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Abstract

Neutrophil (PMN) infiltration of the intestinal mucosa is a hallmark of gastrointestinal 

inflammation, with significant implications for host defense, injury and repair. However, 

phenotypic and mechanistic aspects of PMN recruitment in inflamed intestines have not been 

explored in vivo. Using novel epithelial/PMN fluorescence reporter mice, advanced intravital 

imaging and 3D reconstruction analysis, we mapped the microvasculature architecture across the 

intestinal layers and determined that in response to Sa/mone//a/endotoxin-induced inflammation, 

PMN transendothelial migration (TEM) was restricted to submucosal vessels. PMN TEM was not 

observed in villus or crypt vessels, proximal to the epithelium that underlies the intestinal lumen, 

and was partially dependent on (C-X-C motif) ligands 1 (CXCL1) and 2 (CXCL2) expression, 

which was found to be elevated in the submucosa layer. Restricted PMN extravasation at the 

submucosa and subsequent PMN interstitial migration may serve as a novel regulatory step of 

PMN effector function and recruitment to the luminal space in inflamed intestines.

Introduction

Polymorphonuclear leukocytes (PMNs) can function as a double-edged sword promoting 

tissue injury and contributing to reestablishment of tissue homeostasis 1,2 As such, en masse 
PMN infiltration of mucosal surfaces including respiratory system, urinary and the 

gastrointestinal tracts is often associated with disruption of the critical barrier function and 

tissue injury3,4. However, emerging evidence also convincingly implicates PMNs in the 

resolution of inflammation and wound repair 5,6,7.

PMN accumulation in the mucosa and luminal spaces is a hallmark of inflammatory bowel 

disease (IBD), a debilitating disorder affecting over a million individuals in the US alone8. 

Although PMN presence in the intestinal tissue is generally viewed as detrimental and often 

correlates with disease symptoms, pro-repair functions of PMNs in the intestinal lumen are 
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increasingly recognized. For example, PMN binding to and ligation of luminal receptors, 

such as ICAM-1 has been suggested to promote epithelial proliferation and wound repair 9. 

As with IBD, infection by common enteric pathogens, including Salmonella or Listeria, 
leading to symptomatic disease, elicits PMN recruitment and accumulation in the intestinal 

mucosa and the lumen 10. Here too, while critical for host defense, excessive PMN tissue 

accumulation contributes to tissue dysfunction 3 Given these important implications of PMN 

trafficking in the mucosa there has been a long-standing interest in understanding the 

molecular basis and functional consequences of PMN interaction with the endothelium as 

they cross the vascular wall, and subsequently with the epithelial layer on their way to the 

intestinal lumen.

Many in vitro and in vivo models have been employed to study PMN transendothelial 

migration (TEM) and help define critical steps and key molecules involved in this process. 

However, only the use of emerging, advanced intravital imaging techniques allowed 

visualization and detailed examination of PMN interactions with endothelial cells (ECs) in 

various vascular beds and disease models 11. Combined, these studies revealed that PMN 

activation12, endothelial adhesion molecule density 13,14, fluid shear forces 15, and geometry 

of the vascular bed itself 16 can significantly influence this process. Most PMN TEM in 

response to inflammation takes place at post-capillary venules (15–40 μm in diameter) 17. At 

these sites, PMNs undergo sequential adhesive steps, that include selectin mediated rolling 

interactions, integrin-dependent PMN adhesion, followed by luminal locomotion (crawling), 

and terminating with TEM 18. Interestingly, as was observed in lung circulation, the 

capillary bed can also support PMN TEM 16. In fact, in response to distal pulmonary 

airspace inflammation, alveolar capillaries are the principal site of leukocyte extravasation 
19. Given the capillary size (2–15 μm in diameter) a simple physical trapping of PMNs rather 

than tethering interactions may be sufficient to initiate TEM 19, 20. Importantly, across all 

vascular beds, including post-capillary venules and capillaries, the presence of chemotactic 

gradients and activation/upregulation of adhesive receptors is critical for PMN TEM 21.

Although PMN infiltration of the intestinal mucosa has long been known to be a prominent 

histological feature of intestinal inflammation, the fundamental mechanisms underpinning 

PMN TEM in the gut vasculature have largely gone unexplored. Furthermore, how the 

complex architecture and the multi-layered structure of the intestines reflect on the PMN 

extravasation patterns is not clear. This work details the use of an advanced intravital 

imaging setup and 3D reconstruction analysis to map the microvasculature architecture 

across the layers of the small intestine and determine the patterns of PMN extravasation and 

recruitment to inflamed epithelium. As new information continues to emerge regarding the 

expanded life span of PMNs in tissue and the heterogeneity of PMN subsets and function, 

our understanding of the roles of PMNs in inflammation and pathology rapidly evolving. As 

such, the specific activation state of the PMN and the immediate microenvironment and 

milieu of the intestinal regions likely plays a critical role in regulating TEM and the key 

effector functions of PMNs.
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Results

Pathogenic stimulus triggers PMN infiltration of the intestinal mucosa.

In the setting of acute intestinal inflammation triggered by invading pathogens, such as 

Salmonella, PMNs are recruited to the intestinal mucosa and the epithelial layer 10, 22. To 

examine this process in more detail, intestinal inflammation was induced by either oral 

gavage of Salmonella (108 in 100 μl by gavage, 24 hours before sample collection) or by 

intraluminal administration of bacterial endotoxin (lipopolysaccharide, LPS, 100 μg/ml in 

200 μl 2 hours before sample collection). In both inflammation models, PMN recruitment to 

intestinal epithelial cells (IECs) and the deeper lamina propria mucosa was quantified. In 

these experiments, intestines were harvested, cleaned and subjected to brief mechanical 

stress (in DTT/EDTA solution), which separates intestinal epithelium from the rest of the 

mucosa and the underlying muscular layer23, 24, 25. Both resulting fractions were processed 

to produce single cells suspensions, which were then analyzed by flow cytometry to 

determine recruitment of PMNs. As expected, Salmonella treatment triggered robust PMN 

extravasation from the blood vessels and accumulation within the deeper layers of the 

lamina propria (LP) and the epithelium (Fig 1A,B and representative flow micrograph, C). 

Importantly, although to a slightly lesser degree, dministration of LPS into the intestinal 

lumen (high dose of 100μg) recapitulated a similarly robust but regulated PMN response 

(Fig 1A,B and representative immunofluorescence images, Fig 1D). Inhibition of PMN 

interactions with the vascular wall by i.v. administration of function blocking CD11b 

antibody significantly decreased the number of tissue PMNs in both models of intestinal 

inflammation (Fig 1A,B). These data suggest that PMN recruitment induced by both 

Salmonella and LPS follows well- established leukocyte-EC adhesion cascade. Because LPS 

produced a more consistent inflammatory response, on par with that seen by others26, 27, and 

was significantly less challenging experimentally, LPS was used in all subsequent 

experiments.

Villus microcirculation does not support PMN TEM.

Given the observed PMN infiltration of the intestinal epithelium in response to Salmonella 
infection or LPS treatment, we sought to examine the vasculature in detail to determine the 

extent to which these vessels could support PMN TEM. We first used intravital multiphoton 

microscopy and epithelial/innate immune cell reporter mice (E-cadherin CFP/LysM- eGFP, 

such that lECs are blue, PMNs eGFPhi and macrophages eGFPlow) to examine the villi from 

the side of the intestinal lumen, using experimental setup similar to previously described 
28, 29. Dextran Texas Red (70 kDa, co-injected with LPS into the intestinal lumen) and anti-

PECAM-1-conjugated to Alexa Fluor® 555 fluorophore (injected i.v.) were used to 

demarcate lumen/villus boundaries and the vasculature respectively. By opening up the ileal 

intestine, we were able to visualize villus architecture from the tips down to a depth ~150–

200 nm (Fig 2A and schematic B). Each villus was perfused by an extensive vascular 

network, with vessels (ranging from 5–10 μm in diameter) positioned in close proximity the 

epithelial lining (from the tip to the base of the villus, 3D reconstruction of crypts, Fig 2C 

and zoom in on vasculature 2D). Real-time luminal imaging of the villus vasculature under 

control conditions revealed free-flowing PMNs, with velocities greater than 100 μm/s, that 

rarely engaged in interactions with the vessel wall (Fig 2E,G). Both Salmonella infection 
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and LPS- mediated inflammation induced PMN interactions with the vessel wall to a similar 

degree (shown for LPS, Fig 2E). Under these conditions, a significant portion of the free-

flowing PMNs exhibited transient attachments to the vessel wall, lasting between 1 and 5 sec 

(tethering), with translational velocities of 5.3±0.8 μm/s (Fig 2F and Supplemental Video 1). 

PMN firm adhesion (remaining attached to the vessel wall for more than 20 seconds) was 

also observed (Fig 2G and Supplemental Video 1). However, although PMN adhesion, a 

well-documented prerequisite step for TEM 30, 31, 32, was seen, PMN TEM was never 

observed in villus vasculature (despite extensive imaging analysis of more than 18 fields in 9 

mice and imaging times of up to 45 minutes, which is more than sufficient time for TEM to 

take place33, 34).

Vasculature mapping across layers of the small intestine.

Having established that villus microcirculation does not support PMN TEM, we then 

hypothesized that PMNs extravasate from vessels located closer to the crypts. Given the 

imaging depth limitations of multi-photon and conventional confocal microscopy, we were 

unable to resolve the intestinal crypts by imaging from the side of the intestinal lumen. 

Instead, we used spinning disk intravital microscopy to image the tissue from the serosal 

side (Fig 3A). Imaging from the serosal surface (shown in schematic, Fig 3B) revealed three 

distinct layers of vessels in the intestinal tissue with superficial microvessels in the 

muscularis (diameter of 5–10 μm, Fig 3A, left panel), larger vessels in the submucosa 

(diameter of 10–40 μm, Fig 3A, middle panel), and smaller microvessels surrounding 

intestinal crypts (diameter of 5–10 μm, Fig 3A, right panel). To map the localization of the 

vascular network in more detail with respect to the intestinal layers, segments of the small 

intestine from LysM-eGFP mice were harvested, PFA-fixed, permeabilized and fluorescently 

stained for EC marker PECAM-1 (red) and actin (blue). 3D reconstruction analysis revealed 

that the superficial small vessels were localized to serosal/muscularis layers that stained 

richly for actin (Fig 3C). In contrast, larger vessels were strictly localized to the submucosal 

layer, reaching the crypts, but not to villi (3D-reconstructed serosal and luminal views, Fig 

3D). Our 3D reconstruction analysis and fluorescence staining suggest the width of the 

serosal/muscularis layer to be ~40 μm in thickness and submucosal/mucosal layer to be ~60 

μm (Fig 3D), consistent with previous reports35, 36, and summarized in schematic (Fig 3B). 

Interestingly, when staining with actin we also detected substantial signal ~100 μm into the 

tissue from the serosal surface. The intensely stained, well-bounded ‘cylinders’ that are 

consistent with the expected location, distribution and morphology of the crypt lumens, and 

likely represent the staining of actin in crypt epithelial cells (Fig 3C,D). Each crypt was 

encircled by a network of small vessels that appeared largely sinusoidal in nature. In 

inflamed tissue, the interstitial space between the crypts and vessels was replete with bright 

eGFPhi PMNs and dim eGFPlow macrophages.

PMN TEM is restricted to the submucosa vessels.

By imaging from the serosal side, we were able to resolve the precise location of neutrophils 

in the various layers in high detail relative to the vasculature. Compared to control, there was 

a substantial increase in the number of PMNs observed outside of the blood vessels in all 

strata of the LPS- inflamed small intestine (Fig 4A). However, the most striking difference 

was observed in the submucosa layer, which had a ~10-fold increase over the control 

Sullivan et al. Page 4

Mucosal Immunol. Author manuscript; available in PMC 2019 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(compared to 2.5- and 3-fold increase in the inflamed muscularis and crypt layers, 

respectively, Fig 4B).

Because of the relatively high number of PMNs observed in the submucosa, we next sought 

to determine whether submucosa vessels preferentially support PMN TEM. We performed 

intravital imaging from the serosal surface on control and LPS-inflamed intact intestines. 

With this method, we were able to stain and resolve the muscularis, submucosa and the crypt 

vasculature in live LysM-eGFP mice. PMNs in unstimulated muscularis and crypt vessels 

were observed free-flowing in the blood stream with velocities ranging between 100 and 150 

μm/s, but rarely engaging or interacting with vessel walls. Upon LPS treatment, the number 

of PMNs observed per field in both muscularis and crypt layers was significantly increased. 

Under these conditions, >70% of all PMNs were found to transiently interact with the vessel 

wall (less than 1 sec/interaction), but no continued slow rolling was seen. The average 

translational velocity of PMNs was significantly reduced, likely resulting from increased 

PMN contact with the vessel walls. Displacement trajectories of representative PMNs and 

their initial locations for each condition are indicated by a white dashed line and a star, 

respectively (Fig 5A,E and quantified in Fig 5B,C for muscularis, and F,G for crypt vessels). 

Importantly, in both strata, PMN firm adhesion was substantially increased (Figs 5D and H). 

Despite the observed PMN adhesion, no PMN TEM from these vessels was observed 

(Supplemental Videos 2 and 3 show PMNs in muscularis and crypt vessels, respectively). As 

with villus vasculature, at least 9 mice/condition were used in imaging experiments to 

substantiate this conclusion. This suggests that the larger submucosal vessels upstream of 

crypt vasculature likely support the bulk of PMN TEM. Consistent with this idea, an 

increased number of rolling PMNs was seen in inflamed submucosal vessels (Fig 5J). With 

LPS stimulation, PMN rolling velocities were significantly decreased (24.2±1.3 vs 6.7±0.4 

μm/s, indicative of PMN activation, Fig 5K) and PMN adhesion was substantially increased 

(Fig 5L and Video 4). Further imaging experiments revealed that 2–3 PMNs (~30%) of all 

adhered PMNs at the vessel wall (69 cells/100μm vessel length) transmigrated out of the 

vessel into the surrounding tissue. In these experiments, movies were acquired for 20–30 

minutes and 10 fields in 5 mice were analyzed. Representative images of two PMNs 

extravasating from the submucosa vessel are shown in a time-lapse image sequence (Fig 5M 

and Video 5). To account for the possible effect of the genetic model, TEM was quantitated 

in heterozygous and homozygous LysM-eGFP; no difference was observed (data not 

shown).

CXCL1/CXCL2 and other intrinsic factors drive PMN TEM in the submucosa.

EC Ca2+ is a well-known, critical regulator of PMN TEM37, 38. We hypothesized that the 

preferential localization of PMN TEM to the submucosa vessels could be a result of 

enhanced Ca2+ responses in those ECs, compared to ECs in the muscularis layer or intestinal 

villi. To examine this possibility, we performed intravital microscopy on control and LPS-

inflamed vessels in mice expressing the Ca2+ reporter GCaMP in ECs (GCaMP3flox/flox 

expression driven by the CAG promoter and restricted to ECs using VE- Cadherin-Cre). In 

this setup, an increase in the intracellular Ca2+ is observed directly as corresponding 

increase in fluorescence intensity39. We therefore quantitated the fluorescence intensity in 

vessels in the indicated strata of inflamed and control intestines. In response to LPS 
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stimulation, increased signal intensity (and thus, increased EC Ca2+) was observed in vessels 

in the submucosa, muscularis (Fig 6A,B) and villus vasculature (not shown). However, the 

fold change (ratio of signal measured with LPS versus control) was not different between the 

two layers, suggesting that Ca2+ response was not the reason for the restricted PMN TEM in 

submucosal vessels.

Signaling by chemokines is another important element to regulate PMN TEM40, 41. We thus 

sought to test the possibility that expression of several major PMN chemokines, including 

CXCL1, CXCL2 and CXCL5, varies in the different strata. To quantitate this, we used a 

previously established protocol42 to serially section control and LPS-inflamed intestinal 

tissue. This allowed us to harvest and pool representative sections from each of the intestinal 

layers in question (schematic shown in Fig 6C). These samples were then processed and 

analyzed by qRT-PCR and ELISA for mRNA and protein content, respectively. The quality 

and purity of the separation of the strata was confirmed by histological analysis (Fig 6D) and 

the differential expression of villus surface (Claudin 4, Klf4), crypt base (Claudin 2 and 

Klf5) and smooth muscle (SMAa) markers (Fig 6E). Transcription (Fig 6F) and protein (Fig 

6G) levels for CXCL1 and CXCL2, but not CXCL5, were found to be elevated in the 

submucosal/crypt layer when compared to villi, suggesting that localization of PMN TEM to 

the submucosa vasculature during intestinal inflammation could be due to elevated CXCL1/

CXCL2 levels.

Both CXCL1 and CXCL2 have been previously shown to have high-affinity binding 

interactions with PMN-expressed CXC chemokine receptor 2 (CXCR2)43, 44 To confirm the 

role of CXCL1/CXCL2 and CXCR2 binding interactions in mediating PMN TEM in the 

submucosa vessels, mice were treated with the function-blocking anti-CXCR2 Ab (100 μg 

of Ab in 100 μl, i.p. injection) 30 min prior to LPS administration, and then quantified PMN 

TEM and recruitment to IECs. CXCR2 inhibition significantly reduced PMN TEM (PMNs 

in the submucosa layer, Fig 6H) and reduced by ~70% the LPS- induced PMN infiltration of 

lECs (Fig 6I), confirming the role of PMN receptor/ligand interactions in TEM.

Finally, we asked whether higher levels of CXCL1 and CXCL2 are sufficient to drive 

localized PMN TEM. In these experiments, CXCL1 or CXCL2 were administered into the 

lumen of ligated intestinal loops26, 45, to experimentally alter their tissue distribution in such 

way that the highest concentration of chemokines is now adjacent to the villus circulation. 

We then monitored PMN TEM and infiltration of IECs using intravital microscopy and 

parallel flow cytometry analyses. Although both chemokines induced PMN recruitment to 

the IEC layer (Fig 6J), TEM was still restricted to the submucosa vasculature (Fig 6K, 

shown for CXCL1), as was observed with LPS.

These findings suggest that although CXCL1 and CXCL2 can drive PMN TEM, other yet 

undefined intrinsic differences in vascular ECs or the immediate microenvironment within 

the intestinal strata also regulate PMN TEM in inflamed intestines.
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Discussion

In the presence of inflammatory cues, PMNs are rapidly mobilized from the vasculature to 

surrounding tissue. Although PMN infiltration of the intestinal mucosa and the luminal 

space is a prominent feature of IBD and enteropathogenic infections2, 22, to our knowledge, 

only one prior study attempted to study PMN recruitment in inflamed intestines by using 

live imaging approaches27. This work determined the extracellular signal-regulated kinase 

(ERK) activity to be crucial in PMN trafficking across intestinal tissue. The stratification of 

the intestinal wall has long been known to be important for the overall function of the organ. 

Here we sought to investigate whether the various strata also respond differently during 

inflammation, specifically, to determine whether PMN TEM preferentially occurs in villus, 

submucosa, crypt or the muscularis layer.

Vasculature mapping in the intestinal layers by 3D-confocal immunofluorescence 

microscopy revealed several distinct regions. The villi were (almost exclusively) comprised 

of an extensive network of small (5–10 μm) vessels extending from each villus tip to its 

base. Each crypt base was encircled by a single vessel (5–10 μm in diameter). Just below 

this is the submucosal layer, which contained larger post-capillary venules (10–40 μm in 

diameter) fed by the crypt vessels. The larger submucosal venules also feed the relatively 

small (5–10 μm) vessels of the outermost muscularis layer.

Real-time and time lapse intravital imaging of the luminal surface (villi) in inflamed 

intestines revealed that despite the proximity to the intestinal epithelium, villus microvessels 

do not support PMN TEM. These findings are intriguing, as extravasation out of these 

vessels would constitute the shortest route for PMN migration toward the luminal space. 

Subsequent imaging from the serosal surface (muscularis, submucosa and crypt bases) 

revealed that PMN TEM was restricted to submucosal post-capillary venules. These 

intriguing observations suggest that PMN recruitment toward lECs and the luminal space, as 

seen in IBD or enteropathogenic infection, involves long distance navigation of PMN 

through the interstitium, which may have significant implications on both PMN recruitment 

and function in inflamed intestines.

While PMN interstitial migration has not been examined in great detail, it has been 

suggested that this process is regulated by collagen density and the release of 

metalloproteinases46. It can be further constrained by the extracellular matrix (ECM) 

structure and dependent upon actin-dependent shape change and ‘squeezing’ ability of 

migrating cells47. Thus, PMN interstitial migration in inflamed intestinal mucosa may serve 

as an additional regulatory and limiting step for PMN influx into the intestinal tissue. 

Moreover, we have recently shown that actin-dependent PMN polarization leads to release 

of microvesicles containing effector proteins, including MMPs26 and chemokines48, that can 

alter expression of key ECM proteins and facilitate recruitment of other immune cells. 

Amoeboid migration of PMNs in 3D-matrices and in vivo settings may further result in 

PMN degranulation49, 50 and changes in their transcriptional profile51,52, thus altering their 

functions upon arrival at the epithelial layers or the intestinal lumen. Indeed, emerging 

evidence demonstrates increased PMN plasticity, life span and phenotypic heterogeneity in 
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inflamed tissue53, 54, which may explain their roles in both promoting tissue injury and 

facilitating resolution of inflammation.

Importantly, since PMNs can extravasate from small capillaries, as has been observed in the 

lung19, 20, our findings that PMN TEM was restricted to submucosal post-capillary venules 

suggest that blood vessels or the microenvironment in the intestinal layers may have 

different molecular or biophysical properties. Although the total Ca2+ response by ECs in 

the different strata was not different, we found elevated mRNA and protein levels of key 

PMN chemoattractants (CXCL1 and CXCL2) in the submucosa layer. Both CXCL1 and 

CXCL2 have known function in PMN recruitment, however our work is the first to show 

their differential expression in the intestinal layers. Intriguingly, our findings suggest that, 

although these chemokines contribute to PMN TEM in the submucosa, other crucial intrinsic 

differences in endothelial cells and the submucosa microenvironment also contribute to this 

process. We found that Ab-mediated inhibition of CXCR2 (a high affinity receptor for both 

CXCL1 and CXCL2) resulted in significant reduction in PMN TEM; however, shifting the 

gradient of these chemokines (by luminal administration) from the submucosa to villus 

circulation was not sufficient to induce PMN TEM in these vessels.

As we further consider the physiological importance of restricted PMN TEM to the 

submucosa layer, it is tempting to speculate that the proximity of these vessels to several 

important immunological niches, including the crypt base, is not coincidental. PMNs that 

exit the submucosa blood vessels in these regions will likely encounter secretory cells, 

including Paneth and Goblet cells, intestinal stem cells and other resident interstitial cells55. 

How PMNs may regulate tissue homeostasis through crosstalk with these local cells merits 

further investigation. It is also important to consider whether the observed extravasation 

patterns are unique to PMNs or also true for other cells that participate in gut immune 

responses, including monocytes, macrophages and T/B-lymphocytes.

In summary, although PMN infiltration of the intestinal tissue is a well-known feature of 

gastrointestinal inflammation, how PMNs traffic across blood vessels and how they are 

recruited to inflamed epithelium are not known. Our findings define a distinct pattern of 

PMN recruitment in inflamed intestines and introduce submucosa-restricted PMN TEM 

followed by interstitial migration as a new regulatory step in PMN trafficking. These unique 

patterns in the intestines provide targeting opportunities to limit PMN-mediated tissue injury 

in inflammatory disorders of the gastrointestinal tract.

Materials/Methods

Animals:

The following mouse strains ages 10–14 weeks were used in experimental protocols: 

C57BL6J mice (Jackson Laboratories), E-cadherin-mCFP mice (B6.129P2(Cg)-

Cdh1tm1Cle, Jackson Laboratories) crossed with LysM-eGFP (Lyz2tm1.1Graf, gift from Dr. 

Perlman, Northwestern University) and bred to homozygosity, and VE-Cadherin 

(Cadherin5)-cre R26R mice 56 crossed with GCaMP3 fl/fl mice (a gift from Gangjian Qin, 

Northwestern University 57) and bred to homozygosity. All mice were maintained under 

specific pathogen-free conditions at Northwestern University, Feinberg School of Medicine 
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animal facilities. At the end of all experimental procedures animals were euthanized via 

rapid cervical dislocation. All protocols involving mice were reviewed and approved by the 

Institutional Animal Care and Use Committee at Northwestern University (PHS assurance 

number A328301).

Antibodies and Reagents:

Function blocking CD11b (M1/70) and CXCR2 (242216) mAbs from eBioscience (San 

Diego, CA). An anti-Ly-6G and anti-CD11b conjugated to Alexa Fluor® 488 from Tonbo 

Bosciences (San Diego, CA). Non-blocking anti-PECAM- 1 antibody (clone 390) was 

purchased from EMD Millipore (Burlington, MA) and conjugated to DyLight®−550 using 

an antibody labeling kit from Thermo Fisher (Waltham, MA) according to the manufacture’s 

instructions. PMN chemoattractants CXCL1 (KC) and CXCL2 (MIP2) from Peprotec 

(Rocky Hill, NJ). Rat monoclonal E- cadherin (DECMA-1) from ABCAM (Cambridge, 

MA). Phalloidin conjugated to Alexa Fluor® 647 from Invitrogen (Carlsbad, CA). Texas 

Red-labeled dextran (70 kDa) from Molecular Probes (Eugene, OR). Lipopolysaccharide 

(LPS), HBSS with Ca2+ and Mg2+ (HBSS+) and HBSS without Ca2+ and Mg2+ (HBSS-) 

from Sigma (St Louis, MO).

Inflammation models:

Salmonella infection. Mice were orally inoculated by gavage with streptomycin (7.5 mg in 

200 μl sterile water, 24 hours, renders mice more susceptible to oral Salmonella infection 

and intestinal colonization58, 59) followed by 108 Salmonella serovar typhimurium (in 200 μl 

sterile PBS), leading to a gut-restricted inflammation. 24 hours following infection, mice 

were prepared for imaging experiments or euthanized and intestinal segments were excised 

for histological/flow cytometry examination.

Ligated intestinal loop model.

Animals were anesthetized by subcutaneous intramascular injection of ketamine and 

xylazine mixture at doses of 100 and 5 mg/kg, respectively. A midline abdominal incision 

was made and a 4-cm loop of small intestine was exteriorized and clipped at proximal and 

distal ends. After luminal administration of LPS (100 μg/ml in 200 μl HBSS+) or PMN 

chemoattractants CXCL1 (KC) or CXCL2 (MIP2) (1 μΜ in 200 μl HBSS+), excised loops 

were reinserted into the peritoneal cavity for 1–2 hours incubation period26, 45. Where 

indicated, function-blocking anti-CXCR2 antibody (100 μg in 100 μl) was administered i.p. 

40 minutes prior to LPS administration, and anti-CD11 b or anti-ICAM-1 Abs (50 μg/ml) 

were administered via i.v. injection prior to the induction of inflammation.

Intravital imaging:

Animal setup- Subsequent to induction of inflammation (described above), mice were 

anesthetized, and a small vertical incision was made to expose small intestinal segments. 

Without further perturbing the tissue, mice were placed on a heated platform (37°C) and 

control or inflamed intestinal segments were secured onto a custom-made chamber that was 

developed and elegantly described in McDole et al.28, with minor modifications, as detailed 

below. This setup allows imaging with minimal tissue manipulation. For imaging 
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experiments, a non-blocking anti-PECAM-1 Ab conjugated to DyLight®−550 was 

administered i.v. (retro-orbital) 30 minutes prior to imaging to visualize blood vessels.

For serosal imaging, a segment of the small intestine was secured by Vetbond tissue 

adhesive (3M) between two glass coverslips, one attached to the bottom of the upper 

chamber plate, located over the incision in the mouse’s abdomen, and second, a smaller one 

placed under the intestinal segment and reinserted into the peritoneal cavity. Securing the 

tissue in such way was sufficient in most cases to overcome peristaltic movement of the 

small intestine without additional treatments. The imaging chamber was heated and 

maintained at 37°C and tissue was hydrated by the addition of a small amount of phenol red-

free RPMI 1640 at 37°C as needed.

For imaging from the luminal surface (villi) an additional incision was made along the 

dorsal side of the intestinal segment to expose the epithelium lining the intestinal lumen. 

Care was taken to avoid large blood vessels. The intestine was then washed several times to 

remove fecal material and mucus from luminal surface and bathed in phenol red-free RPMI 

1640 at 37°C. In select experiments, the intestinal lumen was outlined by an intraluminal 

injection of Dextran-Texas Red MW 70 kDa (10μg/ml, 20 minutes prior to imaging). MW 

70 kDa dextran was used as lower MW dextrans (i.e. 10 kDa or 40 kDa) leak into the 

interstitium upon induction of inflammation and alteration in the epithelial integrity60. All 

imaging experiments were performed by using either multiphoton or spinning disk confocal 

microscopy.

Multiphoton imaging: Where indicated, the Nikon A1R-MP upright multiphoton 

microscope was used for analysis of PMN rolling/adhesion interactions at 30 fps acquisition 

speed with frame averaging for clarity (x2), and the x-y dimensions of the scan area set at 

512×512μm. The microscope was equipped with a Coherent (Santa Clara, CA) tunable 

titanium-sapphire Chameleon laser system tuned to: 830 nm for the CFP/GFP analysis, 900 

nm to visualize Texas Red, and 900 nm for Alexa Fluor® 647. For Z-stacks of live or fixed 

tissue, images were acquired sequentially to 80 z-steps (2.0μm each). Time-lapse imaging 

was performed at 10 fpm.

Spinning disk confocal imaging: The UltraVIEW VoX imaging system was built on an 

Olympus BX-51WI Fixed Stage illuminator and equipped with a Yokogawa CSU-X1-A1 

spinning disk, a Hamamatsu EMCCD C9100–50 camera, and a Modular Laser System with 

solid state diode lasers with DPPS modules for 488, 561, and 640 nm and the appropriate 

filters (all assembled by Perkin Elmer, Naperville, IL). Synchronization was managed by a 

Prosync 2 Syncronization Controller. Z-axis movement and objective positioning was 

controlled by Piezoelectric MIPOS100 System (Piezoystem Jena, Germany). Images were 

collected using a 20x water-immersion objective (1.00 numerical aperture). Volocity® 

software (Perkin Elmer) was used to drive the microscopy and acquire images, which were 

then analyzed using ImageJ. LysM-eGFP is a well-accepted model for studying PMN 

trafficking. However, because LysM-eGFP is also expressed by tissue macrophages and 

monocytes, control experiments were performed with additional labeling of Ly6G (i.v.) to 

specifically identify PMNs. As expected in an acute inflammatory setting, where PMNs are 

the first responders, the majority (>90%) of cells in the tissue were PMNs (Supplementary 
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Fig 1A). Rare, (<5%) LysM-eGFP positive, Ly6G-negative monocyte/inflammatory 

macrophages were seen (Supplementary Fig 1B). Finally, as shown in Supplementary Fig 

1C, eGFPhi tissue PMNs could be clearly distinguished from eGFPlow tissue macrophages 

(by both morphology and GFP intensity, such that monocyte/macrophage signal did not 

interfere with tissue PMN analyses. Data analysis was performed using ImageJ and Imaris 

software.

For assessment of EC Ca2+ responses, EC-specific Ca2+ reporter mice (VE-Cadherin- cre 

GCaMP) were used in serosal imaging experiments and imaged using the spinning disk 

microscope. Fluorescence intensity as an indicator of intracellular Ca2+ level was quantified 

in separate experiments with and without LPS-stimulation (administered intraluminally into 

ligated intestinal loops for 1 hour).

Analyses of PMN-EC interactions: Cell flux was defined as the number of cells that 

were visualized in the field of view, per 30 sec acquisition time. Free-flowing cells were 

defined as cells recorded passing through a blood vessel without interacting with the vessel 

wall. Rolling cells were defined as cells that have remained in continued contact with the 

vessel wall for greater than 5 sec, otherwise cells were defined as tethered61. Adherent cells 

were defined as cells that remained attached to the vessel wall for >20 sec.

Immunofluorescence labeling:

Cryo-sections (8 μm width) of O.C.T-frozen intestinal tissue were ethanol fixed, blocked 

with 5% BSA in PBS and incubated with the relevant primary Ab (10 μg/ml, overnight at 

4oC) either directly conjugated or followed by an appropriate fluorescently labeled 

secondary antibody (1 hour at RT). Alternatively, whole mount tissue staining was 

performed by isolating a small segment of small intestine, pinning it flat onto a silicon 

coated petri-dish and immunostaining as above. All images were captured using a Nikon 

A1R+ confocal microscope with 60x oil objective.

Flow cytometry:

Following the relevant treatment, intestinal loops were longitudinally opened. The 

epithelium, and the PMNs that were associated with the epithelial layer (IEC-associated) 

were dissociated from the rest of the tissue by fragmentation and shaking in 2mM DTT and 

5 mM EDTA in HBSS+ solution (3–5×10min shakes, until no more epithelial cells were 

visible in the solution as previously described23, 24). Only a small number of macrophages 

(<3% of all CD45+ immune cell), which typically reside within the lamina propria, (LP)24, 

were detected in this fraction, suggesting minimal contamination by LP immune cells (not 

shown). Where specified, PMNs were further extracted from the LP of control and inflamed 

intestinal segments using a collagenase- mediated tissue digestion as described25, which 

separates the LP from the underlying muscularis layer. The number of CD45+CD11 b+Ly6G
+ PMNs in each fraction was quantified using BD FACS CANTO II and FlowJo software.

Separation of intestinal layers:

Intestinal layers were separated as previously described 42. Briefly, a segment of a small 

intestine (~0.5 × 1 cm) was longitudinally opened, laid flat between two metal plates and 
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fixed in OCT. Intestinal tissue was then sectioned en face along the long axis with section 

width set to 10 μm. Five sections were recovered for each layer: luminal surface (villi), 

submucosa (submucosa/crypts) and serosal surface (muscularis). Three transitional sections 

between the layers were discarded. Sections for each layer were pooled and processed for 

mRNA and protein analysis. Separation of intestinal layers was confirmed visually using 

light microscopy, by Hematoxylin and Eosin (H & E) staining and by expression of specific 

markers.

ELISA:

CXCL1 and CXCL2 were quantitated from sectioned intestinal layers using standard 

sandwich ELISA methods. Briefly, tissue sections were lysed in DPBS supplemented with 

1.0% Nonidet P-40, 0.1% SDS, 1x protease inhibitor cocktail, and 0.5 mM PMSF. Samples 

were homogenized by 20 passes through a 21G needle and cleared of insoluble material by 

centrifugation at 18,000 x g at 4°C for 15 min. Cleared homogenate was tested for the 

abundance of CXCL1 and CXCL2 using sandwich ELISA kits from LifeSpan BioSciences, 

Inc. (LS-F31327 and LS-F31334 respectively). Samples were compared to standard curves 

that were included in each assay and normalized to protein concentrations determined using 

a standard micro BCA assay (Thermo Fisher). No cross interference between CXCL1 and 

CXCL2 was detected suggesting the reagents were highly specific for their intended targets. 

Also, the effect of small amounts of OCT was confirmed to not interfere with both ELISAs 

and the micro BCA protein determination.

Statistics:

Statistical significance was assessed by Student t-test or by one-way ANOVA with Newman-

Keuls Multiple Comparison Test using Graphpad Prism (V4.0). Statistical significance was 

set at p<0.05. For all experiments the data shown as ± SEM.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Pathogenic stimulus triggers PMN infiltration of the intestinal mucosa.
Intestinal inflammation was induced by either Salmonella or LPS treatment. Following 

treatment, surface epithelia with the associated PMNs were separated from lamia propria 

cells by tissue digestion. (A) Flow cytometry was performed to quantify the number of 

PMNs recruited to the lamina propria (LP). PMNs were identified by serially gating on 

CD45 and CD11 b/Ly6G positive cells. (B) Similar flow cytometry analysis was performed 

on the IEC fraction. (C) Representative flow diagrams show increased PMN fraction in LP-

cell isolate. (D) Representative immunofluorescence images, taken from cryosections of 

control and LPS-inflamed intestinal tissue, showing increased PMN (stained with anti-Ly6G, 

red) presence in inflamed intestinal mucosa. Vessels (blue) and epithelial cells (green) were 

stained using anti-PECAM-1 and E-cadherin antibodies, respectively. IL - intestinal lumen. 

Data shown for A and B are an average of at least 3 independent experiments for each 

condition, *** p<0.001. Diagrams for C and D, are representative of three independent 

experiments.
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Figure 2: Villus microcirculation does not support PMN TEM.
E-cadherin- CFP/LysM-eGFP (epithelium in blue and PMNs in green) mice were used for 

multiphoton intravital imaging of the luminal intestinal surface (outlined by Dextran- Texas 

Red MW 70 kDa) in LPS-inflamed intestine. Fluorescently conjugated nonblocking anti-

PECAM-1 antibodies were injected i.v. to visualize vessels. (A) Images acquired in series in 

Z-direction project villi length (tips, left panel, to base, right panel). The arrow points to 

blood vessels. (B) Cartoon depicts image acquisition setup and approximate dimensions of 

tissue architecture. (C-D) A series of 60–80 images were acquired from the luminal 
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intestinal surface in Z-direction with increments of 1 μm. Volumetric 3D reconstruction (C) 

and Z-projection (D) show the extent and the proximity of the vascular network to lECs, at 

the resolution of an individual villus. Arrows point to PMNs in villus vessels, arrowheads 

point to the relatively dimmer macrophages. IL- intestinal lumen, LP-lamina propria. (E) 

The number of flowing and tethered PMNs (cells per minute per field), (F) velocity and (G) 

adhesion (PMN attachment for longer than 20 seconds) were analyzed by real-time image 

acquisition and off-line analysis using ImageJ. Data shown as an average of at least 5 

independent experiments, ** p<0.01.
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Figure 3: Mapping of vasculature across intestinal layers by serosal imaging.
(A) Immune cell reporter mice (LysM-eGFP) were used for serosal imaging to examine the 

localization of microvessels (labeled with fluorescent non-blocking anti-PECAM-1 

antibodies) across intestinal layers. Arrows indicate eGFPhi PMNs, while arrowheads 

indicate eGFPlow tissue macrophages. (B) A schematic representation of the intestinal 

layers (including approximate length of each layer) as determined by serosal imaging. (C) 

Segments of the small intestine of LysM-GFP mice were extracted, PFA-fixed, 

permeabilized and fluorescently stained for EC marker PECAM-1 (red) and actin (blue). A 
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series of 120 images were acquired in Z-direction with increments of 1 μm. Representative 

3D reconstructions show superficial vessels localizated to actin-rich serosa/muscularis layer 

(serosal view, left panel) and larger vessels localized to the submucosal layer (luminal view, 

right panel). (D) Representative Z-projections of the images from the indicated layers 

showing microvessels in the actin-rich muscularis (left panel), deeper larger vessels in the 

submucosa (middle panel) and crypt vasculature (right panel). Dotted circle highlights 

vessels encircling a crypt, at the center of which are the crypt epithelial cells that stain 

positive for actin; a-arteriole, v-venule, mΦ- macrophage, IL-intestinal lumen. All images 

are representative of three independent experiments.
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Figure 4: PMNs infiltrate all layers of the inflamed intestine.
Local inflammation was induced by intraluminal administration of LPS (100 μg/ml, 2 hours 

before imaging) in ligated intestinal loops of LysM-eGFP reporter mice. The number of 

tissue infiltrated PMNs (green) in the serosa/muscularis, the submucosa and the crypt layers 

was quantified and compared to control conditions. (A) Images representative of three 

independent experiments showing PMN infiltration of the intestinal layers. Fluorophore- 

conjugated non-blocking anti-PECAM-1 antibody was injected i.v. to visualize the vessels 

(red). (B) Quantification of tissue PMNs. Data are shown as an average of 3 independent 

experiments, ** p<0.01.
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Figure 5: PMN TEM is restricted to the submucosa vessels.
Immune cell reporter mice (LysM-eGFP) were used for imaging from the serosal side. 

Vasculature was outlined using fluorescent non-blocking anti-PECAM-1 (red). PMN 

behaviors, including cell fluxes (visualized PMNs per minute per field), velocity and 

adhesion (PMN attachment to the vessel wall for longer than 20 seconds), were analyzed in 

control and LPS treated (A-D) muscularis, (E-H) crypts and (I-L) submucosa by real-time 

image acquisition and off-line analysis using ImageJ. For control images (left panels) the 

displacement trajectory of a representative PMN (over 1–2 seconds, as indicated in the left 
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corner) is indicated by the white dashed line. The PMN initial and final position is indicated 

by the star and an arrow, respectively. For inflamed condition (right panel), tissue PMNs are 

shown by the white arrows. All images are representative of three independent experiments. 

Data are shown as an average of 5 independent experiments, * p<0.05, ** p<0.01. Although 

PMN interactions with the vessel walls were induced by inflammatory stimulus in all 

intestinal layers, TEM was restricted in the submucosa layer. (M) Time lapse image 

sequence shows 2 PMNs exit the submucosa blood vessel at the same location over 5 

minutes of image acquisition. Images were acquired at a rate of 10 frames per minute and 

correspond to Video 5.
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Figure 6: CXCL1/CXCL2 and other intrinsic factors drive PMN TEM in the submucosa.
(A-B) EC-specific Ca2+ reporter mice (VE-Cadherin-Cre GCaMP) were used in serosal 

imaging experiments to examine local changes in EC Ca2+ in the intestinal layers following 

stimulation with LPS. Vasculature was outlined by immunofluorescence staining for 

endothelial PECAM-1. (A) Representative images of at least 4 independent experiments and 

(B) quantification of fluorescence signal show no difference in the intracellular Ca2+ release 

by muscularis (left panels) and submucosa (right panels) vascular ECs following stimulation 

with LPS. Data are shown as an average of 4 independent experiments with at least 10 

different fields quantitated per sample, ns - not significant. (C) The schematic depicts 

intestinal layer separation by serial cryosectioning for expression and protein analysis. (D) 

Histological confirmation of layer separation by H&E. (E) mRNA level of specific markers 

to each of the intestinal layers was determined by qRT-PCR to confirm separation. Data 

presented relative to the muscular layer and represent 3 independent experiments. The levels 

of CXCL1 and CXCL2 transcript (F) and protein (G) were examined using qRT-PCR and 

ELISA, respectively, and were found to be elevated in the submucosal/base crypt layer 

compared to villi following LPS stimulation. Data are shown as an average of 4 independent 

experiments, ns - not significant, * p<0.05, ** p<0.01. (H) The number of tissue infiltrated 

PMNs in the submucosa (quantified by IF in fixed tissue) and (I) PMN recruitment to the 

intestinal epithelium (analyzed by flow cytometry of digested tissue) in response to LPS-

induced inflammation was significantly attenuated by Ab-mediated inhibition of CXCR2 

(100 μg Ab in 100 μl, i.p. injection). Data are shown as an average of 3 independent 

experiments. ** p<0.01. (J) PMN recruitment to the intestinal epithelium in response to 

intraluminal administration of chemoattractants CXCL1 and CXCL2 (2 hours) in ligated 

intestinal loop model was analyzed by flow cytometry. Data are shown as an average of 5 

Sullivan et al. Page 24

Mucosal Immunol. Author manuscript; available in PMC 2019 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



independent experiments. *** p<0.001. (K) Real-time intravital imaging across the intestinal 

layers revealed that CXCL1 and CXCL2-driven PMN TEM was restricted to the submucosa 

layer. Data are shown as an average of 5 independent experiments.
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