# Enhancing bacteriophage therapeutics through in situ production and release of heterologous antimicrobial effectors

## **Supplementary Material**

#### **Supplementary Figures**

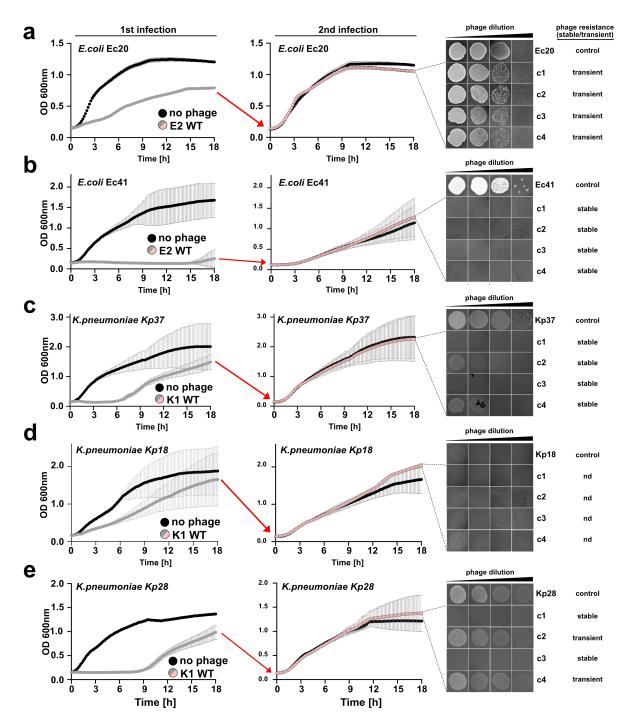
**Supplementary Fig. 1**. Analysis of UTI incidents within the Zurich Uropathogen Collection.

**Supplementary Fig. 2.** Phage resistance development upon treatment of UTI isolates with wildtype E2 and K1.

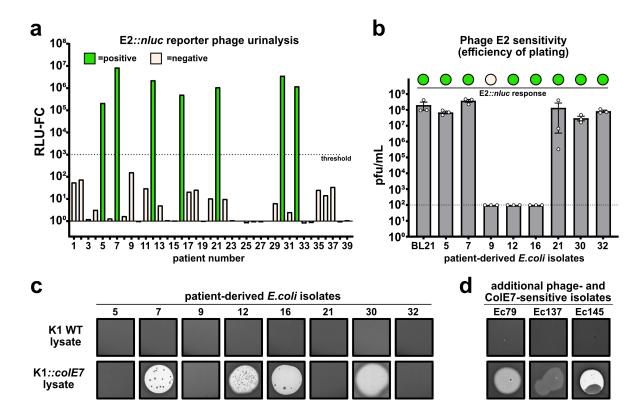
**Supplementary Fig. 3**. Reporter phage-based urinalysis of patient urine samples with phage and colicin E7 susceptibility screening of isolated, patient-derived *E. coli* strains.

**Supplementary Fig. 4**. Further in vitro analysis of HEPT activity against clinical *E. coli* strains of different phage- and ColE7-sensitivity.

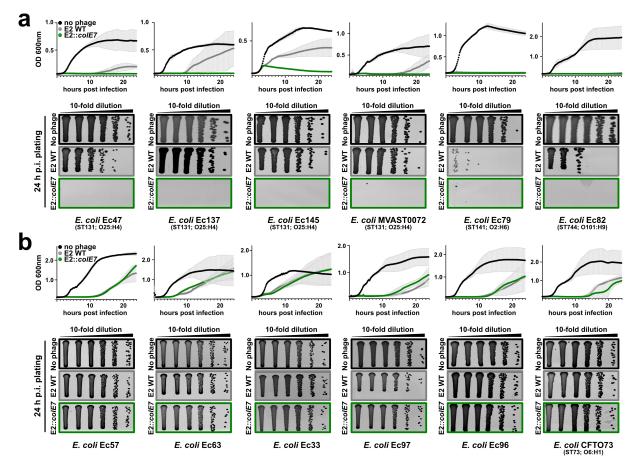
#### **Supplementary Tables**


Supplementary Table 1. Phages used in the present study and their propagation hosts.

**Supplementary Table 2**. Peptidoglycan hydrolase (EC300) payload assessment.


**Supplementary Table 3**. Primers and templates used for synthetic HEPTs construction.




Supplementary Fig. 1. Analysis of UTI incidents within the Zurich Uropathogen Collection. The Zurich Uropathogen Collection<sup>1</sup> comprises 663 isolates from 442 incidents of asymptomatic bacteriuria (n=215) or UTI (n=227). (a) The species distribution of 339 isolates acquired from UTI patients was determined and (b) the occurrence of mono- vs polymicrobial infections quantified for the corresponding UTI incidents. (c) UTI incidents involving the top three uropathogens were analyzed separately to determine the top five co-infecting species and the frequency of mono- and polymicrobial UTIs. Source data are provided as a Source Data file.



Supplementary Fig. 2. Phage resistance development upon treatment of UTI isolates with wildtype E2 and K1. Phage resistance development was assessed by two consecutive rounds of phage infection of bacterial cultures in SHU medium. Turbidity reduction assays were performed for *E. coli* isolates Ec20 (a) and Ec41 (b) or *K. pneumoniae* isolates Kp37 (c), Kp18 (d) and Kp28 (e) infected with  $10^8$  PFU/mL of phages E2 or K1, respectively, with optical density monitored for 18 h. Phage-exposed cultures were combined (n=3), re-adjusted to OD<sub>600nm</sub> of 0.1 in SHU and incubated for another 18 h with additional wildtype (WT) phages (pink) or media alone (black). Growth kinetics were compared to non-infected controls. After the second round of infection, individual clonal survivors were isolated, purified via three consecutive rounds of streaking, and assessed for phage susceptibility using spot-on-the-lawn assays. Progenies of bacterial survivors that retained resistance to phage plaquing were considered as stably resistant, whereas those that regained permissiveness to phage plaquing were rendered transiently resistant. Non-infected clones served as positive controls. Turbidity data are technical triplicates shown as mean  $\pm$  SD. nd = not determined. Source data are provided as a Source Data file.



Supplementary Fig. 3. Reporter phage-based urinalysis of patient urine samples with phage and colicin E7 susceptibility screening of isolated, patient-derived E. coli strains. (a) Reporter phage urinalysis was performed using 39 fresh patient urine samples from the Balgrist University Hospital, Zurich, Switzerland, as described in Fig. 4a. The fold change (compared to phage-only control) in relative light units (RLU-FC) was determined at 3 hours post-infection with urine samples producing values  $>10^3$  considered as positive samples, i.e., containing E2-susceptible E. coli. Values are derived from single experiment. (b) All E. coli strains were isolated and purified from patient urine after differential plating, and E2-susceptibility quantified using plaque assays (efficiency of plating). Dotted line indicates the detection limit of plaque assays. Values are derived from three independent experiments and depicted as mean  $\pm$  SEM. (c-d) Colicin E7 effector susceptibility was determined on patient-derived E. coli strains from this study (c) or from the Zurich Uropathogen Collection (d) by spotting K1 WT or K1::colE7 phage lysates onto growing bacterial lawns of the indicated bacterial isolates (see also Fig. 1d for strains Ec82, Ec47, and MVAST0072). Source data are provided as a Source Data file.



Supplementary Fig. 4. Further in vitro analysis of HEPT activity against clinical *E. coli* strains of different phage- and ColE7-sensitivity. Performance of E2 wildtype (WT) and E2::colE7 was compared against phage- and ColE7-sensitive strains (a) and phage-sensitive but ColE7-resistant strains (b) from the Zurich Uropathogen Collection<sup>1</sup> as well as *E. coli* MVAST0072 using 24 h turbidity reduction assays in SHU with endpoint plating. In accordance with data provided in Fig. 4, enhanced and sustained killing was observed with E2::colE7 for all strains showing sensitivity to both phage and ColE7. OD<sub>600nm</sub> = optical density at 600 nm. Turbidity data are technical triplicates shown as mean  $\pm$  SD. Source data are provided as a Source Data file.

# Supplementary Table 1. Phages used in the present study and their propagation hosts.

| Phage             | Taxonomic classification (GenBank #)                                                | Genome Size [bp] | Payload Target  | Payload Nature                       | <b>Propagation Host</b>        | Source     |
|-------------------|-------------------------------------------------------------------------------------|------------------|-----------------|--------------------------------------|--------------------------------|------------|
| E2 WT             |                                                                                     | 166,367          | -               | -                                    | E. coli BL21                   | [1]        |
| E2::kvarM         | Caudoviricetes; Straboviridae;<br>Tevenvirinae; Tequatrovirus (UTI-E2;<br>OL870316) | 167,219          | Klebsiella spp. | colM-like murein synthesis inhibitor | E. coli BL21                   | this study |
| E2::colE7         |                                                                                     | 168,119          | E. coli         | unspecific cytosolic nuclease        | E. coli BL21<br>(pIm immE7)    | this study |
| E2:: <i>ec300</i> |                                                                                     | 167,291          | Enterococcus    | chimeric cell wall-hydrolase         | E. coli BL21                   | this study |
| E2::nluc          |                                                                                     | 166,904          | E. coli         | Nanoluciferase                       | E. coli BL21                   | [1]        |
| K1 WT             |                                                                                     | 170,051          | -               | -                                    | K. pneumoniae KpGe             | [1]        |
| K1::kvarM         | Caudoviricetes; Straboviridae;<br>Tevenvirinae; Jiaodavirus (UTI-K1;<br>OL870318)   | 170,903          | Klebsiella spp. | colM-like murein synthesis inhibitor | K. pneumoniae KpGe             | this study |
| K1::colE6         |                                                                                     | 171,728          | E. coli         | 16s rRNase                           | K. pneumoniae KpGe (pIm_immE6) | this study |
| K1::colE7         | OL870318)                                                                           | 171,803          | E. coli         | unspecific cytosolic nuclease        | K. pneumoniae KpGe (pIm_immE7) | this study |
| K1::colM          |                                                                                     | 170,888          | E. coli         | murein synthesis inhibitor           | K. pneumoniae KpGe             | this study |
| CM001 WT          | Caudoviricetes; Guernseyvirinae;                                                    | 41,222           | -               | -                                    | E. coli Ec20                   | this study |
| CM001::ec300      | Kagunavirus (UTI-CM001; OM810255)                                                   | 42,146           | Enterococcus    | chimeric cell wall-hydrolase         | E. coli Ec20                   | this study |
| EfS3 WT           |                                                                                     | 150,393          | -               | -                                    | E. faecalis JH2-2              | [1]        |
| EfS3::colE7       | Caudoviricetes; Herelleviridae; Brockvirinae; Schiekvirus (UTI-EfS3; OL870611)      | 152,140          | E. coli         | unspecific cytosolic nuclease        | E. faecalis JH2-2              | this study |
| EfS3::colM        |                                                                                     | 151,225          | E. coli         | murein synthesis inhibitor           | E. faecalis JH2-2              | this study |
| EfS3::kvarM       |                                                                                     | 151,240          | Klebsiella spp. | colM-like murein synthesis inhibitor | E. faecalis JH2-2              | this study |
| EfS7 WT           |                                                                                     | 56,144           | -               | -                                    | E. faecalis Ef57               | [1]        |
| EfS7::colE7       | Caudoviricetes; Saphexavirus (UTI-EfS7;                                             | 57,891           | E. coli         | unspecific cytosolic nuclease        | E. faecalis Ef57               | this study |
| EfS7::colM        | OL870612)                                                                           | 56,976           | E. coli         | murein synthesis inhibitor           | E. faecalis Ef57               | this study |
| EfS7::kvarM       |                                                                                     | 56,991           | Klebsiella spp. | colM-like murein synthesis inhibitor | E. faecalis Ef57               | this study |

Supplementary Table 2. Peptidoglycan hydrolase (EC300) payload assessment. 10  $\mu$ L of phage lysate (10<sup>9</sup>-10<sup>10</sup> PFU/mL) was spotted on bacterial lawns of the following isolates and activity assessed visually after 16 h incubation at 37°C. ++, complete lysis (clear zone); +, moderate lysis (turbid zone); -, no visible activity. Sources: 1, gift from Leo Meile, ETH Zurich, Switzerland; 2, Zurich Uropathogen Collection (2020).

|             |             |        | E. coli phages |              |  |
|-------------|-------------|--------|----------------|--------------|--|
| Species     | Designation | Source | E2::ec300      | CM001::ec300 |  |
| E. faecalis | JH2-2       | 1      | ++             | ++           |  |
| E. faecalis | Efs3        | 2      | +              | ++           |  |
| E. faecalis | Efs12       | 2      | +              | ++           |  |
| E. faecalis | Efs17       | 2      | +              | ++           |  |
| E. faecalis | Efs26       | 2      | +              | ++           |  |
| E. faecalis | Efs29       | 2      | ++             | ++           |  |
| E. faecalis | Efs38       | 2      | +              | +            |  |
| E. faecalis | Efs48       | 2      | +              | ++           |  |
| E. faecalis | Efs49       | 2      | +              | ++           |  |
| E. faecalis | Efs57       | 2      | +              | ++           |  |
| E. faecalis | Efs58       | 2      | +              | ++           |  |
| E. faecalis | Efs73       | 2      | ++             | ++           |  |
| E. faecalis | Efs90       | 2      | -              | -            |  |

### **Supplementary Table 3. Primers and templates used for synthetic HEPTs construction.**

| Synthetic HEPTs | Fragment ID | Template                        | Fragment length (bp) | Primers       | Primer Sequence (5'-3')         |
|-----------------|-------------|---------------------------------|----------------------|---------------|---------------------------------|
|                 | CM001 F1    | CM001 gDNA                      | 3391                 | CM001 F1.1 Fw | TCAACGCTTGACAGCCGCA             |
|                 |             |                                 |                      | CM001 F1.1 Bw | TTACTTGTCCGCGTCGGCG             |
|                 | CM001_ec300 | E/K_ec300 synthetic gene string | 974                  | CM001_ec300   | GGCAATCGCCGACGCGGACAAGTAAAGTA   |
|                 |             |                                 |                      | Fw            | CGAGGAGGTAAATATAT               |
|                 |             |                                 |                      | CM001_ec300   | CCCCTTTGTTTTTACTCCAACCGTATTAAG  |
|                 |             |                                 |                      | Bw            | ATTTTTGGTGATACC                 |
|                 | CM001 F1.2  | CM001 gDNA                      | 6433                 | CM001 F1.2 Fw | TACGGTTGGAGTAAAAACAAAGGG        |
| CM001::ec300    |             |                                 |                      | CM001 F1.2 Bw | TCGGCCTCAGCTTCGTAATAA           |
|                 | CM001 F2    | CM001 gDNA                      | 10013                | CM001 F2 Fw   | AAGGATTAAATAATGAAACTTTCTGATTT   |
|                 |             |                                 |                      | CM001 F2 Bw   | TTATTTATCTTCTAGTGCTGCCA         |
|                 | CM001 F3    | CM001 gDNA                      | 11231                | CM001 F3 Fw   | GTTCTTCATAGAGATTGCCTATC         |
|                 |             |                                 |                      | CM001 F3 Bw   | AGTACAAATCATCAAAGTAAGCA         |
|                 | CM001 F4    | CM001 gDNA                      | 10374                | CM001 F4 Fw   | ACTATTAACTTTGTCATTGTATAATCCTTGT |
|                 |             |                                 |                      | CM001 F4 Bw   | ACCCTGCAAATCGTACTGGT            |
|                 | EfS7 F1.1   | EfS7 gDNA                       | 12126                | EfS7 F1.1 Fw  | AAAATCCTCTATAAGGCGTCC           |
|                 |             |                                 |                      | EfS7 F1.1 Bw  | ACTTGAGCATCAATAACCCAC           |
|                 | EfS7_colE7  | pEdit_EfS7_colE7                | 2539                 | EfS7 colE7 Fw | AAATGACTGATAGCTACGAGTG          |
|                 |             |                                 |                      | EfS7 colE7 Bw | TTTGCTTCCGTCAGAAGC              |
|                 | EfS7 F2.1   | EfS7 gDNA                       | 10031                | EfS7 F2.1 Fw  | TTCTCAAAAGACTATGTCTCTAGC        |
| EfS7::colE7     |             |                                 |                      | EfS7 F2.1 Bw  | AACCCTTGCAAACTTCTTACC           |
| EIS/COIE/       | EfS7 F3     | EfS7 gDNA                       | 11293                | EfS7 F3 Fw    | ACTTGCCTCCTGAAACTTGG            |
|                 |             |                                 |                      | EfS7 F3 Bw    | TCCTTTAGTGTCATTATCAGTGC         |
|                 | EfS7 F4     | EfS7 gDNA                       | 11182                | EfS7 F4 Fw    | CGACAACATCATCATAGGCACT          |
|                 |             |                                 |                      | EfS7 F4 Bw    | GTTCATCATAACCTACGTGACC          |
|                 | EfS7 F4     | EfS7 gDNA                       | 10961                | EfS7 F5 Fw    | CATAAATCCATTCTAAGAGGTCACG       |
|                 |             |                                 |                      | EfS7 F5 Bw    | CTTGTCGGGAAGTGTGTC              |

# **Supplementary References**

1. Meile, S. et al. Engineered reporter phages for detection of Escherichia coli, Enterococcus, and Klebsiella in urine. *Nature Communications* https://doi.org/10.1038/s41467-023-39863-x (2023).