NCp7
were found to be important for efficient 7SL RNA
packaging. Although Alu RNAs are derived from
7SL RNA and share the Alu RNA domain with 7SL
RNA, the packaging of Alu RNAs was at least 50-fold
less efficient than that of 7SL RNA. Thus, 7SL RNAs
are selectively packaged into HIV-1 virions
through mechanisms distinct from those for viral
genomic RNA or primer tRNAlys,3. Virion packaging
of both human cytidine deaminase APOBEC3G
and cellular 7SL RNA are mapped to the same
regions in HIV-1 NC domain.

INTRODUCTION

Retroviruses package two copies of viral genomic RNA
per viral particle. The selective packaging of viral genomic
RNA is mediated by the specific interaction between
sequences in the viral RNA (c) and the nucleocapsid (NC)
domain of Gag molecules (1,2). Although packaging of
viral genomic RNA is essential for virus infectivity, viral
genomic RNA is dispensable for virus assembly, which is
mediated by the viral structural protein Gag. However,

RNAs of either viral or cellular origin are believed to be
important for retroviral particle assembly (3,4).

In addition to viral genomic RNA, retroviruses also
contain abundant copies of small RNA molecules ranging
in size from 4S to 7S (1,2). Among these small RNAs,
the tRNAs used by various retroviruses, and particularly
the primer tRNAs, have been well characterized (1,2).
Primer tRNAs are selectively packaged through an
interaction with viral reverse transcriptase (5,6). In the
case of HIV-1, tRNAlys,3 is also selected by means of an
interaction between the capsid domain of Gag and
tRNARS, which forms a complex with tRNAlys,3 (7).

Other small RNAs in retroviral particles that have
been characterized include 7SL RNA (8–12), 5S rRNA
(9), and U6 snRNA (9,13). A recent study of Moloney
murine leukemia virus (MuLV) observed that 7SL RNA
and viral genomic RNA were similarly enriched in MuLV
virions (9). Several other cellular RNAs, including Y1
RNA, Y3 RNA, B1 RNA, 5S rRNA and U6 snRNA,
were also found to be packaged with an efficiency similar
to that of 7SL RNA (9). An earlier study detected three
major species (7S, 5S and tRNAs) of small cellular RNAs
in HIV-1 virions (14). Although 7SL RNA has been
detected in HIV-1 virions (10,12), packaging of other
Pol-III-transcribed RNAs into HIV-1 virions has not been
well studied. The viral determinants for the packaging of
various cellular small RNAs are also poorly defined.

In the present study, we have shown that 7SL RNA
is packaged into HIV-1 particles at a much higher
efficiency than are Y RNAs, 7SK RNA or U6 snRNA.
Although Alu RNA was derived from 7SL RNA and
shares the Alu domain with 7SL RNA, packaging of Alu
RNAs was at least 50-fold less efficient than that of 7SL
RNA. The majority of the virion-associated 7SL RNA
molecules were associated with viral core structures.
Viral Pol and Env proteins, as well as viral genomic
RNA, were dispensable for the packaging of 7SL RNA.
Although both the MA and NC domains of HIV-1 Gag
polyproteins have been shown to interact with nucleic
acids, we found that the NC domain, but not the MA
domain or L domain (p6), played a critical role in
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mediating 7SL RNA packaging. The N-terminal basic
region and the basic linker region of HIV-1 NC, but
not the zinc finger motifs, were important for 7SL
packaging.

MATERIALS AND METHODS

Plasmid constructs

The HIV-1 constructs Pr-, �Pol�Env, Gag expression
vectors pGAGINS, pNCS and pP2LZ have been pre-
viously described (15). B2FS- was generously provided by
Dr Shan Cen. HIV-1Gag-myc, Src�MAGag-myc, Gag-
CFP432, Gag-CFP411, Gag-CFP406 and Gag-CFP395
were generously provided by Dr Paul Spearman.
Gag411�N8 and Gag411�Z1 were generated from Gag-
CFP411. The HIV-1 NC mutant construct pBR653-47 was
a generous gift of Dr Robert Gorelick.

Antibodies and cells

The following antibodies were used for this study:
anti-HA mouse monoclonal antibody (Mab; Covance,
Cat. #MMS-101R-10000), anti-myc mouse mouse Mab
(Sigma, Cat. #M 5546), pooled HIV-1+ human sera,
anti-NC antibody and anti-human ribosomal P antigen
antibody (Immunovision, Cat. #HP0-0100). Anti-p24
Mab (Cat# 1513) and anti-gp120 antibody (Cat# 288)
were obtained from the AIDS Research Reagents
Program, Division of AIDS, NIAID, NIH. 293T cells
were maintained in Dulbecco’s modified Eagle’s medium
(DMEM, Invitrogen) with 10% fetal bovine serum and
gentamicin (5 mg/ml) (D-10 medium) and passaged upon
confluence.

Transfections, virus and VLP purification, and
virion-associated RNA extraction

DNA transfection was carried out using Lipofectamine
2000 (Invitrogen) as recommended by the manufacturer.
Viruses in cell culture supernatants were cleared of cellular
debris by centrifugation at 3000 r.p.m. for 15min in
a Sorvall RT 6000B centrifuge and filtration through a
0.2-mm-pore size membrane (Millipore). Virus particles
were then concentrated by centrifugation through a 20%
sucrose cushion by ultracentrifugation at 100 000g for 2 h
at 48 in a Sorvall Ultra80 ultracentrifuge. Viral pellets
were resuspended in lysis buffer (PBS containing 1%
Triton X-100 and complete protease inhibitor cocktail
[Roche] and RNase inhibitor [New England BioLabs]).
Viral lysates were analyzed by immunoblotting, or virion-
associated RNA was extracted with Trizol (Invitrogen)
according to the manufacturer’s instructions. Cell and
virion-associated RNAs were extracted and analyzed by
qRT-PCR. For sucrose density gradient purification of
HIV-1 particles, viral pellets as described above were
dissolved in PBS solution and loaded on top of 20 to 60%
stepwise sucrose gradients. Samples were subjected to
ultracentrifugation using a SW41 rotor in the Sorvall
Discovery ultracentrifuge at 22 000 r.p.m. for 16 h at 48C.
After centrifugation, 12 fractions (0.85ml each) were
collected from the top of the gradient and analyzed by

immunoblotting using anti-p24 Mab. Fractions 3 to 8
were also analyzed for viral genomic RNA and virion-
associated cellular RNAs. Samples (100ml) from each
fraction were left untreated, treated with 8 mg/ml
RNase (Roche, 11119915001) in the absence of detergent,
or treated with 8 mg/ml RNase plus 0.1% Triton X-100 at
378C for 30min. Reactions were stopped by the addition
of 1mM EDTA plus 1ml Trizol, and RNAs were
extracted according to the manufacturer’s instructions.

Immunoblot analysis

Cells were collected 48 h after transfection. Cell and
viral lysates were prepared as previously described (16).
Cells (1� 105) were lysed in 1� loading buffer (0.08M
Tris, pH 6.8, with 2.0% SDS, 10% glycerol, 0.1M
dithiothreitol, and 0.2% bromophenol blue). The samples
were boiled for 10min, and proteins were separated by
SDS-PAGE. Proteins were transferred onto two separate
nitrocellulose membranes by passive diffusion for 16 h,
producing identical mirror-image blots. Membranes
were probed with various primary antibodies against
proteins of interest. Secondary antibodies were alkaline
phosphatase-conjugated anti-human, anti-rabbit, anti-
mouse, or anti-goat IgG (Jackson Immunoresearch, Inc),
and staining was carried out with 5-bromo-4-chloro-
3indolyl phosphate (BCIP) and nitroblue tetrazolium
(NBT) solutions prepared from chemicals obtained
from Sigma.

Quantitative real-time PCR (qRT-PCR)

RNA samples were derived from cell lysates or viral
lysates and treated with DNase by incubation in 10 ml of
DEPC-treated water with 1�RQ1 RNase-free DNase
Buffer, l ml RQ1 RNase-free DNase (Promega) and 4 U
RNase inhibitor (New England BioLabs) for 30min at
378C. DNase was inactivated by the addition of 1 ml of
RQ1 DNase Stop Solution and incubated at 658C for
10min. RNA was reverse-transcribed using random
primers and the Multiscribe reverse transcriptase from
the High Capacity cDNA Archive Kit (Applied
Biosystems) according to the manufacturer’s instructions.
The cDNA was either undiluted or serially diluted in
DEPC-treated water before input into the qRT-PCR
reaction to ensure that amplification was within the linear
range of detection.
The ABI 7000 sequence detection system (Applied

Biosystems) was used for qRT-PCR amplifications.
All primers were synthesized by Invitrogen, and fluor-
escent-tagged probes were synthesized by Applied
Biosystems. Agarose gel analysis was used to verify that
each primer pair produced single amplicons, and the
identities of the PCR products were verified by cloning
and sequencing. qRT-PCR was performed using either
Taqman fluorescent probes or SYBR Green methods.
For the Taqman method, each 20 ml reaction contained
1 ml of each forward- and reverse-specific primers (10 mM),
1 m of fluorescent TaqMan probes (5 mM), 10 ml of
2�Universal Taqman PCR Master Mix, 4 ml of RNase-
free water, and 3 ml of template cDNA. The reactions were
carried out under the following conditions: 508C for 2min,

Nucleic Acids Research, 2007, Vol. 35, No. 21 7289



958C for 10min, 40 cycles of 958C for 15 s and 608C for
1min. The target sequences were amplified using the
following primer pairs and probes:
Y1 RNA: forward, 50-GGCTGGTCCGAAGGTAGT

GA-30; reverse, 50-AAAAGACTAGTCAAGTGCAGT-
30; and probe 50 FAM-TGATTGTTCACAGTCAGTT
AC-TAMRA- 30;
Y3 RNA: forward, 50-GGCTGGTCCGAGTGCAGT-

30; reverse, 50-AAAAGGCTAGTCAAGTGAAGC-30;
and probe 50 FAM-CACAACCAGTTACAGATT-T
AMRA- 30;
7SL RNA: forward, 50-ATCGGGTGTCCGCACT

AAG-30; reverse, 50-CACCCCTCCTTAGGCAACCT-30;
and probe 50 FAM-CATCAATATGGTGACCTCC
TAMR A-30;
HIV RNA: forward, 50-TGTGTGCCCGTCTGTT

GTGT-30; reverse, 50-GAGTCCTGCGTCGAGAGAG
C-30; and probe 50 FAM-CAGTGGCGCCCGAACAG
GGA-TAMRA- 30;
beta-actin RNA: forward, 50-TCACCCACACTGTGC

CCATCTACGA-30; reverse, 50-CAGCGGAACCGCTC
ATTGCCAATGG-30; and probe: 6FAM-ATGCCCT
CCCCCATGCCATCCTGCGT-TAMRA-30.
The primer/probe set specific for A3G was a predesigned
TaqMan gene expression assay (Applied Biosystems
assay, identification number: Hs00222415).
For the SYBR Green method, each 20 ml reaction

contained 1 ml of each forward- and reverse-specific
primer (10mM), 10 ml of 2�SYBR Green PCR Master
Mix, 5 ml of RNase-free water, and 3 ml of template cDNA.
The reactions were performed with the following condi-
tions: 508C for 2min, 958C for 10min, 40 cycles of 958C
for 15 s and 608C for 1min, followed by a dissociation
protocol. Single peaks in the melting curve analysis
indicated specific amplicons. The target sequences
amplified by the SYBR Green method used the following
primer pairs:
5S RNA: forward, 50-TTCAGCGTCTACGGCCAT

AC-30; reverse, 50-AGCCAAAGAAAAAGCCTAC-30;
Y4 RNA: forward, 50-GGCTGGTCCGATGGTAG

TG-30; reverse, 50-AAGCCAGTCAAATTTAGCAGTG
GG-30;
Y5 RNA: forward, 50-AGTTGGTCCGAGTGTTGT

GGGT-30; reverse, 50-ACAGCAAGCTAGTCAAGCG
CG-30;
tRNA-Phe: forward, 50-GCCGAAATAGCTCAGTTG

GGAGA-30; reverse, 50-TGGTGCCGAAACCCGG-30;
tRNA-Lys,3: forward, 50-GCCCGGATAGCTCAGT

CG-30; reverse, 50-TGGCGCCCGAACAGG-30;
GAPDH: forward, 50-GCA AATTCCATGGCACC

GT-30; reverse, 50-TCGCCCCACTTGATTTTG G-30;
The copy numbers of the target cDNAs in the qRT-PCR
assay were determined by using a standard curve of
10-fold serial dilutions of non-linearized plasmid DNA
containing the target sequence (ranging from 5 or 10
copies to 5� 106 or 106 copies). Absolute RNA copy
numbers were calculated by using standard dilution
curves of plasmids containing the target sequence. If the
template cDNA was diluted before input into the reaction,
the copy number of the target transcript was adjusted
by the dilution factor. The sensitivity of the assay or limit

of detection was determined by the lowest copy number
that was consistently amplified within the linear portion of
the standard curve. The detection limit ranged from 5 to
50 copies per reaction for the various primer sets. The
qRT-PCR assay detected A3G, Y1, Y3, Y4, 7SL and
GAPDH at 5 copies; 5S and tRNA-lys,3 at 10 copies;
Alu1, tRNA-phe and Y5 at 50 copies per reaction. All
standards at varying concentrations were amplified
linearly over a range of at least 5 orders of magnitude,
and the correlation coefficients (R2) were greater than
0.99. Copy numbers of transcripts were calculated by
using standard dilution curves of plasmids containing the
target sequence.

Detection of 7SL RNA reverse transcription in HIV-1
virions and infected cells

293T cells were transfected with NL4-3 or control
pcDNA3.1. Culture supernatant was clarified by low-
speed centrifugation, filtered through a 0.22-mm mem-
brane, and sedimented by ultracentrifugation over a
cushion of 20% sucrose at 28 000 r.p.m. using an SW28
rotor for 2 h. The viral pellets were re-suspended in 200 ml
of endogenous RT buffer (40mM Tris-HCl, pH 8.0,
10mM MgCl2, 6mM KCl, 2mM DTT,0.02% Triton
X-100) containing no dNTP or 0.2mM dNTP. Samples
were incubated at 378C for16 h. The reaction mixtures
were stopped by adding 1% SDS at 1008C for 1min. The
reaction products were extracted by adding chloroform/
phenol and precipitated with isopropanol, washed with
ethyl alcohol, and dissolved in water for PCR or
qRT-PCR analysis.

To detect 7SL DNA in HIV-1-infected cells, a total of
106 MAGI cells were infected with NL4-3 viruses
(equivalent to 1 mg of p24) or negative control supernatant
for 14 h. Cells were then washed with PBS, dissolved in
lysis buffer (0.5% Triton X-100, 50mM Tris-HCl, pH 7.5,
100mM NaCl,1mM EDTA) for 30min at 378C, and
centrifuged at 3000� g for 10min, and the pellets
(containing nucleus and chromosomal DNA) were dis-
carded. The DNA sample in the supernatant was extracted
with chloroform/phenol, precipitated with ethanol (3- to
4-fold), and dissolved in water for qRT-PCR analysis.

RESULTS

The majority of 7SL RNAmolecules in HIV-1 virions
are associated with the viral cores

An earlier study has identified three major species of
small cellular RNAs (7S, 5S and 4S tRNAs) in purified
HIV-1 virions (14). Recently, 7SL RNA has also been
detected in HIV-1 virions (10,12); however, the mecha-
nism of 7SL packaging into HIV-1 virions is still unclear.
It is possible that 7SL RNAs passively diffuse into
budding particles as a result of the high local concentra-
tion at the site of virus assembly/budding. If this were
the case, one would not expect 7SL RNAs to be enriched
in any subviral structures. To address this question,
we determined the localization of 7SL RNA in mature
HIV-1 virions. Purified HIV-1 virions were subjected
to brief treatment with the non-ionic detergent Triton
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X-100 to remove the viral membrane and isolate viral
cores (Figure 1A) as previously described (17). The
majority of the viral-membrane-associated proteins, such
as the Env proteins gp120 and gp41 and the viral
Map17 proteins (Figure 1B, lane 1), were separated from
the core structure (lane 3). In contrast, most of the NCp7
and INp32 were located inside the cores (Figure 1B, lane 3).
Consistent with the observations of Forshey et al. (18)
and Tang et al. (19), we also found that some CAp24 and
RTp66 molecules could be separated from the core
structures (Figure 1B). As expected, HIV-1 genomic
RNA was located mainly in the cores (Figure 1C, lane 3).
Similarly, the majority of the 7SL RNAs were also detected
with the cores (Figure 1C, lane 3). These results suggest that
7SL RNAs are likely to be recruited into HIV-1 virions
by interacting with viral components inside the core
structures.

Selective packaging of 7SL RNAs into HIV-1 virions

Although packaging of 7SL RNA and tRNAs into HIV-1
virions has been studied (6,10,12), the packaging of
other Pol-III-derived RNAs into HIV-1 virions has not
been fully characterized. To examine the packaging of
Pol-III-derived RNAs into HIV-1 particles, HIV-1 virions

in the culture supernatants of NL4-3-transfected 293T
cells were separated from cell debris by filtration and
ultracentrifugation through a 20% sucrose cushion, then
further purified on sucrose density gradients (20–60% wt/
vol). As a control for non-specific secretion of cellular
RNAs in the culture supernatants, culture supernatants
from mock-transfected 293T cells were also prepared side-
by-side. Sucrose-gradient-purified HIV-1 virions were
pelleted by ultracentrifugation, and virion-associated
RNAs were analyzed by real-time PCR (qRT-PCR)
using specific primers for various Pol-III RNAs.
Packaging of various Pol-III RNAs within HIV-1

virions was indeed detected, and there was only minimal
non-specific secretion of most of these RNAs into the
culture supernatant in the absence of HIV-1 virions
(Figure 2A). For example, the level of particle-associated
7SL RNA in purified HIV-1 virions was more than 50-fold
higher than that of the mock control (Figure 2A). High
copy numbers of 7SL RNA and 5S rRNA were detected
in HIV-1 virions (Figure 2A), consistent with the earlier
observation of 7S and 5S RNA species in purified HIV-1
virions (14).
The packaging of various RNAs could potentially be

influenced by the relative abundances of these RNAs in
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virus-producing cells. We therefore compared the
relative efficiency of virion packaging of the various
cellular RNAs. For comparison purposes, the efficiency of
7SL RNA packaging (copies of 7SL RNA in HIV-1
virions/copies of 7SL RNA in virus-producing cells)
was set to 100%. Selective enrichment of primer
tRNAlys,3 and 5S rRNA within HIV-1 virions was also
observed (Figure 2B). Virion packaging of U6 snRNA,
7SK RNA, Y1, Y3, Y4 and Y5 RNAs was much less
efficient than that of 7SL RNA (Figure 2B). Abundant
cellular mRNAs such as b-actin and GAPDH mRNAs
were also packaged much less efficiently into HIV-1
virions than was 7SL RNA (Figure 2B). Since the
intracellular abundance of the various RNAs was taken
into consideration, the inefficient packaging of these
RNAs when compared to 7SL RNA could not be
attributed to their lower intracellular levels. In MuLV,
a 7SL RNA-derived SINE RNA, B1 RNA, was packaged
as efficiently as 7SL RNA (9). Alu RNAs are also derived
from 7SL RNA and share the Alu domain structures
with it (20). However, Alu RNAs were also packaged into
HIV-1 virions at least 50-fold less efficiently than was 7SL
RNA (Figure 2B).

While 7SL RNA was clearly packaged within HIV-1
virions (Figure 2A), HIV-1 virion-associated 5S rRNA
was only a few-fold higher than the mock control
(Figure 2A). To further investigate whether 5S rRNA
was indeed packaged into HIV-1 virions, sucrose-gradi-
ent-purified HIV-1 virions were pelleted by ultracentrifu-
gation, and virion-associated RNAs were analyzed
by real-time PCR (qRT-PCR) using specific primers for
7SL RNA or 5S rRNA. Fractions 3–8 contained
detectable HIV-1 virions, with the peak occurring in
fractions 5–7, as determined by analyzing viral CAp24
(Figure 3A), viral genomic RNA (Figure 3B) or 7SL RNA
(Figure 3C). Surprisingly, both HIV-1 virions and
samples from mock-transfected cells contained 5S rRNA
peaks that co-migrated with CAp24 (Figure 3D). Virion-
associated 7SL RNAs (Figure 3E) and 5S rRNA
(Figure 3F) were resistant to RNase treatment unless
the viral membrane was first disrupted with the detergent
Triton X-100, indicating that these RNAs were packaged
within viral particles. In repeated experiments, the level of
HIV-1 virion-associated 5S rRNA was always a few-fold
higher than the mock control, suggesting that some
5S rRNA was indeed packaged into HIV-1 virions.
These results also suggest that 293T cells secreted some
unidentified structures that contained 5S rRNA and had
a density similar to that of HIV-1 virions.

To further examine the packaging of 7SL RNA and
5S rRNA into HIV-1 virions, HIV-1 (NL4-3)-infected
CD4+ Jurkat T cells were established. HIV-1 virions in
the culture supernatants of NL4-3-infected Jurkat cells
were separated from cell debris by filtration and ultra-
centrifugation through a 20% sucrose cushion, then
further purified on sucrose density gradients (20–
60%wt/vol). As a control for non-specific secretion of
cellular RNAs in the culture supernatants, culture super-
natants from uninfected Jurkat cells were also prepared
side by side. Sucrose-gradient-purified HIV-1 virions were
pelleted by ultracentrifugation, and virion-associated
RNAs were analyzed by real-time PCR (qRT-PCR)
using specific primers for 7SL RNA, 5S rRNA and
HIV-1 genomic RNA. Fractions 3–8 contained detectable
HIV-1 virions, with the peak occurring in fraction 5, as
determined by analyzing viral CAp24 (Figure 4A) and
viral genomic RNA (Figure 4B). Packaging of 7SL RNA
(Figure 4C) or 5S rRNA (Figure 4D) into HIV-1 virions
produced from HIV-1-infected Jurkat cells, but not
uninfected Jurkat cells, was clearly observed.

HIV-1GagNCzinc-bindingdomains,viralgenomicRNA,Pol
and Env proteins are not essential for 7SL RNA packaging

With the exception of primer tRNAlys,3, the determinants
of Pol-III RNA packaging into HIV-1 virions are poorly
defined. The influence of the viral Pol and Env proteins
on 7SL RNA packaging was first examined using the
constructs Pr-, B2FS- and �Pol�Env. The construct
Pr- contains an active site mutation in the protease gene
and expresses the Gag, Gag-Pol and Env proteins
(Figure 5A). The B2FS- construct contains mutations
that destroy the frameshifting sequences in the gag coding
region that are essential for the generation of Gag-Pol
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supernatant are shown. (B) Relative efficiency of virion packaging of
RNAs, as analyzed by qRT-PCR. The efficiency of RNA packaging
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proteins (Figure 5A). The construct �Pol�Env contains
a deletion of most of the protease, the whole RT, and the
IN coding sequences and an internal deletion of the Env
coding sequence that abolished most of the Env protein
expression (Figure 5A). VLPs from transfected 293T
cells were separated from cell debris by filtration and
ultracentrifugation through a 20% sucrose cushion. As a
control for non-specific secretion of cellular RNAs into
the culture supernatants, supernatants from mock-trans-
fected 293T cells were also prepared side by side. Pelleted
particles were analyzed by immunoblotting using
a monoclonal antibody against CAp24 (Figure 5B).
As expected, Pr- particles contained both Pr55Gag

and Pr160Gag-Pol, while B2FS- and �Pol�Env particles
contained Pr55Gag but not Pr160Gag-Pol (Figure 5B).
Particle-associated RNAs were isolated and analyzed by
qRT-PCR using specific primers for 7SL RNA or
tRNAlys,3. Packaging of 7SL RNAs was clearly detected
in Pr-, B2FS- and �Pol�Env particles (Figure 5C).
Non-specific secretion of 7SL RNA from the mock-
transfected 293T cells was less than 9.0% of that for the

Pr- particles (Figure 5C). Packaging of 7SL RNAs was
essentially comparable in Pr-, B2FS- and �Pol�Env
particles (Figure 5C). In contrast, packaging of tRNAlys,3
was reduced in B2FS- and �Pol�Env particles when
compared to that in Pr- particles (Figure 5D), consistent
with previous reports (5,6) that viral Pol proteins influence
the packaging of tRNAlys,3.
The role of viral genomic RNA in the packaging of

7SL RNAs was also examined. We compared the level
of virion-associated 7SL RNAs in �Pol�Env particles
and in virus-like particles (VLP) containing only Gag
molecules (pGAGINS) (15). The �Pol�Env construct
contains all the 50RNA sequences upsteam of the gag
coding sequence, which are important for viral genomic
RNA packaging (Figure 6A). The Gag amino acid
sequence of pGAGINS is identical to the Gag of
�Pol�Env. However, pGAGINS lacks all the 50 viral
RNA sequences, including the viral RNA packaging
sequences upstream of the Gag coding region
(Figure 6A). Although VLP produced by pGAGINS
contained less than 1% of the viral RNA present in
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particles produced by �Pol�Env (data not shown),
packaging of 7SL RNAs was readily detected in VLP
produced by pGAGINS (Figure 6B). When the amount
of Gag was normalized, the level of 7SL RNAs was
similar in VLP produced by pGAGINS and in particles
produced by �Pol�Env (Figure 6B). Thus, VLP contain-
ing the Gag molecules alone could efficiently package
7SL RNA, suggesting that the Gag molecule but not viral
genomic RNA contains a major determinant for the
packaging of 7SL RNA.
Furthermore, packaging of viral genomic RNA into

HIV-1 mutant pBR653-47 viruses (21), with mutations of
the cysteine residues in the zinc fingers of the HIV-1 NC
domain (Figure 6C), was reduced by about 87% when
compared to that of NL4-3 viruses (Figure 6D). However,
these mutations had little effect on 7SL RNA packaging
into these NC mutant viruses, when compared to the
parental HIV-1 NL4-3 viruses (Figure 6E). Thus, the zinc
fingers of HIV-1 Gag NC domain and the viral genomic
RNA do not play a major role in mediating 7SL RNA
packaging.

The N-terminal basic region and the basic linker region of the
HIV-1GagNCdomain are required for 7SLRNApackaging

To examine which Gag domain(s) is(are) required for 7SL
RNA packaging, the HIV-1 full-length Gag construct
(pGAGINS), the Gag construct missing p6 and p1
(pNCS) and the Gag construct missing NC (P2LZ)
were used (Figure 7A). P2LZ contains a deletion of NC,
which is replaced by the leucine zipper (LZ) domain of the
yeast GCN4 (Figure 7A), and is assembly-competent
(15,22). Viral particles were produced from transfected
293T cells and separated from cell debris by filtration

and ultracentrifugation through a 20% sucrose cushion.
Particle-associated RNAs were extracted and analyzed
by qRT-PCR using 7SL RNA-specific primers. 7SL
RNAs were detected in both GagINS and NCS VLPs.
When the amount of Gag was normalized (Figure 7B),
there was no significant difference in the levels of
these RNAs in the two types of VLPs (Figure 7C). On
the other hand, 7SL RNAs were poorly packaged into
P2LZ VLPs lacking NC (Figure 7C). Thus, the p6 domain
of HIV-1 Gag is not essential for the packaging of 7SL
RNAs, but the NC domain is apparently important.

The MA domain of HIV-1 Gag has also been reported
to mediate RNA binding (23). To examine whether
the MA domain of Gag is required for 7SL RNA
packaging, HIV-1 Gag VLP with or without MA
(Figure 7D) were produced from transfected 293T cells.
The membrane targeting function in the MA deletion
mutant was restored by the v-src myristylation signal
(24). Viral particles were separated from cell debris by
filtration and ultracentrifugation through a 20% sucrose
cushion (Figure 7E). Particle-associated RNAs were
extracted and analyzed by qRT-PCR using 7SL RNA-
specific primers. 7SL RNAs were packaged into Gag
VLPs containing MA and Gag VLPs lacking MA
(Figure 7F). 7SL RNA packaging was only slightly
reduced in Gag VLPs lacking MA (Figure 7F). Thus,
the NC domain is more important than the MA domain
for the packaging of 7SL RNAs.

To further map the region of the NC domain that is
required for 7SL RNA packaging, HIV-1 Gag-CFP
expression vectors (25) containing various C-terminal
NC sequence truncations (Figure 8A) were transfected
into 293T cells. Gag particles were isolated and analyzed
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by immunoblotting using an anti-p24 antibody
(Figure 8B). Particle-associated RNAs were extracted
and analyzed by qRT-PCR using primers specific for 7SL
RNA. The packaging of 7SL RNAs into Gag432
(containing full-length NC) particles was set to 100%.
Gag411, which contains the C-terminal zinc finger
deletion, was able to package 7SL RNA efficiently when
compared to Gag432 (Figure 8C). However, removal of
the basic linker region of the NC domain (Gag405)
significantly reduced 7SL RNA packaging (Figure 8C).

The N-terminal basic region, the first zinc finger, and
the basic linker region (Gag411) are the minimal
determinants for 7SL RNA packaging. To examine the
role of each of these three domains in 7SL RNA
packaging, several NC mutant constructs were generated
and compared (Figure 9A). Viral particles were produced
from transfected 293T cells (Figure 9B). Particle-asso-
ciated RNAs were extracted and analyzed by qRT-PCR
using primers specific for 7SL RNA. The packaging of
7SL RNAs into Gag411 particles was set to 100%.

Deletion of the N-terminal basic region (Gag411�N8) or
removal of the basic linker region of the NC domain
(Gag405) significantly reduced 7SL RNA packaging
(Figure 9C). Deletion of the first zinc finger
(Gag411�ZF1) had a lesser effect on 7SL RNA packaging
(Figure 9C). Thus, these data indicate that the N-terminal
basic region and the basic linker region of the NC domain
play an important role in mediating 7SL RNA packaging
in HIV-1.

HIV-1 Gag interacts with 7SL RNA in virus-producing cells

To determine whether HIV-1 Gag interacts with 7SL
RNAs and therefore mediates its virion packaging, we
transfected the HIV-1 Gag-myc or untagged Gag expres-
sion vector into 293T cells. Gag-myc, but not untagged
Gag, was immunoprecipitated with the anti-myc antibody
(Figure 10A). RNA samples of Gag-myc co-precipitated
with the anti-myc antibody from transfected 293T
cells were analyzed by qRT-PCR using primers specific
for 7SL RNA. Cell lysates from Gag-transfected 293T
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cells, which could not be immunoprecipitated by the anti-
myc antibody, were also examined side-by-side as the
negative control. A specific interaction of 7SL RNA with
Gag-myc, as compared to the control Gag sample,
was clearly detected (Figure 10B). Thus, 7SL RNA is
likely packaged into HIV-1 virions through an interaction
with HIV-1 Gag molecules during virus assembly.

A3G interacts with 7SL RNA in HIV-1 virions

The virion packaging of 7SL RNA, as well as that of
A3G, requires NC, suggesting that 7SL RNA could
mediate A3G packaging. To examine whether A3G
interacts with 7SL RNA in released HIV-1 virions, we
immunoprecipitated A3G-HA in purified HIV-1 virions
with an anti-HA antibody conjugated to agarose beads
(Figure 11A). RNAs co-precipitated with A3G-HA were
analyzed by qRT-PCR using primers specific for HIV-1
genomic RNA, tRNAlys,3, or 7SL RNA. As a control,
HIV-1 virions lacking A3G-HA were also examined side

by side to detect non-specific binding of these virion-
associated RNAs to the assay system (set as 1). A specific
interaction between 7SL RNA and A3G-HA was
observed; this interaction was approximately 18-fold
higher than that observed for control HIV-1 virion samples
lacking A3G-HA (Figure 11B). Interaction of A3G-HA
with viral genomic RNA was also observed (Figure 11B).
The level for tRNAlys,3 co-precipitated with A3G-HA in
purified HIV-1 virions was about 5-fold higher than that
for the control HIV-1 virion sample lacking A3G-HA
(Figure 11B), suggesting that there may be a weak
interaction between A3G-HA and tRNAlys,3 in HIV-1
virions.

7SL RNA could be reverse-transcribed in HIV-1 virions

Various cellular RNAs packaged into retroviruses have
been shown to be reverse-transcribed (8,13,26,27).
To determine whether virion-packaged 7SL RNA could
be reverse-transcribed in HIV-1 virions, HIV-1 particles
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were produced from transfected 293T cells. We then
subjected purified HIV-1 virions to detergent-permeabili-
zation and endogenous RT reactions, followed by PCR
analysis using 7SL-specific primers that could detect full-
length or near-full-length 7SL DNA. 7SL DNA was
clearly detected in the HIV-1 virion sample after
endogenous RT reaction in the presence of dNTP
(Figure 12A, lane 1) but not in the absence of dNTP
(Figure 12A, lane 2). Reverse transcription of 7SL RNA
in HIV-1 virions was also analyzed by qRT-PCR using
HIV-1 and 7SL DNA-specific primers. As controls we
used samples from mock-transfected 293T cells and HIV-1
virion samples without the addition of dNTPs. Neither
HIV-1 DNA nor 7SL DNA was detected in samples from
mock-transfected 293T cells (Figure 12B). Low levels of
7SL DNA and HIV-1 DNA were detected in HIV-1

virions without the addition of dNTPs (Figure 12B),
presumably as a result of a low level of reverse
transcription in released HIV-1 virions (add ref.).
Significant increased levels of 7SL DNA and HIV-1
DNA were detected in endogenous RT-treated HIV-1
virion samples (Figure 12B). The PCR DNA products
were sequenced and confirmed to be 7SL or HIV-1
sequences. To further examine whether virion-packaged
7SL RNA could be reverse-transcribed during virus
infection, we infected MAGI cells (CD4+ HeLa cells)
with NL4-3 virions. Cytoplasmic DNA samples from
uninfected or HIV-1 infected MAGI cells were extracted
and analyzed by qRT-PCR using 7SL- or HIV-1-specific
primers. 7SL DNA was clearly detected in the HIV-1
infected MAGI cell extracts when compared to those from
uninfected MAGI cells (Figure 12C). Thus, these data
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indicate that virion-packaged 7SL RNA can be reverse-
transcribed during HIV-1 infection.

DISCUSSION

In addition to viral genomic RNA, which accounts
for >50% of the total RNA mass, small cellular RNAs
of 4S to 7S have been detected in diverse retroviruses
(1,2). These small RNAs are more abundant on a molar
basis than the viral genomic RNA, and some have
been identified as tRNAs, 7SL RNA, 5S rRNA and U6
snRNA in RSV (28), MuLV (5,9,29–31), FeLV (32),
visna virus (33) and HIV-1 (10,14). With the exception of
primer tRNAs, the viral determinants of Pol-III RNA
packaging into retroviruses are poorly understood.
Our study has demonstrated that the NC domain,

and particularly the basic linker region of this domain,
plays an important role in mediating 7SL RNA packaging
into HIV-1 virions. Viral genomic RNA and the viral
structural proteins Pol and Env were dispensable for
the packaging of 7SL RNAs, consistent with previous
reports (10,12). The majority of the virion-packaged 7SL
RNAs were associated with viral cores. Furthermore,
interactions of 7SL RNAs with HIV-1 Gag proteins
could be detected in virus-producing cells (Figure 10).
These data suggest that 7SL RNAs are not passively

included into budding particles but are instead packaged
through interactions with HIV-1 Gag molecules during
virus assembly.

Our data further demonstrate that virion-packaged
7SL RNA could be reverse-transcribed in HIV-1 virions
and in HIV-1-infected cells. Reverse transcription of
cellular RNA packaged into retroviruses such as mRNA
(26,27), U6 snRNA (13), VL30 RNA (34,35) and 7SL
RNA (8) has been previously reported. Primers annealing
to the ends of 7SL sequences amplified an approximately
300-bp PCR product (confirmed to be 7SL sequence),
suggesting full-length or nearly full-length 7SL RNA
was being reverse-transcribed. Future study will be
required to determine whether 7SL RNA was reverse-
transcribed as a single DNA product using unidentified
primer(s) or as a product of viral/7SL recombination.

The NC domain of retroviral Gag molecules plays
important roles in viral genomic RNA packaging, RNA
dimerization and annealing of primer tRNA to the viral
genomic RNA through RNA chaperoning activity
(1,2,36–39). Results presented here indicate that HIV-1
NC is important for the packaging of both viral genomic
RNA and 7SL RNAs. Mutations of cysteine residues in
the zinc fingers of the HIV-1 NC domain largely abolished
viral genomic RNA packaging. However, these NC muta-
tions had little effect on the packaging of 7SL RNAs.
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These data indicate that the packaging mechanism of viral
genomic RNA is distinct from that of 7SL RNA
packaging.

By analyzing the packaging of 7SL RNA into a series
of C-terminal truncation and internal deletion mutants of
the HIV-1 NC domain, we were able to demonstrate that
the N-terminal basic region and the basic linker region,
but not the N-terminal or C-terminal zinc finger, was
the most critical for 7SL RNA packaging. Further
analysis will be required to identify the amino acids in
the basic linker region of the HIV-1 NC domain that
are critical for this packaging process. The N-terminal
basic region and the basic linker region of HIV-1 NC
have also been proposed to be critical for viral genomic
RNA packaging, virus production and virion stability
(40–43). The role of 7SL RNA in virus production, virion
stability, and viral infectivity requires further
investigation.

Various Pol-III-derived RNAs are packaged into
retroviruses, but their packaging mechanisms are appar-
ently different from that of 7SL RNAs. Primer tRNA
packaging requires viral reverse transcriptase (5,6) and, at
least in the case of HIV-1, an interaction between
tRNAlys synthetase and the viral capsid domain (6,7).
In contrast, the packaging of 7SLRNA is more dependent
on the NC domain of HIV-1 Gag. The apparent
differences between retroviruses in terms of the packaging
efficiencies of the various Pol-III-derived RNAs are
also worth noting. In the case of MuLV, Y1 and Y3
RNAs are packaged as efficiently as 7SL RNA (9). On the
other hand, Y RNA packaging into HIV-1 virions was
much less efficient than that of 7SL RNA. The packaging
efficiency of U6 snRNA and 7SK RNA into MuLV
particles is only moderately lower than that of 7SL RNA
(9). However, in HIV-1, the packaging of U6 snRNA
or 7SK RNA was approximately 100-fold less efficient

than that of 7SL RNA. It has been proposed that Alu
RNAs were originally derived from 7SL RNAs (20).
Although Alu RNAs share the Alu RNA domain
with 7SL RNA (20), we found that the packaging of
Alu RNAs into HIV-1 virions was much less efficient than
that of 7SL RNA.
An interesting observation from the current study is

that the virion packaging of both human cytidine
deaminase A3G and cellular 7SL RNA mapped to the
HIV-1 NC domain. Although it is still controversial
whether HIV-1 viral RNA plays an important role in
mediating virion packaging of A3G (17,44), many groups
have reported that HIV-1 Gag can mediate efficient A3G
packaging in the absence of viral genomic RNA
(15,17,44–50). Previous studies have observed that the
packaging of A3G proteins into Gag particles that contain
a leucine zipper domain from the yeast GCN4 in place
of the HIV-1 NC domain is much less efficient than
that of Gag particles containing an intact NC domain
(15,45–50). Gag particles containing the leucine zipper
domain also packaged 7SL RNA significantly less
efficiently than did Gag particles containing an intact
NC domain (Figure 7). Furthermore, we have demon-
strated that the N-terminal basic region and the basic
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linker region of HIV-1 NC domain are important for 7SL
RNA packaging (Figure 8). It is interesting that these
regions were also identified as being important for efficient
A3G packaging (15,25). We have observed that 7SL RNA
is one of the most abundant RNAs that interacts with
A3G in HIV-1 virions (Figure 11). Collectively, these
observations support a role for 7SL RNA in mediating
A3G packaging into retroviruses, including HIV-1.
Studies mapping the regions in 7SL RNA that are
important for A3G and HIV-1 Gag binding/virion
packaging are currently underway.
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