
www.aging-us.com 4069 AGING 

INTRODUCTION 
 
The occurrence of liver cancer ranks sixth among 
malignant tumors and fourth among the causes of 
tumor-associated death in the world [1]. Hepatocellular 
carcinoma (HCC) is the most familiar form of primary 
hepatic carcinoma and is related to some common 
causes, including chronic hepatitis, alcoholism, 
NAFLD, and exposure to food toxins like aflatoxins [2]. 
HCC has low survival rates and is a highly 

heterogeneous disease; the survival rate at 5 years is 
only 18% in the United States [2–4]. The complex 
etiology and the high heterogeneity of HCC cause a 
challenge to the prediction of prognosis. Thus, 
considering the limitations of current treatment 
strategies for HCC, it is necessary to develop a new 
prognostic model. 
 
In the past few decades, research on tumor ferroptosis 
has increased rapidly. Unlike apoptosis and autophagy, 
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ABSTRACT 
 
Background: Hepatocellular Carcinoma (HCC) is a highly heterogeneous malignant tumor, and its prognostic 
prediction is extremely challenging. Ferroptosis is a cell mechanism dependent on iron, which is very significant 
for HCC development. Long non-coding RNA (lncRNA) is also linked to HCC progression. This work aimed to 
establish a prognosis risk model for HCC and to discover a possible biomarker and therapeutic target. 
Methods: The Cancer Genome Atlas (TCGA) database was used to obtain RNA-seq transcriptome data and 
clinic information of HCC patients. Firstly, univariate Cox was utilized to identify 66 prognostic ferroptosis-
related lncRNAs. Then, the identified lncRNAs were further included in the multivariate Cox analysis to 
construct the prognostic model. Eventually, we performed quantitative polymerase chain reaction (q-PCR) to 
validate the risk model. 
Results: We established a prognostic seventeen-ferroptosis-related lncRNA signature model. The signature 
could categorize patients into two risk subgroups, with the low-risk subgroup associated with a better 
prognosis. Additionally, the area under the curve (AUC) of the lncRNAs signature was 0.801, indicating their 
reliability in forecasting HCC prognosis. Risk score was an independent prognostic factor by regression analyses. 
Gene set enrichment analysis (GSEA) analyses demonstrated a remarkable enrichment of cancer-related and 
immune-related pathways in the high-risk group. Besides, the immune status was decreased in the high-risk 
group. Eventually, three prognostic lncRNAs were validated in human HCCLM3 cell lines. 
Conclusions: The risk model based on seventeen-ferroptosis-related lncRNA has significant prognostic value for 
HCC and may be therapeutic targets associated with ferroptosis in clinical ways. 
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Table 1. The clinical characteristics of patients in the TCGA dataset. 

Variable Number of samples 
Gender  
  Male/Female 254/122 
Age at diagnosis  
  ≤65/>65/NA 224/152 
Grade  
  G1/G2/G3/G4/NA 55/180/123/13/5 
Stage  
  I/II/III/IV/NA 175/86/86/5/24 
T  
  T0/T1/T2/T3/T4/NA 0/185/94/81/13/3 
M  
  M0/M1/NA 272/4/100 
N  
  N0/N1/N2/N3/NA 257/4/0/0/115 

 
ferroptosis is iron-dependent and regulates cell death 
through the lethal accumulation of lipid peroxidation [5–
7]. Abnormal iron metabolism is a risk factor for cancer 
and will facilitate tumor growth. Relative to normal cells, 
cancer cells are addicted to iron, and they are excessively 
dependent on iron to promote proliferation [8]. In the past 
few years, inducing ferroptosis has become a potentially 
beneficial treatment that can make cancer cells die, 
especially for those malignant tumors that resist 
traditional therapy [9, 10]. 
 
Long non-coding RNAs (lncRNAs), lacking protein-
coding ability and spanning over 200 nucleotides in 
length, can regulate gene expression [11, 12]. In 
addition to gene regulation, lncRNA is also involved in 
a variety of biological regulatory processes, like those 
associated with tumor occurrence, tumor development, 
and tumor metastasis [13]. Currently, molecular risk 
signatures, particularly lncRNA signatures, have been 
studied as prognostic indicators of cancer development 
[14]. There are, however, few studies based on 
sequences that assess ferroptosis-associated lncRNA 
signatures and their relationship with overall survival 
(OS) in HCC patients. 
 
In this work, we established a molecular signature 
model with seventeen prognostic ferroptosis-related 
lncRNAs based on the Cancer Genome Atlas (TCGA) 
data. Then, we assessed the model's ability to predict 
HCC prognosis and investigated the relationship 
between clinical characteristics and the seventeen 
prognostic ferroptosis-related lncRNAs. Moreover, gene 
set enrichment analysis (GSEA) and association 
analyses with immune cell infiltration were utilized to 
explore the immune-associated characteristics of this 
molecular signature model. Finally, three prognostic 

lncRNAs (LINC00942, ZFPM2-AS1, and LINC00205) 
were validated in human HCCLM3 cell lines. 
 
METHODS 
 
Data availability 
 
In this study, 376 patients were recruited to acquire their 
RNA-sequence data, which was extracted from TCGA-
LIHC databases on June 22, 2021 
(https://portal.gdc.cancer.gov/repository). Table 1 displays 
the clinical characteristics of the patients. The 
corresponding ferroptosis-associated genes were available 
from FerrDb [15], which is a consortium based on the 
web, providing the latest and all-round information on 
ferroptosis markers, their regulatory molecules, as well as 
associated diseases. In all, 246 ferroptosis-associated genes 
(Supplementary Table 1) were identified. We used the 
“limma” software package to calculate the correlation of 
expression between lncRNAs and ferroptosis-associated 
genes and identify ferroptosis-related lncRNAs (|Pearson 
R| > 0.4 and p <0.001). Clinical and pathological data of 
HCC patients, including gender, age, grade, stage, time, 
status, and TMN were collected. The remarkable 
differential expression of ferroptosis-related lncRNAs was 
defined as |log2FC|≥1 and false discovery rate (FDR) 
<0.05. Firstly, the function of up-regulated and down-
regulated ferroptosis-associated differentially expressed 
genes (DEGs) were explored. Then, Gene ontology (GO) 
was used to assess the biological pathways related to the 
DEGs. Based on the data from Kyoto Encyclopedia of 
Genes and Genomes (KEGG), the R software and ggplot2 
were used to analyze the biological processes, molecular 
functions and cellular components controlled by 
differentially expressed long non-coding RNAs associated 
with ferroptosis. 

https://portal.gdc.cancer.gov/repository
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Establishment of a ferroptosis-related lncRNAs 
prognostic signature 
 
The ferroptosis-related lncRNA signature was built 
using univariate Cox regression and multivariate Cox 
regression analysis. The risk scores were calculated using 
the following equations: 

1
Risk score Coef Exp ,n

i
i i

=
= ×∑  

where Coef was the coefficient of lncRNA correlated 
with survival and Exp was the expression level of every 
retained lncRNA. Based on the median cut-off value, 
subgroups including high-risk and low-risk groups were 
established from TCGA patients with HCC. We 
performed Kaplan-Meier survival analysis using the R 
packages “survMiner” and “surviva” to analyze 
differences in OS between the low- and high-risk 
subgroups based on the ferroptosis-associated lncRNA 
signature. The area under the curve (AUC) of time-
dependent receiver operating characteristic (ROC) 
curves and decision curve analysis (DCA) [16] were 
used to assess whether the derived prognostic signs of 
HCC are more sensible and specific than other 
clinicopathological indicators. In terms of gene 
expressions in the prognostic model, the “limma” and 
“scatterplot3d” R packages were used to conduct 
principal component analysis (PCA) for the two risk 
subgroups. Univariate and multivariate Cox regression 
analyses were performed to evaluate whether the risk 
score was an independent prognostic predictor of OS 
when other clinical factors (age, gender, grade, stage, T 
stage, M stage, and N stage) were taken into account in 
patients with HCC. The Cytoscape software (version 
3.8.2) was used to examine the link between the 
identified lncRNAs and ferroptosis-associated genes. 
Besides, a heatmap graph was used to assess the 
correlation between clinicopathological features and 
ferroptosis-related lncRNAs. 
 
Creating and validating a predictive nomogram 
 
Using the R package of “rms”, the clinical features (age, 
gender, grade, T stage, M stage, and N stage) and risk 
score were utilized to construct a prognostic nomogram 
to predict the 1-, 3-, and 5-year OS of patients with 
HCC. Each variable in the nomogram scoring system 
was matched with a score, and the overall score was 
calculated by summing the scores from all variables in 
each sample [17]. The nomogram calibration plots were 
utilized to show the predictive value between the 
forecasted 1-, 3-, and 5-year OS and the practically 
observed results. 
 
Immunity assessment and gene expression 
 
Based on the obtained ferroptosis-related lncRNA 
signature, gene set enrichment analysis (GSEA) 

(version 4.1.0) was used to examine the KEGG pathway 
analysis between the high-risk subgroup and the low-
risk subgroup. In addition, based on our signature, the 
TIMER [18], CIBERSORT [19], CIBERSORTABS 
[19], QUANTISEQ [20], MCPCOUNTER [21], 
XCELL [22], and EPIC [23] algorithms were compared 
to evaluate the fraction of tumor-infiltrating immune 
cells in the high-risk subgroup and low-risk subgroup. 
A heatmap was used to find the distinction in immune 
response based on distinct algorithms. Additionally, 
previous literature was used to find a possible immunity 
check-point. 
 
Cell culture and quantitative polymerase chain 
reaction (q-PCR) 
 
The normal human hepatic epithelial cell line LO2 and 
the HCC cell lines HCCLM3 were cultured in DMEM 
medium supplemented with 10% fetal bovine serum at 
37°C in a humidified atmosphere with 5% CO2. RIZOL 
(Invitrogen) reagent was used to extract total RNA from 
cells. The cDNA was then obtained through reverse 
transcription with the cDNA Synthesis Mix and 
analyzed utilizing quantitative PCR. GAPDH was 
employed as an internal reference. Gene expression 
levels were calculated utilizing 2−ΔΔCt statistic. 
Supplementary Table 2 displays the primer sequences 
used in this study. 
 
Statistical analysis 
 
The PERL programming language (version 5.32.1) 
was used to preprocess the RNA-seq transcriptome 
data. R software’s Bioconductor packages (version 
4.0.5) and GraphPad Prism software (Version 8.0) 
were also used to analyze the data. The Chi-square 
examination was conducted to compare the 
categorical variables between groups divided into 
low-risk and high-risk categories. In this study, the 
statistical significance level for each analysis was set 
at P < 0.05. 
 
RESULTS 
 
Enrichment analysis of genes associated with 
ferroptosis 
 
84 DEGs (13 downregulated and 71 upregulated; 
Supplementary Table 3) associated with ferroptosis 
were found. An analysis based on KEGG found that the 
over-expressed genes were mainly concerned with 
ferroptosis, cancer-related microRNAs expressing, 
central carbon metabolism in cancer cells, mTOR 
signaling pathway, hypoxia-inducible factor (HIF)-1 
signaling pathway, and the VEGF signaling pathway 
(Figure 1; Supplementary Table 4). 
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Long non-coding RNAs prognostic signature based 
on ferroptosis 
 
781 ferroptosis-associated lncRNAs were discovered 
(Supplementary Table 5). In the univariate COX 
analysis, 66 remarkable ferroptosis-associated 
lncRNAs were found, which were included in the 
multivariate COX analysis (Supplementary Table 6). 
Eventually, a seventeen-ferroptosis-associated lncRNA 
signature for predicting the prognosis of patients with 

HCC was constructed, including five low-risk genes 
(AC099850.1, LINC00205, AC026401.3, 
AC145207.8, and SNHG21) and twelve high-risk 
genes (POLH-AS1, SNHG10, AL139384.1, 
AL928654.1, AL603839.3, MKLN1-AS, AC090772.3, 
ZFPM2-AS1, AP001469.3, AC012073.1, 
AL031985.3, and LINC00942) (Supplementary Table 
6). Then, we separated HCC patients into low- and 
high-risk subgroups based on the median value of the 
risk score. 

 

 
 
Figure 1. Results of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. GO (A, B) and KEGG 
(C, D) analysis based on the ferroptosis-related differentially expressed genes. 
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Validation of the prognostic value of the ferroptosis-
related lncRNA signature 
 
The KM curve showed that patients in the low-risk 
group had significantly better OS than those in the high-
risk group (Figure 2A, P < 0.001). Figure 2B 
demonstrated the variation of risk scores between the 
low-risk and high-risk groups. Figure 2C shows there 

were more fatalities and fewer years of survival in the 
high-risk group. As shown in Figure 2D, the RNA 
expression of the seventeen ferroptosis-associated 
lncRNAs was lower in the low-risk group than in the 
high-risk group. 
 
Then, PCA was used to compare the low-risk and high-
risk groups based on all genes, 246 ferroptosis genes, 

 

 
 
Figure 2. The prognostic performance of the seventeen ferroptosis-related lncRNA signature based on TCGA cohort. (A) The 
Kaplan-Meier analysis of overall survival in low- and high-risk groups. (B–D). The distribution of risk scores, survival status, and expression 
of the seventeen ferroptosis-related lncRNA risk genes. (E) Area under time-dependent ROC curve (AUC) of time-dependent Receiver 
operating characteristic curve (ROC) curves compared the prognostic accuracy of the risk score and other clinical features. (F) Decision 
curve analysis (DCA) compared the prognostic accuracy of the risk score and other clinicopathological. (G) AUC of time-dependent ROC 
curves validated the prognostic accuracy of the risk score in TCGA cohort. 
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1,271 ferroptosis-related lncRNAs, and 17 risk genes. 
As shown in Figure 3A–3C, the distributions of the low- 
and high-risk groups were relatively dispersed. 
However, the finding of seventeen risk genes revealed 
that the low- and high-risk groups had distinct 
distributions (Figure 3D). These findings indicate that 
the low-risk and high-risk group had different 
distributions based on the risk model. 
 
Meanwhile, the area under the curve (AUC) of 
signature lncRNAs was 0.801, which is better than 
traditional clinicopathological characteristics in the 
prediction of prognosis of HCC (Figure 2E, 2F). ROC 
curves were used to assess the predictive power of the 
prognostic model, and the AUC was 0.801 at one year, 
0.758 at three years, and 0.723 at five years, 
respectively (Figure 2G). 

Next, the risk model of 17 ferroptosis-related lncRNAs 
was evaluated further utilizing univariate and 
multivariate Cox regression analysis to see whether it 
may serve as an independent prognostic factor in 
patients with HCC. In univariate Cox regression 
analyses, stage, T, M and risk score were markedly 
associated with OS (HR = 1.879, 95% CI = 
1.466−2.408, P < 0.001; HR = 1.816, 95%  
CI = 1.443−2.287, P < 0.001; HR = 3.924, 95% CI = 
1.230−12.519, P = 0.021; HR = 1.402, 95% CI = 
1.296−1.517, P < 0.001, respectively, Figure 4A). After 
controlling for additional confounding variables, the 
results of the multivariate Cox regression analysis 
revealed that the risk score is still an independent 
predictor of OS in HCC patients (HR = 1.401, 95% CI = 
1.281−1.532, P < 0.001, Figure 4B), indicating that the 
predicted effect of the risk model of the 

 

 
 
Figure 3. Principal component analysis between the low-risk and high-risk subgroups based on all genes, 246 ferroptosis genes, 1,271 
ferroptosis-related lncRNAs, and seventeen risk genes (A–D). 
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ferroptosis-related lncRNAs was better than the 
clinicopathological parameters. Figure 4C depicts the 
link between identified lncRNAs and the ferroptosis-
related genes. Furthermore, we created a heatmap to 
show the relationship between clinicopathological 
features and the seventeen-ferroptosis-associated lncRNA 
prognostic signature, and discovered that the grade, T and 
stage were all distributed differently between the high- 
and low-risk groups (Figure 5, P < 0.001). 
 
Given the inconvenience of the clinical value of the risk 
score in predicting OS rates in HCC patients, a 
nomogram was constructed by combining the risk score 
with clinicopathological features including age, gender, 
grade, and TMN stage to provide a reliable and 
quantifiable way for forecasting 1-, 3-, and 5-year 
survival of HCC patients (Figure 6A). The subsequent 
correlation plots demonstrated that the observed versus 
predicted rates of the 1-, 3-, and 5-year OS had 
excellent consistency (Figure 6B). 

Gene set enrichment analyses 
 
GSEA results demonstrate an obvious enrichment of 
immunoregulatory pathways against cancer in high-risk 
HCC patients, such as the mTOR signaling pathway, 
WNT signaling pathway, ERBB signaling pathway, 
GNRH signaling pathway, NOTCH signaling pathway, 
and P53 signaling pathway. Meanwhile, GSEA results 
demonstrate a remarkable enrichment of amino acid 
metabolism in low-risk HCC patients, including 
glycine, serine, and threonine metabolism, as shown in 
Figure 7 and Supplementary Table 7. 
 
Expression of immunity and gene 
 
TIMER, CIBERSORT, CIBERSORTABS, 
QUANTISEQ, MCPCOUNTER, XCELL, and EPIC 
algorithms were used to examine the immune cell and 
pathway profiles in the signature-identified high-risk 
and low-risk groups (Figure 8, all P < 0.05). Based on

 

 
 
Figure 4. Independent prognostic value of the ferroptosis-related lncRNAs signature. (A) The results of the univariate Cox 
regression analysis in terms of overall survival (OS). (B) The results of the multivariate Cox regression analysis in terms of overall survival 
(OS). (C) The link between the identified seventeen ferroptosis-related lncRNAs and ferroptosis-related genes. 
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Figure 5. Heatmap showing the associations between clinicopathologic characteristics and risk groups, which discovered that 
the grade, T stage, and stage were all distributed differently between the high- and low-risk groups (green: low expression; red: 
high expression; ***P < 0.001). 
 

 
 

Figure 6. The development and assessment of a predictive nomogram. (A) The nomogram forecasts the possibility of 1-, 3-, and 5-
year overall survival. (B) The calibration plot of the nomogram forecasts the likelihood of the 1-, 3-, and 5-year overall survival. 
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single sample gene set enrichment analysis (ssGSEA) of 
TCGA-HCC data, correlation analysis between immune 
cell subgroups and associated functions showed that T 
cell functions such as APC co-inhibition, CCR, 
checkpoint, cytolytic activity, inflammation promoting, 

type II IFN response, T cell co-stimulation, T cell co-
inhibition response were markedly different between the 
high- and low-risk groups, as shown in Figure 9A (P < 
0.05). In view of the significance of immunotherapies 
based on checkpoint inhibitors, the distinction in 

 

 
 
Figure 7. Gene set enrichment analysis (GSEA) of low-risk subgroup and high-risk subgroup based on the ferroptosis-
related lncRNAs prognostic signature. (A) GSEA results demonstrate an obvious enrichment of immunoregulatory pathways against 
cancer in high-risk HCC patients. (B) GSEA results demonstrate a remarkable enrichment of amino acid metabolism in low-risk HCC patients. 
 

 
 
Figure 8. The immune cell infiltration landscape in HCC. Heatmap for immune cell infiltration landscape using TIMER, CIBERSORT, 
CIBERSORTABS, QUANTISEQ, MCPCOUNTER, XCELL, and EPIC algorithms in high and low risk groups (blue: low expression; red: high 
expression). Only items with significant differences will be presented, P-value < 0.05 was controlled. 
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expressing immune checkpoints between the two groups 
was further explored. The high-risk group expressed 
more pervasive immune checkpoint molecules such as 
NRP1, CD276, TNFRSF14, and TNFRSF4 than the 
low-risk group (Figure 9B, P < 0.05). 
 
Validation of genes expression levels in cell lines 
 
Compared with normal human hepatic epithelial cell 
lines LO2, LINC00942 and ZFPM2-AS1 were 
remarkedly upregulated in HCCLM3 cell lines (Figure 

10A, 10B, P < 0.001), while LINC00205 was 
significantly downregulated (Figure 10C, P < 0.001). 
 
DISCUSSION 
 
In this study, we first identified 781 ferroptosis-
associated lncRNAs, and then, 66 remarkable 
ferroptosis-associated lncRNAs were identified. 
Eventually, a seventeen-ferroptosis-associated lncRNA 
signature model was established. Following that, based 
on the medium risk score, HCC patients were separated 

 

 
 
Figure 9. Comparison of the single sample gene set enrichment analysis (ssGSEA) scores for immune-related functions and 
immune checkpoints between different risk groups. (A) ssGSEA for the immune functions between high-risk (red box) and low-risk 
(blue box) groups HCC patients. (B) The expression levels of immune checkpoints between high-risk (red box) and low-risk (blue box) groups 
HCC patients. (*P < 0.05, **P < 0.01, and ***P < 0.001). 
 

 
 
Figure 10. Expression levels of three ferroptosis-related lncRNAs of prognostic signature in HCCLM3 and LO2 by q-PCR. (A) 
Relative expression levels of LINC00942 between LO2 and HCCLM3. (B) Relative expression levels of ZFPM2-AS1 between LO2 and HCCLM3. 
(C) Relative expression levels of LINC00205 between LO2 and HCCLM3. (***P < 0.001). 
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into low-risk and high-risk groups with significantly 
different OS. Moreover, the seventeen-ferroptosis-
related lncRNA signature model was shown to be an 
independent prediction factor for HCC after correcting 
for traditional clinical risk indicators. This result 
suggested that the seventeen-ferroptosis-related 
lncRNA signature could reliably predict the prognosis 
of HCC patients. Next, the functions of immune 
infiltrating cells in the tumor microenvironment and 
immune checkpoint inhibitors (ICIs) in HCC prognosis 
were investigated. In the ferroptosis signaling 
pathways, our research discovered a possible biomarker 
and therapeutic target. Finally, we utilized q-PCR to 
validate the risk model. 
 
HCC is an extremely heterogeneous malignancy, which 
adds to the difficulty in predicting prognosis [24]. 
Ferroptosis is becoming more well regarded as a factor 
in the prognosis of patients with HCC and other 
malignancies [25–27]. The impact of ferroptosis on 
tumor development and therapy has been the subject of 
many studies. At the same time, studies found that 
lncRNAs play a significant part in the prognosis of 
HCC, which will be expected to be a possible and valid 
molecular target for the treatment of HCC [28, 29]. 
Currently, a host of ferroptosis-based and lncRNA-
based prognostic signature models for tumors have been 
reported [30–32]. Notably, new research shows that 
several lncRNAs can play an important role in 
regulating the occurrence and development of diseases 
through promoting ferroptosis [33–35]. At present, the 
ferroptosis-associated lncRNA prognostic signature 
models have been reported in other malignancies [36–
38]. However, there was rarely research about the 
ferroptosis-associated lncRNA prognostic signature 
model in HCC. In this work, we firstly established a 
seventeen-ferroptosis-associated lncRNA prognostic 
signature model, which could reliably predict the 
prognosis of HCC patients. 
 
In this study, a seventeen-ferroptosis-associated 
lncRNA signature model was established, including 
twelve high-risk genes (POLH-AS1, SNHG10, 
AL139384.1, AL928654.1, AL603839.3, MKLN1-AS, 
AC090772.3, ZFPM2-AS1, AP001469.3, AC012073.1, 
AL031985.3, and LINC00942) and five low-risk genes 
(AC099850.1, LINC00205, AC026401.3, AC145207.8, 
and SNHG21). Among the high-risk genes, studies 
have reported that HCC patients with high expressions 
of SNHG10 [39], MKLN1-AS [40], ZFPM2-AS1 [41] 
and AL031985.3 [42] were associated with shorter OS 
and worse prognosis, which are consistent with our 
findings. Meanwhile, in lung adenocarcinoma, patients 
with higher LINC00942 demonstrated poor prognosis 
[43]. Interestingly, study has reported that HCC 
patients with higher expression of LINC00205 showed 

worse prognosis, and LINC00205 increases the 
proliferation, migration, and invasion of HCC cells 
[44]. However, LINC00205 was a low-risk gene in our 
study. We think more experimental studies are 
necessary to explain the incongruous effects of 
LINC00205 in the future. Other risk genes have not 
been investigated in tumors, and our findings may help 
and guide future research. 
 
As we all know, tumor staging and tumor grading are 
significant elements to be consider when predicting the 
prognosis of patients with HCC. At present, many 
staging systems for the prognostic prediction of HCC 
patients have been devise, such as the American Joint 
Committee on Cancer (AJCC)-TNM which has limited 
prognostic prediction value of HCC patients and is 
commonly utilized by surgeons [45]. Interestingly, we 
found that clinical features can also predict the OS of 
HCC patients. However, the predicted effect of the risk 
model was better than the clinicopathological features 
by multivariate Cox regression analysis. At the same 
time, the AUC of risk score was higher than clinical 
features, indicating that the risk model is better than 
clinical characteristics in the prediction of prognosis of 
HCC. Thus, our findings revealed that the novel 
seventeen-ferroptosis-related lncRNA signature was 
robustly predictive of OS in HCC patients. 
 
Several abnormal signaling pathways in HCC have been 
identified in recent research [46]. Some of these 
abnormal signals may be used to identify novel 
molecular targets for new therapies, such as Wnt 
signaling pathway, P53 signaling pathway, and 
PI3K/AKT-pathway [47]. In this work, we found that 
immunoregulatory pathways are different in the high-
risk subgroup and the low-risk subgroup, which may be 
used to guide future treatment of HCC. In addition, the 
anti-tumor immunity of patients in the high-risk and 
low-risk groups is inconsistent, which may also help 
guide the treatment of HCC patients in the future. 
 
At present, immunotherapy has emerged as a viable 
new therapeutic option for HCC [48]. However, the 
majority of patients did not react to immune checkpoint 
blockade immunotherapy [49]. The induction of 
ferroptosis is closely linked to anti-tumor immunity, 
not only engaging in tumor cell destruction through 
ICI-activated T cells, but also directly altering the 
function of diverse immune cells, implying the 
prospect of cancer synergistic therapy [50]. The 
combination of ferroptosis and ICIs can improve anti-
tumor activity in a synergistical way, even in ICI-
resistant types [51]. Currently, studies on the 
relationship between ICI and ferroptosis remain rare. 
Hence, a seventeen-ferroptosis-related lncRNA 
signature was constructed to explore the link between 
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ferroptosis and ICIs. In our study, the expression levels 
of most ICIs in high-risk subgroup were higher 
compared with low-risk subgroup. This suggested that 
the seventeen-ferroptosis-related lncRNA signature 
might be used to forecast the level of ICIs expression 
and could be used to guide immune checkpoint 
blockade immunotherapy. In high-risk HCC patients, 
combining ICIs with ferroptosis inducers may promote 
malignant cell ferroptosis, thereby improving overall 
prognosis. Thus, this combination of ICIs and 
ferroptosis inducers might lead to novel therapy options 
for HCC patients in the future. 
 
Our research has several limitations. First, the study 
data is from the TCGA public database, and our model 
needs to be checked further with prospective, multi-
center, and practical data. Secondly, considering that 
clinical samples were not used to verify the research 
results, the reliability of our results is uncertain. In 
addition, the findings should be utilized carefully given 
the limitations of clinical data. 
 
CONCLUSIONS 
 
In summary, our study shows that seventeen-
ferroptosis-related lncRNA could precisely predict the 
prognosis of HCC patients. In addition, this research 
might provide clues for improving anti-tumor immunity 
and supplying novel therapy strategies for HCC. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Tables 
 
Please browse Full Text version to see the data of Supplementary Table 1. 
 
Supplementary Table 1. 246 ferroptosis-associated genes. 

 
Supplementary Table 2. The primer sequences for q-PCR. 

Gene Primer Sequence 
LINC00205 F: 5′-AGCCGTTCGTCTTTACCTGG-3′ 
 R: 5′-TCCAGGAGGACTCATGGGAG-3′ 
LINC00942 F: 5′-AGGAGCTGGCAAGACCTCTA-3′ 
 R: 5′-GTTCAGTGACGCAGAATCGC-3′ 
ZFPM2-AS1 F: 5′-CCCAGGGAGAGTATGGAGTGA-3′ 
 R: 5′-AGTTGCAAGATGACGCTCAGT-3′ 
GAPDH F: 5′-TGACTTCAACAGCGACACCCA-3′ 
 R: 5′-CACCCTGTTGCTGTAGCCAAA-3′ 

 
Please browse Full Text version to see the data of Supplementary Tables 3 to 7. 
 
Supplementary Table 3. 84 ferroptosis-related differentially expressed genes. 

 
Supplementary Table 4. The results of GO analysis based on the ferroptosis-related differentially expressed 
genes. 

 
Supplementary Table 5. 781 ferroptosis-associated lncRNAs. 

 
Supplementary Table 6. The results of a seventeen-ferroptosis-associated lncRNA signature using a multivariate 
Cox analysis. 

 
Supplementary Table 7. The activation states of biological pathways in distinct risk subtype by GSEA 
enrichment analysis. 

 
 
 


