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Rho-associated coiled-coil-containing protein kinase (ROCK) is a serine/threonine kinase
that was originally identified as RhoA interacting protein. A diverse array of cellular functions,
including migration, proliferation, and phenotypic modulation, are orchestrated by ROCK
through a mechanism involving cytoskeletal rearrangement. Mammalian cells express two
ROCK isoforms: ROCK1 (Rho-kinase b/ROKb) and ROCK2 (Rho-kinase a/ROKa). While
both isoforms have structural similarities and are widely expressed across multiple tissues,
investigations in gene knockout animals and cell-based studies have revealed distinct
functions of ROCK1 and ROCK2. With respect to the kidney, inhibiting ROCK activity has
proven effective for the preventing diabetic kidney disease (DKD) in both type 1 and type 2
diabetic rodent models. However, despite significant progress in the understanding of the
renal ROCK biology over the past decade, the pathogenic roles of the ROCK isoforms is
only beginning to be elucidated. Recent studies have demonstrated the involvement of
renal ROCK1 in mitochondrial dynamics and cellular transdifferentiation, whereas ROCK2
activation leads to inflammation, fibrosis, and cell death in the diabetic kidney. This review
provides a conceptual framework for dissecting the molecular underpinnings of ROCK-
driven renal injury, focusing on the differences between ROCK1 and ROCK2.
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INTRODUCTION

The World Health Organization estimates that, each year, around 1.2 million people worldwide die
from end-stage renal disease (ESRD). Artificial kidneys and miniaturized dialysis save millions of
lives, however dialysis requires cost up to US$91,000 per patient per year in the United States (End
chronic kidney disease neglect, 2020), and fewer than half of those on dialysis survive for more than
5 years from the onset of ESRD. Diabetic kidney disease (DKD) in particular has had a devastating
impact on the increasing frequency of ESRD.

One major breakthrough in the management of DKD came in the past two decades, when
inhibitors of the renin-angiotensin system (RAS) were proven to attenuate the progressive impairment
of the renal function. While cardiovascular outcome trials with sodium glucose co-transporter 2
(SGLT2) inhibitors demonstrated these agents’ renoprotective actions (Zinman et al., 2015; Kosiborod
et al., 2017; Neal et al., 2017), the details are undoubtedly much more complex, with key concerns that
in.org September 2020 | Volume 11 | Article 5856331
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current standards of care do not elicit complete remission. Given
the limited drugs available to suppress DKD progression, there has
been an ongoing effort to identify factors inducing renal injury and
to develop effective therapeutic strategies.

Rho-associated protein kinase (ROCK) belongs to the family
of serine/threonine kinases and is a major downstream effector of
the small GTP-binding protein RhoA. ROCK signaling is
involved in the regulation of a plethora of cellular functions.
Due to its centrality in most cellular events, robust temporospatial
and context-dependent regulation of ROCK is needed for cell
homeostasis. In the kidney, over-activation of the ROCK pathway
is clearly harmful; it promotes glomerular fibrosis and podocyte
loss in the setting of a variety of diseases including but not limited
to diabetes (Matoba et al., 2010; Meyer-Schwesinger et al., 2012;
Matoba et al., 2013; Matoba et al., 2017). In addition, elevated
ROCK activity results in the increase of oxidative stress, sodium
retention, and vascular tone (Bussemaker et al., 2009; Calo et al.,
2016; Calo et al., 2017). The beneficial effects of ROCK inhibition
have been described in rodent models of DKD (Gojo et al., 2007;
Kolavennu et al., 2008).

Two mammalian ROCK isoforms, ROCK1 (also known as
Rho-kinase b/ROKb) and ROCK2 (also referred to as Rho-kinase
a/ROKa), have been identified (Nakagawa et al., 1996). The
ROCK1 gene is located on chromosome 18 and consists of 1354
amino acids, while the ROCK2 gene is located on chromosome 2
and consists of 1388 amino acids. While these isoforms share 65%
overall identity in amino acid sequence, ROCK1 and ROCK2 are
differentially regulated, with distinct functions.

This review focuses on the pathophysiological functions of
ROCK1 and ROCK2, and discusses the therapeutic effects of
ROCK isoform inhibition in DKD.
THE STRUCTURE AND MOLECULAR
FUNCTION OF ROCK ISOFORMS

Among protein kinase neighbors, ROCKs are closely associated
with myotonic dystrophy kinase-related Cdc42-binding kinase
(MRCK) and citron kinase. These kinases have the same domain
structure, which consists of an N-terminal kinase domain, a
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central coiled-coil region, and various functional motifs at their
respective C-terminal (Figure 1). In ROCKs, these functional
motifs contain Rho-binding domain (RBD) and pleckstrin
homology domain (PHD) that is split into two by an internal
cysteine-rich C1 domain (CRD). Under natural conditions, PHD
blunts ROCK activity by sequestering kinase interface (Wen
et al., 2008). Supporting of this is the fact that deletion of the C-
terminal region including the PHD results in constitutive
activation in vitro (Wen et al., 2008). However, when the RBD
binds to GTP-bound active RhoA, RhoB, or RhoC, or PHD is
removed, ROCK is constitutively activated. Despite the high
sequence homology in their kinase domains, different machinery
is involved in the activation process, with ROCK1 activated
through the cleavage of the C-terminal PHD by caspase-3 and
ROCK2 activation mediated by granzyme B-regulated cleavage.
In addition, the inactivation process differs between these two
isoforms: ROCK1 is negatively controlled by Rad GTP-binding
protein, whereas ROCK2 is inhibited by Gem GTP-binding
protein (Ward et al., 2002).

While ROCK1 is predominantly distributed in non-neural
tissues including the gastrointestinal tract and lung, ROCK2 is
found in the brain, kidney, and bladder (Nakagawa et al., 1996;
Iizuka et al., 2012), indicating distinct actions of each isoform in
these tissues. At the cellular level, ROCK1 has been detected in
the cell membrane (Glyn et al., 2003), actin filaments, and
lysosomes (Iizuka et al., 2012); however, the subcellular
distribution of ROCK1 has not been fully clarified. ROCK2
activates p300 acetyltransferase to mediate gene transcription
in vitro, which might explain why ROCK2 is predominantly
localized to the nuclei (Tanaka et al., 2006). Consistently,
ROCK2 is detected in euchromatin, where transcriptional
events take place. ROCK1 and ROCK2 thus have different
tissue and cellular distributions, which may affect their functions.

Findings obtained from global knockout of ROCK1 or
ROCK2 have expanded our understanding regarding the
function of each isoform. Mice harboring systemic ROCK1
deletion display impaired eye closure and an abnormal
umbilical ring (Shimizu et al., 2005), whereas ROCK2
deficiency leads to intrauterine growth retardation (Thumkeo
et al., 2003). While these data, coupled with other findings,
FIGURE 1 | Structure of ROCK isoforms. ROCK1 and ROCK2 are known as ROKb and ROKa respectively. Both isoforms consist of three major domains: a kinase
domain in the N-terminal domain, a coiled-coil domain that contains a Rho-binding domain (RBD), and a putative pleckstrin homology domain (PHD) at its C-terminal end.
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suggest divergent physiological and pathological functions of
ROCK isoforms, the specificity of those substrates has not been
fully characterized (Hartmann et al., 2015).
MECHANISTIC INSIGHTS CONCERNING
ROCK ISOFORM INHIBITION IN DKD

Renal ROCK signaling is activated in rodent models of diabetes,
regardless of the diabetes type (Gojo et al., 2007; Matoba et al.,
2013). The ROCK-mediated molecular basis of DKD progression
has been shaped by researchers using pharmacological inhibitors
of ROCK (Y27632 and fasudil). Both of these agents ameliorate
ROCK activity by competitively combining the ATP sites of
the ROCK catalytic domain. While these studies have expanded
ROCK research in the field of renal biology, these compounds
inhibit both ROCK1 and ROCK2 with equal potency and have
non-specific targets, such as protein kinase C, A, and mitogen-
activated protein kinases at higher doses (Liao et al., 2007). Some
of these disadvantages have been overcome by gene silencing
approach, such as with small interfering RNA (siRNA) and
systemic or conditional knockout. The distinct actions of each
ROCK isoform in DKD are summarized in Figure 2.
Frontiers in Pharmacology | www.frontiersin.org 3
ROCK1-MEDIATED ALBUMIN
TRANSPORT, MITOCHONDRIAL
DYNAMICS, TRANSDIFFERENTIATION
IN DKD

The upregulation of the ROCK1 isoform is detected in the
glomerular endothelium and mesangium of db/db mice (Peng
et al., 2016) as well as in the distal tubules of streptozotocin
(STZ)-induced diabetic rats (Wu et al., 2013). In cell-based
experiments, tubular ROCK1 is activated by the CXC
chemokine ligand 16 (Liang et al., 2018), a cytokine produced
by diabetic kidney (Ye et al., 2017), to drive production of pro-
inflammatory cytokines including tumor necrosis factor a (TNF-
a), interleukin 1b, and caspase-3 activation and apoptosis.

From a transcriptional standpoint, we previously showed that
siRNA-mediated gene ablation of ROCK1 was sufficient to
induce a reduction in hypoxia-inducible factor 1a (HIF-1a)
under diabetic conditions (Matoba et al., 2013). In that study,
the HIF-1a expression was also suppressed by ROCK2
inhibition, suggesting that both ROCK1 and ROCK2 are
requisite for glomerular HIF-1a generation and downstream
fibrotic reactions in mesangial cells. The specific action of
mesangial ROCK1 has not yet been clarified.
FIGURE 2 | Distinct roles of ROCK isoforms in diabetic kidney disease. Both ROCK1 and ROCK2 contribute to the pathogenesis of DKD via different mechanisms.
ROCK1 activation induces podocyte ROS production, EndMT, and blocks albumin endocytosis in tubular epithelial cells. Little is known about the role of ROCK1 on
the mesangial biology, but ROCK2 elevation induces as the progression of mesangial expansion, Notch activation in podocytes, and endothelial inflammation. ROS,
Reactive oxygen species; EndMT, Endothelial-to-mesenchymal transition.
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A series of elegant and comprehensive investigations from the
Danesh laboratory identified ROCK1-mediated molecular events
in DKD using gain- and loss-of-function studies in mice (Wang
W. et al., 2012). Intriguingly, ROCK1-deficient mice showed
attenuation of albuminuria and histological abnormalities in
these models. Conversely, podocyte-specific ROCK1 knockin
confers a phenotype that has many of the features of DKD.
Mechanistically, they described an unexpected direct action of
ROCK1 for regulating mitochondrial fission through
phosphorylation and the recruitment of dynamin-related
protein-1 (Drp1). The results of that study implicate ROCK1
as a critical regulator of the mitochondrial dynamics in diabetes
and suggest that ROCK1 may be a relevant therapeutic target for
the generation of oxidative stress in podocytes.

The permselectivity of the glomerular filtration barrier limits
the passage of albumin into the Bowman’s capsule, resulting in
the loss of transport selectivity and culminating in albuminuria, as
is common among individuals in DKD. Glomerular endothelium,
a key component of the filtration barrier, is converted into the
mesenchymal phenotype in cases of diabetes, a process termed
endothelial-to-mesenchymal transition (EndMT). Peng et al.
investigated the contribution of ROCK1 to EndMT using
ROCK1-overexpressing glomerular endothelial cells (Peng et al.,
2016). The authors performed quantitative polymerase chain
reaction (qPCR) and Western blotting and observed the
increased expression of mesenchymal markers (e.g. a-SMA and
Snail), together with the loss of endothelial junctional molecules,
particularly VE-cadherin. Collectively, they reported that the
activation of ROCK1 triggers EndMT, resulting in the loss of
cellular attachment to each other and vascular hyper-
permeability. These data provide critical insights into the
heretofore unclear functions of ROCK1 in the signaling
pathway that mediates the damage to glomerular tight junctions
and albuminuria in DKD.

Zhou et al. investigated the function of ROCK1 in STZ-
induced DKD models (Zhou et al., 2011). To determine the
pathological contribution of tubular ROCK1, the authors
analyzed the phenotype of diabetic ROCK1-deficient mice.
They found that genetic ablation of ROCK1 prevented the
development of albuminuria, and this effect was associated
with protection against the loss of megalin and cubulin,
members of the low-density lipoprotein receptor family that
mediate albumin endocytosis in proximal tubular epithelial
cells (Zhai et al., 2000). That study provided novel insights into
the role of ROCK1 in albumin reabsorption in tubules.
Interestingly, benidipine, a calcium channel blocker, has been
suggested to inhibit proteinuria by suppressing ROCK1 and the
transdifferentiation of renal tubular epithelium without affecting
the glucose metabolism or blood pressure (Wu et al., 2013).

The inhibition of both ROCK isoforms by Y27632 or fasudil is
effective for preventing tubulointestinal fibrosis in unilateral
ureteral obstruction (UUO) models (Nagatoya et al., 2002;
Baba et al., 2015); however, the systemic deletion of ROCK1
did not protect against the obstructive kidney damage (Fu et al.,
2006). There was no recovery of transforming growth factor b
(TGF-b)/SMAD signaling or structural derangement in the
Frontiers in Pharmacology | www.frontiersin.org 4
kidney of ROCK1-deficient mice. As such, we may reasonably
suggest that targeting ROCK1 alone may not be adequate for
attenuating tubular fibrosis, at least in UUO models, and the
pathological contribution of ROCK1 to tubules may differ
between DKD and other renal disease.

Whether or not ROCK1 exerts other functions in DKD is not
completely understood. Genome-wide screening approaches will
be required to define ROCK1 targets and the precise mechanisms
of action. Such analyses will also provide promising
opportunities for the development of ROCK1 inhibitors and
their translation into clinical medicine.
ROCK2-INDUCED FIBROSIS, NOTCH
ACTIVATION, AND INFLAMMATION IN
DKD

Initial insights linking ROCK2 to diseases were gleaned from
studies implicating ROCK2 as a regulator of, among others,
immunity, inflammation, and fibrosis (Yang et al., 2018; Stam
et al., 2019; Ricker et al., 2020). With regard to the kidney,
we provided the first evidence indicating ROCK2 to be a core
component of signaling circuitry that governs DKD progression.
Nagai et al. demonstrated the upregulation of ROCK2 in the
renal cortex of type 2 diabetic db/db mice (Nagai et al., 2019). In
that study, ROCK2 inhibitors were evaluated for their efficacy
against glomerular expansion and albuminuria in vivo. As a
result, the preventive effects of these histological and functional
abnormalities were confirmed. The authors also performed a loss
of function analysis and revealed that gene deletion of ROCK2,
but not ROCK1, decreased the fibrogenic response, concomitant
with the suppression of phosphorylation of JNK and Erk, which
in turn blocks the nuclear translocation of nuclear factor kB (NF-
kB). Hence, ROCK2 inhibition appears to be a promising
pharmacological intervention against DKD.

The podocyte slit diaphragm proteins nephrin and podocin
are critical component forming the filtration barrier. In the
context of diabetes, these components are damaged, mainly by
the activation of Notch signaling pathways (Mathieson, 2011;
Loeffler and Wolf, 2014). After the binding of Notch receptors to
Notch ligands, such as Jagged-like and Delta-like, the C-terminal
Notch intracellular domain (NICD) is cleaved from the cell
membrane by g-secretase and translocates into the nucleus,
where the formation of recombination signal binding protein
for immunoglobulin kJ region (Rbpj) and mastermind-like
(MAML) proteins occurs in order to induce the expression of
gene sets important for the development of the kidney
(Malashicheva et al., 2020). The Notch pathway is reactivated
in renal tissue obtained from diabetic mice to regulate the
expression of Notch ligands (Niranjan et al., 2008). High-
glucose conditions, TGF-b, or vascular endothelial growth
factor (VEGF) are postulated to be the molecular basis for
the upregulation of Notch signaling (Bonegio and Susztak,
2012). Of note, ROCK2-deficient podocytes are characterized
by a significant reduction in TGF-b-induced Notch ligand
September 2020 | Volume 11 | Article 585633
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expression (Matoba et al., 2017). In contrast, the induction of
Notch ligand was not inhibited by ROCK1 gene deletion. These
findings indicate the isoform-specific role of ROCK2 in
podocytes and provide critical insights into potential strategies
against albuminuria seen in DKD. Studies aimed at revealing the
interdependency between ROCK2 and Notch modules through
the generation of conditional knockout models are thus expected
to be beneficial.

There is growing appreciation for the influence of vascular
inflammation on regulating the progression of diabetic renal
damage (Matoba et al., 2019). In addition to its effect in
mesangial cells and podocytes, ROCK2 also plays important
roles in endothelial cells. Takeda et al. conducted a series of
studies to unravel the mechanisms by which ROCK2 activates
vascular inflammation (Takeda et al., 2019). The qPCR array
analysis of the mRNA expression profiles in ROCK2-null
endothelium revealed differentially expressed genes related to
vascular inflammation. Since chemokines and E-selectin
production were downregulated in the endothelium, the
authors examined monocyte migration and cell to cell
adhesion, and found that these activities were abolished
compared with those in endothelium with normal levels of
ROCK2. These observations will need to be considered when
establishing the contribution of ROCK2 to DKD, and when
administering ROCK2 inhibitors to patients.

The impressive journey of ROCK2 inhibitors started with the
development of KD-25 (formally SLx-2119), which is an orally
available and selective inhibitor with a half maximal inhibitory
concentration (IC50) and an inhibitory constant (Ki) of 60 nM
and 41 nM, respectively (Boerma et al., 2008). Since this drug is
Frontiers in Pharmacology | www.frontiersin.org 5
used in clinical trials for patients with graft versus host disease
(GVHD) and psoriasis (Yiu andWarren, 2016; MacDonald et al.,
2017) (Table 1), ROCK2 inhibitors may could be used to treat
DKD. The success of ROCK2 inhibitor clinical trials will
hopefully inspire researchers to redouble their efforts to
determine the molecular profiles responsible for ROCK2-
regulated events in DKD.
CONCLUSIONS AND FUTURE
PERSPECTIVES

Cardiovascular events are pertinent to morbidity and mortality
in patients with DKD. Therefore, elucidation of molecular
circuitry that governs atherogenic changes remains a major
area of research. Recently, critical roles of ROCK isoforms in
vascular disease have been evaluated by researchers. James Liao
from Chicago and Hiroaki Shimokawa from Sendai are leaders in
this field. Liao et al. identified macrophage ROCK1 as an
essential element in the development of atherosclerosis
through the modulation of foam cell formation and
macrophage chemotaxis (Wang et al., 2008). ROCK2 also
influences foam cell formation by inhibiting peroxisome
proliferator-activated receptor-g-mediated reverse cholesterol
transport in inflammatory cells (Zhou et al., 2012). In vascular
smooth muscle cells, ROCK2 controls migration and
proliferation activities (Shimizu et al., 2013). In addition,
Shimizu et al. focused on the pathologic role of ROCK2 in
heart disease and showed that ROCK2 regulates hypertrophy of
cardiomyocyte and cell death through interaction with serum
TABLE 1 | Clinical trials of ROCK inhibitors.

Disease Interventions Target Phase Status Identifier Primary outcome

Psoriasis KD025 (SLx-2119)
KD025 (SLx-2119)
KD025 (SLx-2119)

ROCK2
ROCK2
ROCK2

2
2
2

Completed
Completed
Completed

NCT02106195
NCT02317627
NCT02852967

Safety and tolerability
Safety and tolerability
Number of subjects with a 75% decrease
in PASI

GVHD KD025 (SLx-2119) ROCK2 2 Active, not
recruiting

NCT03640481 Overall response rate

Systemic sclerosis KD025 (SLx-2119) ROCK2 2 Recruiting NCT03919799 CRISS response
Fasudil ROCK1/2 3 Completed NCT00498615 Skin temperature

Autoimmune disease/Fibrosis KD025 (SLx-2119) ROCK2 1 Completed NCT03907540 Absolute bioavailability
KD025 (SLx-2119) ROCK2 1 Completed NCT03530995 PK profile

Hepatic Impairment KD025 (SLx-2119) ROCK2 1 Recruiting NCT04166942 PK profile
Chronic kidney disease SAR407899A ROCK1/2 1 Completed NCT01485900 Number of patients reporting adverse

events
Atherosclerosis Fasudil ROCK1/2 2 Completed NCT03404843 Blood flow responses

Fasudil ROCK1/2 2 Completed NCT00120718 Vascular reactivity
Diabetic macular edema Fasudil ROCK1/2 3 Completed NCT01823081 Best corrected visual acuity
Retinopathy of prematurity Fasudil ROCK1/2 2/3 Recruiting NCT04191954 Retinal vascularization
Glaucoma Netarsudil (AR-11324) ROCK1/2 1 Recruiting NCT04234932 Peripapillary capillary perfusion density
Fuchs’ endothelial corneal
dystrophy

Ripasudil (K-115) ROCK1/2 4 Recruiting NCT03249337 Corneal clearing

Ripasudil (K-115) ROCK1/2 2 Recruiting NCT03813056 Time to corneal clearance
Amyotrophic lateral sclerosis Fasudil ROCK1/2 2 Recruiting NCT03792490 Safety and tolerability
Erectile dysfunction SAR407899 ROCK1/2 2 Completed NCT00914277 Duration of penile rigidity during sexual

stimulation
Septe
PASI, Psoriasis Area and Severity Index Score; CRISS, Combined Response Index in Diffuse Cutaneous Systemic Sclerosis (CRISS); GVHD, graft-versus-host-disease;
PK, pharmacokinetics.
mber 2020 | Volume 11 | Article 585633

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Matoba et al. ROCK Isoforms in Diabetic Kidney Disease
response factor and ERK (Shimizu and Liao, 2016). These
important findings coupled with the work of others have led to
an increasing appreciation for ROCK2 as a critical molecule for
not only renal disease but also cardiovascular disease.

As discussed above, published data have added to a
burgeoning body of evidence that ROCKs are critical
therapeutic targets against DKD and its related cardiovascular
events. However, some caveats must be considered before this
concept is accepted. First, the development of ROCK1-specific
inhibitors and prospective intervention studies using ROCK1 or
ROCK2 inhibitors are required in order to justify targeting
ROCK isoforms to treat DKD. Second, whether an isoform-
specific approach or pan ROCK inhibition would provide a
better therapeutic outcome has yet to be clarified. The
comparison of circulating and tissue levels of ROCK1 and
ROCK2 between DKD patients and healthy subjects would
facilitate our understanding the contribution of each isoform
to the pathogenesis of DKD. These studies will also help identify
useful targets of DKD therapy, which may vary by clinical stage,
and allow for the earlier recognition of patients with diabetes
who are at risk of DKD. Third, an open and thorough discussion
of the risks while balancing potential clinical benefits of ROCK
isoform inhibition is warranted. RhoA activation as well as RhoA
inhibition results in podocyte damage (Wang L. et al., 2012),
indicating that there is likely a narrow therapeutic window for
ROCK isoform activity. This information will provide important
insights to consider before commencing with ROCK isoform-
selective inhibition in patients. In addition, given the impairment
of insulin signaling in skeletal muscle observed in ROCK1
knockout mice (Lee et al., 2009), drugs with limited access to
the kidney may be beneficial for patients with diabetes. However,
it should be noted that the feasibility of ROCK inhibition has
already been established with fasudil, a pan ROCK inhibitor, in
patients with stroke (Shibuya et al., 2005). Moreover, clinical data
of statins, which inhibit both ROCK1 and ROCK2 through the
regulation of RhoA prenylation, demonstrate this medication to
be well tolerated and safe during long-term treatment (Ford
et al., 2016). Considering these findings alongside cogent
Frontiers in Pharmacology | www.frontiersin.org 6
evidence that ROCK is critical in versatile pathological aspects
of diabetes, targeting ROCK1 and/or ROCK2 is expected to have
therapeutic value for not only DKD but also other microvascular
complications (i.e. retinopathy, neuropathy) (Yokota et al., 2007;
Kanazawa et al., 2013). A deeper understanding of both the
divergent and redundant roles of each isoform is therefore
considered to be important for the development of effective
therapeutic strategies, and for improving the prognosis of
patients with diabetes.
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