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Polycystic ovary syndrome (PCOS) is one of the most commonmetabolic and reproductive endocrinopathies. However, few studies
have tried to develop a diagnostic model based on gene biomarkers. In this study, we applied a computational method by combining
two machine learning algorithms, including random forest (RF) and artificial neural network (ANN), to identify gene biomarkers
and construct diagnostic model. We collected gene expression data from Gene Expression Omnibus (GEO) database containing 76
PCOS samples and 57 normal samples; five datasets were utilized, including one dataset for screening differentially expressed genes
(DEGs), two training datasets, and two validation datasets. Firstly, based on RF, 12 key genes in 264 DEGs were identified to be vital
for classification of PCOS and normal samples. Moreover, the weights of these key genes were calculated using ANN with
microarray and RNA-seq training dataset, respectively. Furthermore, the diagnostic models for two types of datasets were
developed and named neuralPCOS. Finally, two validation datasets were used to test and compare the performance of
neuralPCOS with other two set of marker genes by area under curve (AUC). Our model achieved an AUC of 0.7273 in
microarray dataset, and 0.6488 in RNA-seq dataset. To conclude, we uncovered gene biomarkers and developed a novel
diagnostic model of PCOS, which would be helpful for diagnosis.

1. Introduction

Polycystic ovary syndrome (PCOS), as a heterogeneous
endocrine disorder, is closely associated with menstrual dys-
function, infertility, hirsutism, acne, obesity, and metabolic
syndrome [1]. The three major diagnostic criteria of PCOS
widely followed are criteria raised by National Institutes of
Health (NIH) [2], 2003 Rotterdam Consensus raised by
European Society of Human Reproduction and Embryology
(ESHRE) and American Society for Reproductive Medicine
(ASRM) [3, 4], and criteria raised by Androgen Excess Soci-
ety (AES) [5]. However, these criteria have created some con-
troversy in the field [6]. The multifactorial etiology of PCOS
is underpinned by a complex genetic architecture [7]. Ethnic-
ity is eminently related to PCOS phenotype because of the

different genetic and environmental propensity to metabolic
disorders [8–10].

Although the identified genetic risk markers can be used
as predictive and diagnostic tools for PCOS, they may not
possess the strong power due to the complicated genetic
architecture [6]. Combination of various markers in diagnos-
tic panels may significantly improve the success [11]. Many
studies have successfully used genetic risk scores to explain
increasing amounts of variance in diseases [12].

In recent years, the wide application of microarray
technology and more advanced, accurate RNA-sequencing
technology made the study of disease mechanism more con-
venient. In view of the differences between the two plat-
forms, it is necessary to analyze the data of the two
platforms separately.
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The main difficulty arisen in establishing a classification
model using gene expression data was how to find the most
meaningful index or feature for classification. To address
this, various machine learning approaches such as random
forest (RF) [13, 14] and artificial neural network (ANN)
[15] were utilized. The single or combined use of these algo-
rithms has contributed much in gene expression data classi-
fication [16], disease diagnosis [17], cell migration [18], and
microbiome research [19]. Given their high classification
accuracy and convenience, they have become powerful tools
to learn feature representations.

In this work, we established a diagnosis model of PCOS
using microarray and RNA-seq data from Gene Expression
Omnibus (GEO) database with the combined utilization of
RF and ANN. Firstly, the RF classifier was used to identify
the key genes for classification, and then, the ANN was per-
formed to calculate the weights of the key genes in microar-
ray and RNA-seq data, respectively. Finally, a scoring model
named neuralPCOS was developed with the integration of
RF and ANN. To validate the accuracy and superiority of
the diagnosis model we established, we evaluated the perfor-
mance with microarray and RNA-seq data and compared
them to other marker genes obtained in previous studies
[20, 21].

2. Materials and Methods

2.1. Study Design. For establishment of the diagnostic model
of PCOS, RF and ANN were adopted in this study. The study
overview was schematically depicted in Figure 1. GSE6798
dataset (n = 29) was used for the differentially expressed genes
(DEGs) screening (step 1). Gene ontology (GO) enrichment
analysis (step 2) and the acquisition of key genes for classifica-
tion by RF (step 3) were further performed. After computing
the gene weight using ANN in two kinds of expression data
(microarray and RNA-seq) (step 4), a classification model
was developed (step 5). Finally, we used two independent
dataset (the microarray ComBat dataset2 and the RNA-seq–
based dataset GSE84958) for further validation (step 6).

2.2. Data Selection and Preprocessing. In the present study, a
wide search through the National Center for Biotechnology
Information Gene Expression Omnibus database (NCBI-
GEO) platform was conducted with the key words “PCOS,
human”. As shown in Table 1, 6 sets of microarray data
and 1 set of RNA-seq data were downloaded from GEO data-
base. In order to obtain one training dataset (microarray
ComBat dataset1) with large sample size, three microarray
datasets with small sample size (GSE137684, GSE137354,
and GSE34526) were combined. Meanwhile, GSE43264 and
GSE124226 were combined to form one validation dataset
(microarray ComBat dataset2). These datasets were con-
verted to logarithmic form after standardization, and the R
package ComBat was used to remove the batch effects [22].
Two microarray datasets with 28 and 23 samples were
obtained using classical and Bayesian correction methods.

2.3. Differentially Expressed Genes (DEGs) Screening. The
dataset GSE6798, based on Affymetrix Human Genome

U133 Plus 2.0 Array (Affymetrix Inc., Santa Clara, California,
USA) contained 16 cases of PCOS and 13 cases of control,
was used for DEGs analysis. The boxplot was performed
using R package stats (v 3.5.0). The R package limma was
used to calculate the DEGs between the PCOS and control
samples by the classical Bayesian method with P < 0:01 and
|logFoldchange| >0.26 [23] and was visualized by volcano
plot [24].

2.4. Gene Ontology (GO) Enrichment Analysis. To further
reveal the biofunction of selected DEGs, GO enrichment
analysis, including biological process (BP), cellular compo-
nent (CC), and molecular function (MF), was performed
using R package clusterProfiler [25]. Significant enrichment
terms were screened with the threshold adjusted P < 0:01
after adjusted by the Benjamini and Hochberg method. To
eliminate some redundancies, GO terms that intersects more
than 75% of the genes contained in term were removed.
GObubble and GOChord were performed with R package
GOplot to illustrate the functional analysis data [26].

2.5. Random Forest (RF) Classification.We used random for-
est to classify the DEGs with the R package randomforest
[27]. Firstly, the optimal number of variables (mtry parame-
ter, the optimal number of variables used in the binary tree in
the specified node) was identified. All possible variables
(1~2000) were looped into the random forest classifier. Each
error rate was calculated, and the optimal number of vari-
ables was selected. Next, each error rate of 1~3000 trees was
calculated, and the optimal tree number was determined by
the lowest error rate and best stability. Based on the above-
selected parameters, the random forest classifier was used
to calculate the results, and the important genes were selected
as the candidate PCOS-specific genes according to the Gini
coefficient method.

2.6. Calculation of DEGs Weight by Artificial Neural Network
(ANN). The GSE84958 dataset was randomly divided into
training data (n = 26) and validation data (n = 27). The
RNA-seq training data GSE84958 (n = 26) and microarray
ComBat dataset1 (n = 28) were used to construct the neural
network model. The R package neuralnet was used for neu-
ral network analysis [28]. First of all, the integration data
were filtered and normalized by min-max normalization.
Secondly, the processed training data was inputted into
the neural network model. Eleven genes were inputted and
3 hidden layers, and 2 outputs (normal and PCOS) were
set in both microarray data and RNA-seq data. Finally,
the output of the first hidden layer (input of the last output
layer) in the network results were considered as the results
of gene weight.

2.7. Neural-PCOS. We constructed an equation named
neuralPCOS that could estimate the classification score of
each gene in microarray data or RNA-seq data.

neuralPCOS =〠 GeneExpression ×NeuralNetworkWeightð Þ:
ð1Þ

2 BioMed Research International



The gene expression value was multiplied by the weight of
gene, and the results of all genes were added. (Note: before cal-
culating the score, the expression data after log2 processing
needs to be normalized by min-max normalization.)

2.8. Evaluation of Performance by Area under Curve (AUC).
The AUCs of three kinds of scores (neuralPCOS, EC-PCOS,
GC-PCOS) were calculated in GSE84958 RNA-seq validation
data (n = 27) and microarray validation data (n = 23) with R
package pROC, respectively [29].

Three kinds of score:

(1) neuralPCOS

(2) EC-PCOS: three upregulated genes including insulin-
like growth factor 1 (IGF1), phosphatase and tensin
homolog (PTEN), and insulin-like growth factor-

binding protein 1 (IGFBP1) in endometrial cells
(ECs) of PCOS [20].

(3) GC-PCOS: upegulated genes including hydroxy-
delta-5-steroid dehydrogenase, 3 beta- and steroid
delta-isomerase 2 (HSD3B2), steroidogenic acute reg-
ulatory protein (STAR), inhibin subunit beta A
(INHBA), and cytochrome P450 family 19 subfamily
A member 1 (CYP19A1) in granulosa cells (GCs) of
PCOS [21].

3. Results

3.1. Identification of DEGs. Firstly, the boxplot presented
RNA expression level in GSE6798 (n = 29) (Figure S1). A
total of 20174 gene symbols were identified after annotation,
and the distribution of DEGs (P < 0:01, |logFC| >0.26) were

Table 1: Gene expression data from Gene Expression Omnibus (GEO) database.

Dataset ID Total samples Control PCOS Data type Tissue type Country

GSE6798 29 13 16 Microarray Skeletal muscle Denmark

GSE43264 15 7 8 Microarray Adipose Ireland

GSE34526 10 3 7 Microarray Granulosa cells India

GSE137684 12 4 8 Microarray Granulosa cells China

GSE137354 6 3 3 Microarray Endometrium China

GSE124226 8 4 4 Microarray Adipose stem cells USA

GSE84958 53 23 30 RNA-seq Adipose UK

GSE6798 (29) Gene weight computation by
Neural Network method

Go enrichment analysis Microarray
gene weight

Construct a
NeuralPCOS score:

NeuralPCOS

RNA-seq
gene weight

Step 1

Step 2

Step 3

Step 5

Validation data 2:
Combat dataset2 (23)

Validation data 1:
GSE84958 subset (27)

Step 4

Step 6
Compare with EC-

PCOS and GC-PCOS
by AUC

Feature extraction by
RandomForest mode

264 genes

Microarray
data: Combat
datasetl (28)

RNA-seq data:
GSE84958
subset (26)

12 genes

Differential expression
analysis

Figure 1: Schematic illustration of study design. A total of 264 differentially expressed genes (DEGs) were obtained in differential expression
analysis with GSE6798 dataset (skeletal muscle, n = 29) (step 1), and functional enrichment analysis were also performed (step 2). All the 264
DEGs were tested for their potential as classification-related genes with random forest model, and 12 key genes were identified (step 3).
Artificial neural network (ANN), another machine learning algorithm, was used to calculate the weight of genes (step 4). Therefore, a
versatile classification model, designated as neuralPCOS, was established with the use of RF and ANN (step 5). Finally, the utility of
neuralPCOS was validated in microarray data and RNA-seq data (step 6).
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represented by volcano plot, including 134 upregulated genes
and 210 downregulated genes (Figure 2(a)). The volcano plot
of gene average expression level was shown in Figure 2(b).
Moreover, the genes with low expression level (last 25%)
were removed, and 264 genes (P < 0:01, |logFC| >0.26) were
obtained (Table S1). The heat map of the screened 264
DEGs in GSE6798 dataset was shown in Figure 2(c).

3.2. Functional Characterization of Selected DEGs. GO
enrichment analysis for the selected 264 DEGs was carried
out to identify the significantly enriched GO terms. The
GObar showed the predominant significantly enriched GO
terms (adjusted P < 0:01) (Figure 3(a)). Muscle filament

sliding (adjusted P = 7:49E − 03), myofibril (adjusted P =
5:55E − 04), and actin binding (adjusted P = 5:19E − 04)
were the most significantly enriched GO terms in BP,
CC, and MF, respectively (Table S2). The 11 enriched
terms were displayed in bubble plot (Figure 3(b)). The
analysis revealed that skeletal muscle contraction was the
most upregulated term; contractile fiber was the most
downregulated one. After de-redundant the resulting GO
terms, 5 enriched terms were obtained. To add quantitative
molecular data in the GO terms of interest, GOChord was
performed. It indicated that 12 DEGs were enriched into 5
Go terms, among which myofibril contained the most
DEGs (Figure 3(c)).
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Figure 2: Analyses of DEGs in GSE6798 dataset (skeletal muscle, n = 29). (a) Volcano plot of differential gene expression with log
(foldchange) as the abscissa and -log10 (P value) as the ordinate. Blue and red splashes represent the genes that were significantly up- or
downregulated in PCOS, respectively. Green splashes mean genes without significantly different expression. P < 0:01, |logFC| >0.26. (b)
Volcano plot of gene average expression level. The x-axis represents the average expression levels of genes in all samples. The y-axis
indicates logFC. The red spots are DEGs with P < 0:01, the green spots, DEGs with 0:01 < P < 0:05; and the black spots, stable genes
(P > 0:05). (c) Heatmap of the 264 DEGs in GSE6798 dataset. Each row represents a sample and each column represents a gene. Red color
means a higher expression level; blue color means a lower expression level.
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3.3. Screening Candidate PCOS-Specific Genes by Random
Forest. In order to obtain more reliable PCOS-specific genes,
we inputted the above 264 DEGs into the RF classifier. The
lowest error rate occurred when the number of variables
was 4 (Figure 4(a)); meanwhile, the optimal number of trees
in RF classifier was set to 1000 due to the low error rate and
stability (Figure 4(b)). Therefore, we finally choose 4 and
1000 trees as the final parameter in RF classifier to obtain
the dimensional importance of all variables. Top 12 genes
in the results of MeanDecreaseAccuracy and MeanDecrease-
Gini were shown in Figure 4(c). Finally, we selected 0.15 as
the screening threshold of importance in MeanDecreaseGini
result, and a set of 12 PCOS-specific DEGs was identified.

3.4. ANN Analysis. RF classifier identified the key genes,
which optimally differentiated between PCOS and controls.
To further construct a PCOS-specific scoring model, ANN
analysis was performed to calculate the weight of 12 genes.
Here, two parallel training processes were carried out accord-
ing to format of the training data, including RNA-seq train-
ing data GSE84958 (n = 26) and microarray ComBat
dataset1 (n = 28). ANN topology of microarray ComBat
dataset1 and RNA-seq data indicated 11 input layer, 3 hidden
layer, and 2 output layer (Figure 5). The weight of each gene

was detailed in Table S3 for microarray ComBat dataset1 and
Table S4 for RNA-seq data. Based above, we constructed a
model for classifying the gene expression data between
PCOS and control samples.

3.5. The Validation of neuralPCOS. Microarray ComBat
dataset2 (n = 23) and GSE84958 RNA-seq verification data
(n = 27) were used to test the ability for classifying the sam-
ples in 3 classification models, including neuralPCOS con-
structed in this study and EC-PCOS and GC-PCOS from
other researches. The performance of these models was
examined using area under the receiver operating character-
istic curve (ROC) (Figure 6). First, we estimated differences
in the AUC values among 3 models in microarray data
(Figure 6(a)). The results showed that neuralPCOS had a
high-level classification performance with an AUC of
0.7273, compared with the AUC of EC-PCOS (0.5985) and
GC-PCOS (0.5227). The optimal threshold values for 3
models were 1.2, 0.4, and 0.3, respectively. NeuralPCOS
and EC-PCOS achieved the highest level of specificity
(75.0%), and GC-PCOS had 100% sensitivity at optimal
threshold value. The result of RNA-seq validation data sug-
gested that the AUC score of neuralPCOS (0.6488) was
higher than EC-PCOS (0.5770), but lower than GC-PCOS
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Figure 3: Gene ontology (GO) enrichment analysis. (a) The bar plot of enriched GO terms in biological process (BP), cell components (CC),
and molecular function (MF). The x-axis represents the GOid, and y-axis represents the significance of terms. The terms are placed according
to their z-score (which indicates that the term is more likely to increase or decrease). (b) The bubble plot of GO analysis of 264 DEGs. The
z-score is assigned to x-axis and the negative logarithm of the adjusted P value to y-axis. Bubble size is proportional to the number of genes in
GO terms, and the color represents three categories (green: BP; red: CC; blue: MF). (c) GOChord plot: a plot indicates the relationship
between DEGs and their associated terms. The color represents upregulation (red) or downregulation (blue).
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(0.7530). The optimal threshold values for 3 models were 7.7,
3.7, and -0.3, respectively. NeuralPCOS had the highest level
of sensitivity than EC-PCOS and GC-PCOS (Figure 6(b)).

From the above results, it can be concluded that the classifi-
cation model established in this study was more suitable in
microarray data than in RNA-seq data.
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Figure 4: Screening candidate PCOS-specific genes by random forest. (a) Parameter selection for random forest classifier. The scatter plot of
the variables and corresponding error rate. The x-axis is the number of variables, and the y-axis is the error rate. (b) The influence of the
number of decision trees on the error rate. The x-axis is the number of decision trees and the y-axis is the error rate. (c) Ranking of input
variables in the random forest model to classify PCOS and normal samples. Top 12 key genes were listed from the most important ones to
the least ones based on MeanDecreaseAccuracy and MeanDecreaseGini. (d) Top 12 key genes in MeanDecreaseGini. The x-axis represents
the genes, and the y-axis is the importance index.
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Figure 6: Performance evaluation of different classification models by the area under the receiver operating characteristic (ROC) curves and
their AUC values. (a) In microarray ComBat dataset2 (GSE43264 and GSE124226, n = 23), neuralPCOS achieved superior performance
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4. Discussion

In recent years, the development of machine learning algo-
rithms and the availability of gene expression data in public
databases provide approaches to infer biomarkers for dis-
ease diagnosis or prognosis in a wide range of fields [30–
33]. In the field of PCOS, some attempts have been made
to explore a better way for PCOS diagnosis by using vari-
ous machine learning algorithms [34–38], among which,
suitable algorithms using some clinical data, such as survey
data [35] or pelvic ultrasound data, were used [37]. An
algorithm was ever constructed to predict new PCOS can-
didates using the data from Polycystic Ovary Syndrome
Database (PCOSDB; http://www.pcosdb.net/) [39] and the
KnowledgeBase on Polycystic Ovary Syndrome (PCOSKB;
http://pcoskb.bicnirrh.res.in) [36, 40]. Another study con-
verted the ovary microarray data of GEO database to the
gene set regularity (GSR) indices, and the GSR indices were
then computed by the modified differential rank conversion
algorithm [38]. Comparing with these studies, we aimed to
develop a diagnostic model based on gene expression data
using as many samples as possible from GEO database. We
finally integrated RF and ANN algorithms to infer the key
classification genes and calculate the weights of these genes.

In the present study, when identifying DEGs with
GSE6798 dataset, we removed the DEGs with low expression
level, which can obtain more authentic genes. GO enrich-
ment analysis was performed and displayed by bar plot
and bubble plot. Among the 11 enriched GO terms, 4 terms
including actin binding [41], myofibril [42], sarcomere [42],
and contractile fiber part [42] were also identified in other
PCOS researches. We listed the top 12 core genes screened
by the RF model for classification in DEGs based on Mean-
DecreaseGini. Moreover, 10 of the 12 genes were also
regarded as PCOS candidate genes in other studies: tropo-
modulin 1 (TMOD1) [43]; BTB domain containing 9
(BTBD9) [44]; trans-2,3-enoyl-CoA reductase like (TECRL)
[44, 45]; glutathione S-transferase omega 1 (GSTO1) [44,
46, 47]; adenosine monophosphate deaminase 3 (AMPD3)
[45]; alpha kinase 2 (ALPK2) [48]; Ras association (RalGD-
S/AF-6) and pleckstrin homology domains 1 (RAPH1) [44,
45, 48, 49]; aldehyde dehydrogenase 6 family member A1
(ALDH6A1) [44, 45, 50–52]; zinc finger protein 385B
(ZNF385B) [53]; ST3 Beta-galactoside alpha-2,3-sialyltrans-
ferase 2 (ST3GAL2) [44]. Given that RNA-seq technology
has the superiorities to detect novel transcripts with wider
dynamic range, higher specificity, and higher sensitivity than
microarray technology [54], the gene expression data
obtained by these two technologies may have some differ-
ences. In the study, we calculated the weights of core genes
by ANN using each type of data separately. Although the
weights of only 11 genes in both microarray data and
RNA-seq data were calculated, 10 genes were verified in pre-
vious studies in both platforms. The novelty of our diagnos-
tic model was that the scoring model was obtained by
comprehensively considering the genes those are vital to
classification and their weights. In order to validate the
applicability and superiority of this model in different types
of data, AUC analysis was performed in microarray ComBat

dataset2 (n = 23) and RNA-seq validation dataset
(GSE84958, n = 27). In the meanwhile, two sets of marker
genes in other researches were also evaluated. One set of
genes was the upregulated genes that involved in the insulin
signaling pathway (IGF1, PTEN, and IGFBP1) [20]; the other
was the upregulated genes including HSD3B2, STAR,
INHBA, and CYP19A1 [21]. The results of AUC scores indi-
cated that our model achieved a superior performance com-
pared with the other two sets of genes in microarray data, and
moderate performance but highest level of sensitivity in
RNA-seq data. Our model got high AUC scores, indicating
it could separate PCOS samples from normal samples with
a good probability in microarray data.

Even so, our study still has some limitations. Although
our total sample size is not too small (PCOS: n = 76; normal:
n = 57), the number of sample size in each dataset is small,
and the individuals in integrated microarray training dataset
are from different countries. To get microarray training and
validation datasets with larger sample size, 3 and 2 small
sample size datasets were combined, respectively. Although
the batch effect was removed, it was still not the most suit-
able datasets. Another drawback of our study is that the
expression data are from diverse tissues containing skeletal
muscle, adipose, endometrium, and granulosa cells. Last
but not least, we did not perform 10 fold cross-validation
in ANN analyse due to the limited sample size. Although
this is a compromising strategy in the case of limited sample
size, our model has an excellent classification performance,
a diagnostic model for single tissue type still needs to be
constructed with more convincing datasets and machine
learning algorithms in the future.

5. Conclusions

A novel diagnostic model for PCOS was established based on
machine learning algorithms using microarray and RNA-seq
datasets, which showed better prediction performance in
microarray data than using existing marker genes.
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