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Abstract: Genetic, epidemiological and experimental evidence implicate lysosomal dysfunction
in Parkinson’s disease (PD) and related synucleinopathies. Investigate several mouse models of
lysosomal storage diseases (LSDs) and evaluate pathologies reminiscent of synucleinopathies. We
obtained brain tissue from symptomatic mouse models of Gaucher, Fabry, Sandhoff, Niemann–Pick
A (NPA), Hurler, Pompe and Niemann–Pick C (NPC) diseases and assessed for the presence of Lewy
body-like pathology (proteinase K-resistant α-synuclein and tau aggregates) and neuroinflammation
(microglial Iba1 and astrocytic GFAP) by immunofluorescence. All seven LSD models exhibited
evidence of proteinopathy and/or inflammation in the central nervous system (CNS). However,
these phenotypes were divergent. Gaucher and Fabry mouse models displayed proteinase K-
resistant α-synuclein and tau aggregates but no neuroinflammation; whereas Sandhoff, NPA and
NPC showed marked neuroinflammation and no overt proteinopathy. Pompe disease animals
uniquely displayed widespread distribution of tau aggregates accompanied by moderate microglial
activation. Hurler mice also demonstrated proteinopathy and microglial activation. The present
study demonstrated additional links between LSDs and pathogenic phenotypes that are hallmarks of
synucleinopathies. The data suggest that lysosomal dysregulation can contribute to brain region-
specific protein aggregation and induce widespread neuroinflammation in the brain. However, only
a few LSD models examined exhibited phenotypes consistent with synucleinopathies. While no
model can recapitulate the complexity of PD, they can enable the study of specific pathways and
mechanisms contributing to disease pathophysiology. The present study provides evidence that
there are existing, previously unutilized mouse models that can be employed to study pathogenic
mechanisms and gain insights into potential PD subtypes, helping to determine if they are amenable
to pathway-specific therapeutic interventions.
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1. Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disorder,
affecting approximately 1% of the population over 60 years of age. The initial description
of PD consisted of mainly motor symptoms due to the degeneration of the nigrostriatal
pathway. This definition has expanded in the last decade to include a variety of non-motor
symptoms and aberrations in additional neural systems [1–3].

The accumulation of aggregated α-synuclein in neurons is the pathological hallmark of
PD and related synucleinopathies [2]. The elucidation of the underlying molecular events
leading to α-synuclein misfolding and aggregation is a field of active investigation. One
prominent hypothesis is that lysosomal dysfunction in particularly susceptible neurons
results in aberrant processing of proteins such as α-synuclein, leading to its abnormal
aggregation. Substantial genetic and experimental evidence highlights a number of interre-
lated pathways that conspire to reduce the lysosomal hydrolytic activity, thus promoting
aberrant misfolding of α-synuclein and associated proteins [4–8].
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Mutations in the glucocerebrosidase gene (GBA) provided the first genetic evidence
directly linking PD to lysosomal dysfunction. Homozygous and compound heterozygous
GBA mutations cause Gaucher disease, an autosomal recessive lysosomal storage disor-
der (LSD), characterized by low lysosomal glucocerebrosidase activity and subsequent
accumulation of lipid substrates [9]. Increased risk for PD in heterozygous carriers of
GBA loss-of-function alleles was first recognized in families of individuals with Gaucher
disease, also at an increased risk for the development of PD, [10,11] and confirmed by large,
case-controlled genetic studies [12]. It is now well recognized that GBA variants increase
the risk for PD and alter its clinical manifestations, causing earlier onset, increased risk of
cognitive impairment, and overall accelerated disease progression [13,14].

Diminished lysosomal degradation ability has been proposed as a main contributor to
PD pathogenesis [7,15]. The presence of proteinaceous aggregates including α-synuclein
suggests that defective protein processing may be implicated in disease pathogenesis.
Gaucher disease is one of more than 50 disorders related to loss of lysosomal enzyme
activity. Loss of function mutations in several other lysosomal enzyme genes have also
been identified as risk factors for developing PD and other synucleinopathies [6,16–18].
While not all genetic risk factors for PD cause lysosomal storage disorders (LSDs), or
vice versa, the breadth of the shared genetic factors underlying PD and LSDs strengthen
the connection between lysosomal dysfunction and synucleinopathies, and suggest that
additional LSDs might be associated with PD.

Animal models of LSDs carrying knock-in mutations in the murine locus provide
translatable platforms for understanding disease pathogenesis and enable the development
of effective treatments for these devastating diseases [19–21]. These animals have also
been used to model various features of synucleinopathies and the effects of potential thera-
peutic interventions currently undergoing clinical testing [22]. Loss of glucocerebrosidase
activity in the GbaD409V/D409V Gaucher disease mouse model is associated with progressive,
neuronal, proteinase K-resistant alpha-synuclein accumulation, progressive glucosylsph-
ingosine accumulation in the central nervous system (CNS) and cognitive decline. These
mice also accumulate ubiquitin and tau in these inclusions, similar to Lewy body pathology
observed in synucleinopathies [23,24]. Importantly, these murine phenotypes occur in the
context of normal endogenous protein levels and do not require exogenous overexpression
of α-synuclein or other proteins. In addition, heterozygous GbaWT/D409V mice also harbor
these aggregates, but to a lesser degree, suggesting a gene-dosage effect similar to the
human condition, where synucleinopathy risk is higher in homozygous GBA mutation
carriers than for heterozygotes [23].

Preclinical studies linking synucleinopathies and GBA mutations served as a proof
of principle for investigating its association with other LSDs. In the present study, we
evaluated the presence of aggregated protein pathology and inflammation in the CNS
of several mouse models of LSDs, namely Gaucher, Fabry, Sandhoff, Niemann–Pick A
(NPA), Hurler, Pompe and Niemann–Pick C (NPC, Table 1). All seven LSD models exhib-
ited evidence of proteinopathy and/or inflammation in the CNS. Notably, these signals
were divergent with models presenting various degrees and associations of aberrant pro-
tein accumulation and neuroinflammatory signals. These results suggest that substrate
accumulation and the ensuing lysosomal dysfunction might differentially influence the
progression of neuropathological changes in PD and LSDs. The present results suggest a
greater number of lysosomal dysfunctions than previously appreciated can trigger patholo-
gies associated with synucleinopathies, thereby provide additional models for studying
potential therapeutic interventions.
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Table 1. Mouse models of metabolic disease.

Disease Genotype Deficient Enzyme Accumulating Substrate(s) Storage/Symptom
Onset (Months)

Lifespan
(Months)

Age @ Sacrifice
(Months) References

Gaucher GbaD409V/D409V Glucocerebrosidase glucosylceramide,
glucosylsphingosine 2 18–24 12 (Xu et al., 2003; Sardi et al., 2011)

Fabry Agal-/- α-galactosidase Globotriaosylceramide 1–2 18–24 8–9 (Bangari et al., 2015)

Sandhoff HexB-/- β-hexosaminidase Ganglioside GM2 3–4 5 2–3 & 4–5 (Sango et al., 1995;
Cachon-Gonzalez et al., 2006)

NPA Smpd1-/- Acid
Sphingomyelinase Sphingomyelin, cholesterol 1–2 7 4–5 (Horinouchi et al., 1995)

Hurler IduaW392X/W392X α-L-iduronidase Mucopolysaccharides <1 10–20 4 & 7 (Wang et al., 2010)
Pompe Gaa-/- α-glucosidase Glycogen 1–2 18–24 3–4 (Raben et al., 1998)

NPC Npc1-/-
N/A-molecular

transporter
deficiency

Cholesterol 1–2 3 1 & 2 (Morris et al., 1982)

Abbreviations: NPA = Niemann Pick A, NPC = Niemann Pick C.
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2. Materials and Methods

Animals: All procedures were approved by the Institutional Animal Care and Use
Committee at Sanofi and animals were housed in AAALAC accredited facility in com-
pliance with all institutional, state and federal guidelines. Animals were group housed
in polycarbonate rectangular cages under 12-h light:dark cycles, monitored daily and
provided with food and water ad libitum. Symptomatic lysosomal storage disease model
mice were obtained at various months of age. Here, symptomatic was defined by evidence
of substrate storage accumulation (Table 1). Most of the models evaluated demonstrate
substrate accumulation by 2 months of age, with variable lifespans following onset (Table
1). Tissue was collected between onset of storage and predicted end of life. For each
genotype, 5 mice were analyzed, with the exception of the WT and Gaucher models, where
one mouse was selected per genotype as negative and positive controls. Both control mice
were 12 months of age, and historical data was incorporated into Tables 2 and 3 [23,24].

Table 2. Regional distribution of Lewy-body-like protein aggregates in brains of LSD model mice.

α-Synuclein Tau MAP2(2a + 2b)

HC CB CX BS HC CB CX BS HC CB CX BS

Gaucher * 100% 100% 100% 0 100% 100% 100% 0 100% 100% 100% 0
Fabry 40% 40% 0 0 100% 100% 0 0 40% 40% 0 0

Sandhoff 0 0 0 0 0 0 0 0 0 0 0 0
NPA 0 0 0 0 0 0 0 0 0 0 0 0

Hurler 20% 20% 0 0 100% 100% 0 60% 20% 20% 0 0
Pompe 0 0 0 0 60% 80% 40% 100% 0 0 0 0

NPC 0 0 0 0 0 0 0 0 0 0 0 0

Percent of mice exhibiting protein aggregates are shown. n = 5 per model. * Data from Gaucher model from historical data (Sardi et al.,
2011; Sardi et al., 2013). See Methods for experimental details regarding staining and blinded semiquantitative assessment. Abbreviations:
HC = hippocampus, CB = cerebellum, CX = cortex, BS = brainstem.

Table 3. Microglial activation and astrocytic GFAP expression in brains of LSD model mice.

Iba1 GFAP

HC CB CX BS HC CB CX BS

Gaucher nc nc nc nc 0 0 0 0
Fabry nc nc nc nc 0 0 0 0

Sandhoff + + + + 0 100 60 0
NPA ++ ++ ++ ++ 0 100 0 0

Hurler + + + + 0 0 0 0
Pompe ++ ++ ++ ++ 20 80 0 0

NPC +++ +++ +++ +++ 0 60 0 0

Iba1 staining was assessed and compared to wild-type controls. GFAP immunoreactivity is quantified as percent of mice exhibiting
increased signal in a particular brain area (n = 5/group, except Gaucher mouse model which was compared to historical controls (Sardi et al.,
2011; Sardi et al., 2013). See Methods for experimental details regarding staining and blinded semiquantitative assessment. Abbreviations:
Iba1: nc = no change compared to wild-type controls, + = mild activation, ++ = moderate activation, +++ = severe activation. GFAP:
numbers show percentage of mice evaluated, which demonstrated increased astrogliosis.

For euthanasia, mice were injected intraperitoneally with sodium pentobarbital (Virbac
AH, Inc., Fort Worth, TX, USA) and transcardially perfused with cold PBS (Mediatech, Inc.,
a Corning Subsidiary, Manassas, VA, USA) for 2 min at a rate of 18 mL/min. Mice were
given 500 units of heparin (Pfizer, Inc., New York, NY, USA) prior to perfusion. Brains were
harvested for histology and post-fixed in 10% neutral buffered formalin (VWR, Radnor, PA,
USA) for 48 h prior to sucrose cryopreservation, OCT embedding and cryostat sectioning
at a thickness of 20 microns.

Immunohistochemistry: All cryosections were blocked with PBS containing 10%
normal Donkey Serum (Jackson Immunoresearch, West Grove, PA, USA)and 0.3% Triton
X-100 (Sigma, St. Louis, MO, USA) and stained with rabbit anti-glial fibrillary acidic protein
(GFAP, Dako, Carpinteria, CA, USA, 1:2500), mouse antineuronal nuclei (NeuN, Millipore,
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Burlington, MA, USA, 1:100), neurofilament high (NFH, Millipore, Burlington, MA, USA,
1:1000), rabbit anti-Iba1 (Wako, Richmond, VA, USA, 1:500) and mouse antimicrotubule-
associated protein 2 (MAP2, Sigma. St. Louis, MO, USA, 1:250) in conjunction with
appropriate Alexa Fluor conjugated secondary antibodies (Thermo Fisher, Waltham, MA,
USA, 488 and 555, 3–4 uL/mL). For proteinase K-resistant α-synuclein, sections were
pretreated with proteinase K (Dako, Carpinteria, CA, USA, 1:4 dilution) for 7 min, followed
by block as described above, and stained with rabbit anti-α-synuclein (Sigma, St. Louis,
MO, USA, S3062, 1:300). A cyanine 3 tyramide amplification kit was used to detect α-
synuclein (PerkinElmer, Waltham, MA, USA). All slides were coverslipped with Aqua
Poly/Mount (Polysciences, Warrington, PA, USA).

Scoring and imaging: The stained slides were analyzed using a Nikon Eclipse E800
upright microscope equipped with 488 and 555 filter cubes. The evaluator was blinded
to the genotype of the mice and visually assessed phenotypes for protein aggregation
and neuroinflammation, producing a phenotype score according to prespecified criteria.
For alpha-synuclein and tau immunostaining, the following designations were applied:
+ = mild (more than 2 aggregate foci within the specified brain region), ++ = moderate (5
or more foci within the specified brain region) and +++ = severe (10 or more foci within the
specified brain region). For Iba1, microglial activation scores were designated as follows:
+ = mild activation (increased cellular size within the specified brain region), ++ = moderate
(increase in size and number within the specified brain region) and +++ = severe (large cells
and extensive infiltration within the specified brain region). For GFAP, neuroinflammation
was assessed as either increased (+), decreased (-) or no change (nc) compared to wild-type
within the specified brain region.

For all assessments, hippocampus, cerebellum, cortex and brainstem were evaluated
with a thorough visual scan of the entire immunostained tissue sections. For each brain
region surveyed, an overall score was assigned to reflect the observed degree of phenotype
severity. n = 5 animals surveyed per mouse model. For mice with multiple ages of sacrifice,
the scoring represented a pooled assessment of the age groups. Only representative images
of the hippocampus (for protein aggregation and neuroinflammation) and the cerebellum
(for neuroinflammation), the regions that had the most prominent differences across all the
animal models, were recorded.

3. Results
3.1. Mouse Models of Gaucher, Fabry and Hurler Disease Exhibit Proteinase K-Resistant
α-Synuclein Pathology in the Brain

Tissues from symptomatic Fabry, Sandhoff, Niemann–Pick A, Hurler, Pompe and
Niemann–Pick C mouse models were collected and stained alongside Gaucher disease and
wild-type mouse controls. The age at tissue collection varied according to each model’s
disease progression and survival (Table 1). As we have previously described, the hip-
pocampi of twelve-month-old homozygous GbaD409V/D409V mice displayed prominent
neuronal proteinase K-resistant α-synuclein aggregates that were visualized by immunoflu-
orescence [23]. We used a single GbaD409V/D409V animal as a positive control for these
measurements. Similar aggregates were observed in the hippocampi of a subset of the
Fabry and Hurler disease model mice, aged 9 and 7 months, respectively. These aggregates
tended to accumulate within the pyramidal and molecular layers, where there are various
inputs and outputs contained within the hippocampus and with other regions (Figure 1A).
These aberrant proteinase K-resistant α-synuclein aggregates were also observed in the cere-
bella of the same animals (Table 2) and were nearly absent in the 12-month-old wild type
control (Figure 1A). Of note, Gaucher disease model mice displayed additional proteinase
K-resistant α-synuclein aggregates in the cortico-amygdala area as previously reported [23].
However, aggregates in this brain region were undetected in the Fabry and Hurler disease
model mice (Table 2). No proteinase K-resistant α-synuclein aggregates were observed in
any brain regions of Niemann–Pick disease (A or C), Pompe or Sandhoff disease mice (Fig-
ure 1A, Table 2). These results suggest that lysosomal dysfunction alone was insufficient
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for the development of α-synuclein proteinopathy, and that other underlying biochemical
and cellular factors might contribute to the observed pathology.
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Figure 1. Gaucher, Fabry, Pompe and Hurler disease model mice exhibit aberrant proteinase K-resistant α-synuclein
and/or tau immunoreactivity. The representative images show proteinase K-resistant α-synuclein immunoreactivity
(red) in the hippocampi of wild-type or LSD mice (A, see Table 1 for details). The WT animal was 12 months old at
sacrifice. Alpha-synuclein pathology was undetected in wild-type, Sandhoff, Niemann–Pick A, Pompe and Niemann–Pick
C mice. Representative images from hippocampal tau immunoreactivity (green) revealed aberrant tau accumulation in the
Gaucher, Fabry, Hurler and Pompe mice (B). Abnormal tau foci were nearly absent in the Sandhoff, Niemann–Pick A and
Niemann–Pick C mice. Nuclei are shown in blue with DAPI counterstaining (scale bar, 100 µm).
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3.2. Mouse Models of Gaucher, Fabry, Hurler and Pompe Disease Display a Diverse Distribution of
Aberrant Protein Aggregation, Including Tau

Tau and α-synuclein are partially unfolded proteins that can form toxic oligomers and
abnormal intracellular aggregates under pathological conditions. α-synuclein pathology
frequently co-occurs with tau and other microtubule protein inclusions in the brains of
mouse models of disease and synucleinopathy patients [24,25]. We therefore sought to
characterize the presence of aggregated tau and MAP2 (2a + 2b) in the brains of LSD
animals and evaluate their potential co-occurrence with α-synuclein pathology.

Gaucher, Fabry and Hurler mice demonstrated tau and MAP2 (2a + 2b) inclusions
that colocalized with α-synuclein protein deposits (Table 2, Supplementary Figure S1).
Interestingly, all the Fabry and Hurler disease model mice exhibited tau inclusions in
the hippocampi and cerebella, even in animals where proteinase K-resistant α-synuclein
aggregates were undetected (Figure 1B). This pathology extended beyond these regions
in some of the Hurler disease model mice, where tau aggregation was also present in the
brainstem (Table 2).

We were unable to detect abnormal MAP2 (2a + 2b) or tau inclusions in Sandhoff or
Niemann–Pick (A or C) disease animals (Figure 1B, Table 2, Supplementary Figure S1),
coinciding with the lack of abnormal α-synuclein aggregates in these models. Moreover,
no aberrant protein pathology was observed in the nigrostriatal pathway regions of any of
the models studied, similar to the α-synuclein aggregation results.

Lastly, Pompe disease mouse brains showed a remarkable pathological pattern. De-
spite the young age of 3–4 months, many animals exhibited aberrant tau pathology
(Figure 1B) in all brain areas surveyed (Table 2). Like the Hurler disease model mice,
Pompe disease mice exhibited prevalent brainstem tau aggregation. However, we were
unable to detect aberrant α-synuclein (Figure 1A) or MAP2 (2a + 2b) (Supplementary
Figure S1) staining in these mice, suggesting that glycogen accumulation might have a
specific effect on the tau misfolding or simply that these methods were not sensitive enough
to detect α-synuclein pathology in this model or at its particular disease stage.

3.3. Neuroinflammatory Profiles of Lysosomal Storage Disease Model Mice Differ in Severity and
Distribution and Do Not Correlate with the Presence of Abnormal Protein Aggregates

LSDs have a heterogenous presentation and most patients develop CNS manifes-
tations, especially those with significantly diminished enzymatic activity [26]. Hence,
neuroinflammatory responses are a common feature of advanced lysosomal diseases [27].
To gain insights into the distribution of inflammatory signals and the potential association
with areas of marked proteinopathy, we evaluated Iba1 and GFAP immunoreactivity by
immunofluorescence. Microglial infiltration and activation were assessed using Iba1, a
microglial calcium binding marker. Astrogliosis was evaluated via an established astroglia
marker, GFAP (glial fibrillary acidic protein).

Gaucher disease model mouse brains showed no signs of microglial activation via Iba1
immunostaining in any regions assessed, in agreement with our previous report showing
no evidence of neuroinflammation in aged GbaD409V/D409V mouse hippocampus compared
to wild-type controls. [23]. Similarly, brains from Fabry disease model mice showed no
evidence of abnormal Iba1 signaling compared to wild-type controls (Figure 2A, Table 3).

Conversely, all other models evaluated in the present study showed some degree of
microglial activation by Iba1 staining in every region interrogated. The Sandhoff disease
mouse model demonstrated mild microglial activation in all assessed regions (Figure 2A,
Table 3). As expected, the Niemann–Pick A disease model mice exhibited microglial infil-
tration and activation in the cerebellum (Table 3, Figure 3A), a site of major neuropathology
in this model, with progressive lysosomal storage of sphingomyelin, degeneration of
the Purkinje cell neurons and consequent motor behavioral abnormalities [28]. Notably,
Niemann–Pick A neuroinflammation was distributed beyond the known regions of neu-
rodegeneration and was widespread, much like in the Pompe disease model (Table 3). The
spread of neuroinflammation appears to mirror the widespread substrate accumulation
reported in these models [28,29]. Hurler disease model mice exhibited mild to moderate
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microgliosis in all regions evaluated. Niemann–Pick C disease model mice displayed severe
microglial cell activation and infiltration in the hippocampus and cerebellum (Figures 2A
and 3A, respectively), in addition to the other regions evaluated (Table 3), correlating with
extensive substrate accumulation described in this model [30,31]. Together, these results
suggest that lysosomal substrate accumulation, rather than α-synuclein or tau protein
aggregates, associates with microglial cell activation in these LSD models.
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Figure 3. Cerebellar neuroinflammatory profiles of lysosomal storage disease model mice differ in severity and distribution.
Representative images taken of Iba-1 immunoreactivity (A, red) and GFAP immunoreactivity (B, red) in the cerebella of
seven LSD models. Sandhoff, Niemann–Pick A, Hurler, Pompe and Niemann–Pick C disease models mice all exhibited
microglial cell activation in various cerebellar regions. Sandhoff and Pompe disease models exhibited microglial activation
primarily in the granular and white matter cerebellar regions. Both Niemann–Pick disease models displayed widespread
microglial activation in all layers. Hurler mice displayed mild to moderate microglial cell activation, primarily in the
granular layer. GFAP immunoreactivity was prominent in Sandhoff, Niemann Pick A and C and Pompe disease models,
with little to no changes observed in the other models. Nuclei are shown in blue with DAPI counterstaining (scale bar
100 µm).

Brains from these various LSD models also displayed dissimilarities in the distri-
bution and extent of astrogliosis, determined via GFAP immunofluorescence (Table 3).
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Gaucher, Fabry and Hurler disease model mice were free of any overt astrogliosis in all
regions evaluated (Figures 2B and 3B, Table 3). All Sandhoff disease model mice displayed
GFAP-positive immunoreactivity in the cerebellum (Table 3, Figure 3B), consistent with
previously reported GM2 ganglioside storage in this region and the consequent motor
phenotype observed in these mice [32]. Additionally, a subset of the Sandhoff disease mice
(60%), presented with astrogliosis in the cortex (Table 3). Niemann–Pick A disease model
mice displayed astrogliosis in the cerebellum, the major site of neurodegeneration in this
model [28]. Notably, a subset of Niemann–Pick C brains (60%) displayed increased GFAP
immunoreactivity in the cerebellum (Figure 3B, Table 3), contrasting with the widespread
microglial activation. Pompe brains showed a trend towards GFAP inflammation in the
hippocampus and cerebellum (Figures 2B and 3B, Table 3).

Neuroinflammation, embodied by Iba1 or GFAP staining, was observed in most of
the models evaluated, with the exception of Gaucher and Fabry disease mouse models
(Table 3). Remarkably, the pattern of astrogliosis did not necessarily correlate with that of
microgliosis, suggesting a cell-specific response to the lysosomal substrate accumulation.
Congruently, neuroinflammation was not necessarily associated with the presence of
aberrant neuronal protein aggregates (Table 4).

Table 4. Summary of detectable proteinopathy and neuroinflammatory markers in brains of LSD
model mice.

Disease Genotype Proteinopathy
(Y/N)

Neuroinflammation (Y/N)
Iba1 GFAP

Gaucher GbaD409V/D409V Y N N
Fabry Agal-/- Y N N

Sandhoff HexB-/- N Y Y
NPA Smpd1-/- N Y Y

Hurler IduaW392X/W392X Y Y N
Pompe Gaa-/- Y Y Y

NPC Npc1-/- N Y Y

4. Discussion

A common feature of advanced PD and related neurodegenerative conditions is the
deposition of amyloid-like protein aggregates in the CNS. Accumulation of α-synuclein
and other proteinaceous aggregates in postmitotic neurons is hypothesized to interfere
with critical cellular functions leading to increased vulnerability and neuronal death [33,34].
Substantial evidence highlights the importance of lysosomal mechanisms in the abnormal
accumulation of aggregated α-synuclein [4] and PD susceptibility [6]. The initial discovery
of increased frequency of GBA mutations in PD led to the identification of multiple LSD
gene mutations associated with PD and other synucleinopathies [8,16,35].

Much like PD and related synucleinopathies, LSDs patients exhibit a wide range of
clinical presentations [36]. However, the intrinsic mechanisms of most LSDs are well defined,
contrasting with the complex etiologies leading to PD. LSDs are typically caused by autosomal
recessive gene mutations, resulting in a specific lysosomal enzyme deficiency and subsequent
specific substrate accumulation, which can be pharmacologically normalized by correcting
the metabolic defect [37]. The availability of translatable LSD animal models has proven
critical for the successful development of effective therapeutics [19–21,37]. In contrast, no
single mouse model can recapitulate the complex features of PD, and the use of diverse and
complementary models would be necessary to deconstruct this complexity and elucidate the
potential contribution of lysosomal dysfunction on disease pathophysiology [38,39].

In this study, we evaluated two hallmarks of PD, namely neuroinflammation and
protein aggregation in a number of LSD mouse models. All animal models were homozy-
gous knockout or knockin mutants for an LSD causal gene and tissues were collected after
the onset of symptoms and/or storage pathology (Table 1). Importantly, these animals
express only endogenous levels of murine α-synuclein and tau, analogous to the human
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condition and contrasting with models with overexpressed or exogenously applied fibril-
ized protein [38]. In addition, α-synuclein pathology was not observed in the substantia
nigra or striatum of any of the models evaluated, in accordance with our previous report in
GbaD409V/D409V mice [23]. However, α-synuclein proteinopathy was present in other brain
regions implicated in synucleinopathies, such as the cortex and hippocampus [40,41]. The
lack of overt proteinopathy in the mouse nigrostriatal region might be a reflection of key
metabolic differences in the dopaminergic neurons of rodents and humans [42–44].

All disease animal models evaluated in the present study displayed evidence of
protein aggregation and/or neuroinflammation (Table 4). While there was no obvious
correlation between protein aggregation and neuroinflammation, as is observed in PD, more
sophisticated techniques to evaluate neuroinflammation, such as panels of inflammatory
markers beyond those applied here or morphological analyses of the cells, may yet reveal if
such associations exist. Gaucher and Fabry disease models showed marked proteinopathy,
which was not associated with neuroinflammatory signals. Conversely, Sandhoff, NPA and
NPC disease mouse models exhibited marked neuroinflammatory pathology without any
overt α-synuclein or tau proteinopathy. These results suggest that lysosomal dysfunction
alone is not a unique driver of protein misfolding, but that specific pathways related to
particular lysosomal functions and/or lysosomal substrate classes might play a larger
role [45]. In addition, these results propose that neuroinflammation does not necessarily
associate with neuronal aggregate formation. This divergence suggests that alternative or
more complex pathogenic mechanisms might underlie the neuroinflammatory process, or
that the pathological insult in these LSD models is relatively mild and therefore a more
severe insult would be necessary to initiate the glial response [23].

The Pompe disease model mice presented notable features compared to the rest of the
LSD models evaluated in the present study. Pompe disease is caused by mutations in GAA,
the gene encoding the lysosomal enzyme acid alpha-glucosidase, resulting in decreased
enzymatic activity and subsequent glycogen accumulation. Although Pompe has long
been considered a purely metabolic muscle disorder, there is now increased recognition of
CNS involvement as life expectancies of patients treated with non-brain-penetrant enzyme
replacement therapy are extended [46]. The Pompe disease model mice demonstrated a
unique and extensive distribution of tau aggregates, without evident α-synuclein inclusions,
and with 100% of the animals displaying irregular tau immunostaining in the brainstem
(Table 2). This model demonstrates glycogen accumulation in the brainstem [47]. The
presence of atypical tau protein aggregation occurring independently of α-synuclein in a
disease model where the accumulating substrate is glycogen, a polysaccharide (vs. a lipid),
is intriguing and warrants further investigation [48].

The present study has several limitations that should be taken into consideration.
Five of the seven models used are homozygous knockouts for critical lysosomal genes
versus carrying a knockin point mutation rendering low residual enzymatic activity. Total
loss of protein expression can result in different outcomes compared to the expression
of mutant proteins. For instance, the burden of folding a mutant protein and other such
effects cannot be recapitulated in a strict knockout. Additionally, the complete loss of
enzyme activity is rarely found in human patients except in the most severe cases (Platt
et al., 2018). Another limitation of animal models is the age at which these mice were
evaluated. Due to the variable disease course, lifespan and disease severity in some of
these mouse models, such as the NPA, Sandhoff and NPC mice, animals were sacrificed
at a younger age than other models harboring less severe disease phenotypes. In order
to represent a time when lysosomal dysfunction is having an impact on animal health,
tissues were collected following the reported onset of lysosomal storage pathology and
prior to the disease end stage. Thus, a lack of protein aggregation or neuroinflammation at
a single, symptomatic timepoint cannot infer their absence at a later time. Lastly, the lack
of observed pathology in a particular model does not preclude its presence, as undetected
signals might be revealed with more sensitive methods.
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PD is a complex disease with slow progression and multiple etiologies. Many ani-
mal models have been developed to understand PD pathogenesis and mimic its disease
progression. While no model can replicate the complexity of the human condition, they
can be suitable to study specific pathways and mechanisms and have proven critical to
the advancement of successful therapeutics. As our understanding of the complexity of
PD advances, the present study uncovers additional model systems to study pathogenic
mechanisms and novel insights into potential disease subtypes amenable to specific thera-
peutic interventions.
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