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Background: Neutralizing monoclonal antibodies (mAbs) to SARS-CoV-2 are clinically
efficacious when administered early, decreasing hospitalization and mortality in patients
with mild or moderate COVID-19. We investigated the effects of receiving mAbs
(bamlanivimab alone and bamlanivimab and etesevimab together) after SARS-CoV-2
infection on the endogenous immune response.

Methods: Longitudinal serum samples were collected from patients with mild or
moderate COVID-19 in the BLAZE-1 trial who received placebo (n=153), bamlanivimab
alone [700 mg (n=100), 2800 mg (n=106), or 7000 mg (n=98)], or bamlanivimab (2800
mg) and etesevimab (2800 mg) together (n=111). A multiplex Luminex serology assay
measured antibody titers against SARS-CoV-2 antigens, including SARS-CoV-2 protein
variants that evade bamlanivimab or etesevimab binding, and SARS-CoV-2 pseudovirus
neutralization assays were performed.

Results: The antibody response in patients who received placebo or mAbs had a broad
specificity. Titer change from baseline against a receptor-binding domain mutant (Spike-
RBD E484Q), as well as N-terminal domain (Spike-NTD) and nucleocapsid protein (NCP)
epitopes were 1.4 to 4.1 fold lower at day 15-85 in mAb recipients compared with
placebo. Neutralizing activity of day 29 sera from bamlanivimab monotherapy cohorts
against both spike E484Q and beta variant (B.1.351) were slightly reduced compared with
placebo (by a factor of 3.1, p=0.001, and 2.9, p=0.002, respectively). Early viral load
correlated with the subsequent antibody titers of the native, unmodified humoral response
(p<0.0001 at Day 15, 29, 60 and 85 for full-length spike).
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Conclusions: Patients with mild or moderate COVID-19 treated with mAbs develop a
wide breadth of antigenic responses to SARS-CoV-2. Small reductions in titers and
neutralizing activity, potentially due to a decrease in viral load following mAb treatment,
suggest minimal impact of mAb treatment on the endogenous immune response.
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INTRODUCTION

Coronavirus disease 2019 (COVID-19) is caused by the novel
human pathogen severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) and has resulted in widespread global
morbidity and mortality (1).

The host immune response continues to be the best defense
against SARS-CoV-2 (2). While both innate and adaptive immune
processes are important, the humoral response against the virus
remains critical (3, 4).Healthy individuals exposed to SARS-CoV-2
mount a robust immune response involving the production of anti-
SARS-CoV-2 antibodies against a wide variety of SARS-CoV-2
epitopes across the nucleocapsid protein (NCP) and the spike
protein (5). Virus-neutralizing antibodies are primarily directed
to the receptor-binding domain (RBD) of the spike protein,
however some neutralizing epitopes reside within the N-terminal
domain (NTD) (6, 7).While individualswho recover fromCOVID-
19 develop robust immunoglobulin G antibody responses against
SARS-CoV-2 that can persist for at least 3-5 months after infection
(8, 9), waning titers and plasma neutralizing abilities over time have
been reported (10–12).

Several neutralizing monoclonal antibodies (mAbs) have
been developed to treat COVID-19. Two such antibodies,
bamlanivimab and etesevimab, bind to the RBD region of the
spike protein and have been shown to reduce nasopharyngeal
viral load in patients with mild or moderate COVID-19 and
prevent progression of COVID-19 leading to hospitalization or
death (13, 14). The efficacy of these mAbs can be reduced by
mutations within the RBD spike protein, such as at residue E484,
which negatively impacts bamlanivimab binding (13, 15).

Studies are necessary to assess the potential effect treatment
with neutralizing mAbs has on the specificity, magnitude, and
duration of the endogenous antibody response to SARS-CoV-2
infection. Using serum samples collected from patients with mild
or moderate COVID-19 enrolled in the BLAZE–1 trial who
received placebo, bamlanivimab alone, or bamlanivimab and
etesevimab together, we performed longitudinal analyses of
antibody responses to SARS-CoV-2 infection. We examined
the binding and neutralization activity of sera to SARS-CoV-2
viral proteins and assessed the relationship between early viral
load and antibody titers.
MATERIALS AND METHODS

Convalescent Serum Samples
Samples were obtained from individuals infected with SARS-CoV-
2 who received placebo, bamlanivimab (700, 2800, or 7000 mg), or
org 2
bamlanivimab (2800 mg) and etesevimab (2800 mg) together in
the phase 2 portion of the BLAZE-1 trial (NCT04427501) as
described previously (13). All donors provided written informed
consent. Treatment was administered within three days of the first
positive SARS-CoV-2 test sample collection. Serum samples were
collected longitudinally at time of enrollment [baseline (prior to
infusion)] and on day 3, day 15, day 29, day 60, and day 85 after
infusion. Prior to use in each assay, serum samples were
centrifuged for 5 minutes at 10000 x g to pellet any debris.

Luminex Multiplexing
Luminex xMAP technology is an established, multiplex, flow
cytometry-based platform that allows the simultaneous
quantitation of many protein analytes in a single reaction (16).
Antigen-coated microspheres were used to detect and quantitate
endogenous antibodies against multiple viral proteins
simultaneously (Table 2). The method was performed
essentially as previously described (17). Briefly, patient serum
samples were titrated (1:800 – 1:8E9) in phosphate buffered
saline-high salt solution (PBS-HS; 0.01 M PBS, 1% [bovine
serum albumin] BSA, 0.02% Tween, 300 mM NaCl) and
combined with Luminex MAGPlex microspheres coupled with
either SARS-CoV-2 or RBD mutant proteins. Diluted serum
samples and microsphere solution were incubated for 90 minutes
at room temperature, followed by a 60-minute incubation with
the detector phycoerythrin-conjugated anti-IgG Fc-specific
antibody (#109-115-098, Jackson Labs). Washed beads were
then resuspended in a PBS-1% BSA solution and read using a
Luminex FlexMAP 3D System with xPONENT Software.

Pseudovirus Production and
Characterization
E484K and E484Q mutagenesis reactions were performed using
the QuickChange Lightning Site-Directed Mutagenesis Kit
(Agilent #210519) using a template of a spike mammalian
expression vector based on the Wuhan sequence (Genbank
MN908947.3) with a deletion of the C-terminal 19 amino
acids. For the beta variant (B.1.351) pseudovirus a consensus
sequence representative of lineage was synthesized and
incorporated by Gibson cloning. Pseudoviruses bearing mutant
spike proteins were produced using the delta-G-luciferase
recombinant Vesicular Stomatitis Virus (rVSV) system
(KeraFast EH1025-PM, Whitt 2010). Briefly, 293T cells were
transfected with individual mutant spike expression plasmids,
and 16-20 hours later, transfected cells were infected with VSV-
G-pseudotyped delta-G luciferase rVSV, and 16-20 hours
thereafter conditioned culture medium was harvested, clarified
by centrifugation at 1320 g for 10 minutes at 4°C, aliquoted and
December 2021 | Volume 12 | Article 790469

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhang et al. Ab Responses to SARS-CoV-2
stored frozen at -80°C. Relative luciferase reporter signal read-
out was determined by luciferase assay (Promega E2650) of
extracts from VeroE6 cells infected with serially-diluted virus.
Luciferase activity was measured on a PerkinElmer EnVision
2104 Multilabel Reader.

Pseudovirus Neutralization Assays
Neutralization assays were carried out essentially as described
previously (18). Serum antibodies were diluted 4-fold in negative
serum and 10-point 3-fold titrations in 25% negative serum were
performed in 384 well polystyrene plates in duplicate using a
Beckman (Biomek i5) liquid handler. Positive and negative
control antibodies and an unrelated control (hIgG1 isotype)
were tested in a 10-point, 3-fold serial dilution starting at 8 µg/
mL, 2 µg/mL and 8 µg/mL, respectively, in 25% negative serum.
An empirically pre-determined fixed amount of pseudovirus
(Wuhan, E484Q, E484K, or the B.1.351 spike) was dispensed
by WDII liquid dispenser on titrated serum antibodies and
controls and pre-incubated for 20 minutes at 37°C. Following
pre-incubation, the virus-antibody complexes were transferred
by Biomek i5 to 8,000/well VeroE6 cells in white, opaque, tissue
culture treated 384W plates, and incubated for 16-20 hours at
37°C. Control wells included virus only (no antibody; 14
replicates) and cells only (14 replicates). Following infection,
cells were lysed with Promega BrightGlo and luciferase activity
was measured on the Biotek Synergy Neo2 Multimode Reader.

Viral Load Determination
Viral load was measured by nasopharyngeal swab followed by
quantitative RT-PCR reaction (13, 19). Viral load data is based
on the cycle threshold and calculated as an arbitrary unit. The
primer sequences for the RT-PCR assay have been reported
previously (20).

Statistical Analysis
Titer is commonly defined as the smallest dilution above the cut
point or the dilution factor at the cut point based on an
interpolation of assay values that straddle the cut point (21). In
the serology assay, we used the latter method to calculate the
titers (cut point for full-length spike, spike-RBD, spike-NTD,
and NCP was set as 3, and cut point for spike-RBD E484Q was
set as 1000). If the maximum signal of a titration curve is less
than the cut point, then the titer is imputed as 800 (smallest
dilution). The samples were run in three batches in the Luminex
serology assay, and batch effect was included as a fixed effect in
the statistical model for downstream analysis.

The treatment effects on titers were compared based on
change from baseline in log10 titer at different time points.
Mixed-model repeated-measure analysis with unstructured
covariance matrix (2-sided test with a level of 0.05) was used
to conduct the significance testing. Treatment group, visit day,
treatment × visit interaction, and batch effect were included as
fixed effects in the model. Adjustments for multiple testing were
not conducted; therefore, the findings should be interpreted as
exploratory. The statistical analyses were performed with R
software (version 4.0.3) (22). Spearman correlations between
viral load (at baseline and visit day 3) and log10 titer fold change
Frontiers in Immunology | www.frontiersin.org 3
from baseline (at visit day 3, 15, 29, 60, and 85) were computed.
Since most samples from the same patient were processed in the
same batch, batch has minimum impact on this correlation.

To calculate IC50 titer of data from the pseudovirus
neutralization assay, a 4-parameter logistic function was used
to estimate the absolute IC50 based on 1/dilution factor (bottom
is fixed at 0). If a sample has less than 50% neutralization over
observed concentration range or a poor fit (the standard error of
the IC50 is not estimable, majority of which has less than 50%
neutralization over observed concentration range, or the
estimated IC50 is larger than the maximum 1/dilution factor),
its IC50 titer was imputed to 0.125 (twice the maximum 1/
dilution factor). For the pseudovirus neutralization assay
analysis, treatment effects (compared to placebo) were
compared based on log10 1/IC50 titer using a non-parametric
Steel’s Test using JMP® (v14.1).
RESULTS

Patient Characteristics
Serum samples were obtained from patients with mild or moderate
COVID-19 enrolled in the BLAZE–1 trial who received placebo,
bamlanivimab (700 mg, 2800 mg, or 7000 mg), or bamlanivimab
(2800 mg) and etesevimab (2800 mg) together. Baseline
demographics and clinical characteristics of patients enrolled in
the BLAZE-1 study have previously been reported (13). Among the
placebo cohort, no patient reported an immunocompromised
condition and 3 patients (1.96%) reported receiving
immunosuppressive treatment at baseline, while among recipients
of bamlanivimab alone or bamlanivimab and etesevimab together 6
patients (1.45%) reported immunocompromised condition and 10
patients (2.41%) reported receiving immunosuppressive treatment
at baseline. A total of 568 patients provided serum samples, 560
samples were collected at baseline, and postbaseline samples were
collected at days 3, 15, 29, 60, and 85 (Table 1). Patients had mild to
moderate COVID-19, defined per US Food and Drug
Administration guidance (23), with symptoms including but not
limited to fever, cough, sore throat, malaise, headache, muscle pain,
gastrointestinal symptoms, or shortness of breath with exertion. A
total of 440 patients (77.5%) had mild COVID-19 at baseline, while
128 (22.5%) had moderate COVID-19 at baseline. Means of viral
load at baseline were 6.3 (standard deviation [SD] 2.2) and 6.9 (SD
2.0) for patients with mild and moderate COVID-19, respectively.
Participants were recruited into the study during the summer of
2020, prior to the widespread emergence of many of the SARS-
CoV-2 variants of interest/concern such as the Alpha, Beta,
Gamma, and Delta variants. Genotypic analysis of the SARS-
CoV-2 virus present in baseline samples confirm absence of these
SARS-CoV-2 variants in this cohort, with the majority of infecting
viruses containing the D614G substitution in spike found in the B.1
pangolin lineages.

Antibody Responses to SARS-CoV-2
A multiplex assay using the Luminex platform was performed to
determine the magnitude and specificity of antibody responses to
SARS-CoV-2. Antibody titers against four different SARS-CoV-2
December 2021 | Volume 12 | Article 790469
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spike versions (the full-length spike protein bearing the D614G
substitution, the Spike-RBD, the RBD carrying the E484Q
alteration, or the NTD) and the nucleocapsid protein (NCP)
(Table 2) were calculated using serum samples obtained from
each cohort. Since bamlanivimab does not bind significantly to
Spike RBD with alterations at residue E484 (15, 24), and as the
epitopes for bamlanivimab and etesevimab lie within the spike
RBD (25, 26), titers against Spike RBD E484Q, NTD, or NCP
proteins solely reflect the endogenous antibody response. Titers
against the full-length spike protein and the Spike-RBD, were
greater among cohorts that received bamlanivimab monotherapy
(all doses), as anticipated (27), and bamlanivimab and
etesevimab together compared with the placebo cohort,
reflecting detection of bamlanivimab and/or etesevimab
(Figure 1). Tracking the endogenous antibody responses
against SARS-CoV-2 proteins, titers were generally lowest at
baseline, with levels increasing over time and peaking around day
29 followed by slight declines in titers through day 85. The same
patterns for Spike RBD E484Q, the NTD, and NCP titers were
observed in the mAb-receiving cohorts. In the placebo cohort,
least square means of titers against the SARS-CoV-2 viral
proteins at day 85 were reduced 1.4 to 1.7 fold from day 29.
Similar reductions were observed for the cohorts treated with
mAbs: among the bamlanivimab monotherapy cohorts, least
square means of titers against Spike-NTD and NCP at day 85
was reduced 1.3 to 1.5 fold and 1.6 to 1.7 fold, respectively, from
day 29. Treatment with bamlanivimab and etesevimab together
resulted in 1.3 and 1.6 fold reductions in least square means of
titers against Spike-NTD and NCP at day 85 from day 29.
Frontiers in Immunology | www.frontiersin.org 4
Effect of mAb Treatment on Endogenous
Antibody Titers
Next, we calculated the titer change from baseline at day 3, 15,
29, 60, and 85 against the Spike-NTD and NCP (i.e., proteins that
bind neither bamlanivimab nor etesevimab), as well as Spike-
RBD E484Q (a mutation that negatively impacts bamlanivimab
binding) (Figure 2). Compared to placebo, treatment with
bamlanivimab monotherapy resulted in an attenuated increase
in antibody titer changes from baseline from day 15 through day
85 against Spike-E484Q (ranging from 2.0 to 2.9 fold across
bamlanivimab doses and time points), Spike-NTD (ranging from
2.5 to 4.1 fold), and NCP (ranging from 1.4 to 2.2 fold)
(Figure 2). Similarly, among recipients of bamlanivimab and
etesevimab administered together, an attenuated increase in
antibody titer changes from baseline from day 15 through day
85 against both Spike-NTD (ranging from 2.9 to 3.7 fold) and
NCP (ranging from 2.5 to 3.4 fold) were observed compared
with placebo.
mAb Treatment Effect on Neutralization of
SARS-CoV-2 Pseudoviruses
To probe the functionality of the polyclonal antibody response,
we tested a randomly selected subset (stratified by treatment
group) of the day 29 serum samples for neutralization activity.
SARS-CoV-2 viral neutralization was measured using a vesicular
stomatitis virus (VSV)-based pseudovirus (18, 28). We assessed
IC50 titers of serum samples against three different pseudoviruses,
containing the E484Q or E484K substitutions in spike, as well as
TABLE 1 | Number of patients in the BLAZE-1 study that provided serum samples at each timepoint.

Treatment Baseline Day 3 Day 15 Day 29 Day 60 Day 85

Placebo 152 140 124 126 125 120
Bamlanivimab 700 mg 99 93 90 86 82 84
Bamlanivimab 2800 mg 104 100 90 91 91 92
Bamlanivimab 7000 mg 97 91 89 86 77 80
Bamlanivimab (2800 mg) and etesevimab (2800 mg) together 108 98 95 96 91 80
Dec
ember 2021 | Vo
lume 12 | Article
Patients received placebo, bamlanivimab alone (700, 2800, or 7000 mg), or bamlanivimab (2800 mg) and etesevimab (2800 mg) together.
TABLE 2 | Details on SARS-CoV-2 proteins.

Serology Assays

Protein SARS-CoV-2 Sequence Length
(AA)

Backbone Expression

Full-length Spike (with
D614G)

1195 (14-1208) Wuhan WT spike CHO

Spike-RBD 199 (329-527) Wuhan RBD CHO
Spike-RBD E484Q 223 (319-541) Wuhan RBD CHO
Spike-NTD 294 (14-307) Wuhan NTD CHO
NCP 419 (1-419) Wuhan NCP CHO

Pseudovirus Assays
E484Q 1256 (1-1256) Wuhan spike NA
E484K 1256 (1-1256) Wuhan spike NA
B.1.351 1253 (1-241; 245-1256) Wuhan spike with (L18F,D80A,D215G,del242-244, K417N,E484K, N501Y,D614G,

A701V)
NA
CHO, Chinese hamster ovary cells; NA, not applicable; NCP, nucleocapsid protein; NTD, N-terminal domain; RBD, receptor-binding domain; WT, wild-type.
790469
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FIGURE 2 | Treatment effect of bamlanivimab monotherapy or bamlanivimab and etesevimab together at days 3, 15, 29, 60 and 85. Least squares means ( ± SE)
of fold changes from baseline were plotted across visit days for different treatment groups: green= 700 mg bamlanivimab, orange= 2800 mg bamlanivimab, gray =
7000 mg bamlanivimab, blue= 2800 mg bamlanivimab and 2000 mg etesevimab, and red = placebo. Titers against Spike-RBD E484Q not shown for cohort
receiving bamlanivimab and etesevimab together as etesevimab binds to this mutant protein. The number of samples at each timepoint are outlined in Table 1.
RBD, Receptor binding domain; NCP, Nucleocapsid protein; NTD, N-terminal domain; SE, Standard error.
FIGURE 1 | Antibody responses to SARS-CoV-2 viral proteins among patients treated with bamlanivimab monotherapy, bamlanivimab and etesevimab together,
and placebo. Least squares means ( ± SE) were plotted across visit days for different treatment groups. The full-length spike protein carries the D614G substitution.
Titers against Spike-RBD E484Q not shown for cohort receiving bamlanivimab and etesevimab together as etesevimab binds to this mutant protein. The number of
samples at each timepoint are outlined in Table 1. RBD, Receptor binding domain; NCP, Nucleocapsid protein; NTD, N-terminal domain; SE, Standard error.
Frontiers in Immunology | www.frontiersin.org December 2021 | Volume 12 | Article 7904695
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the beta-variant (B.1.351) which contains E484K and K417N
substitutions that have been shown to significantly reduce the
binding of both bamlanivimab and etesevimab (29).
Bamlanivimab treatment (all dose levels pooled) resulted in
significantly smaller neutralization of spike E484Q pseudovirus
compared with placebo (p=0.001) with the median of the
bamlanivimab group 3.1-fold lower compared to the median of
the placebo group. Similar neutralization activity was observed
against the Spike E484K pseudovirus (data not shown). As
anticipated, treatment with bamlanivimab and etesevimab
together resulted in significantly increased neutralization of
spike E484Q pseudovirus compared with placebo (p<0.0001)
with the median of the bamlanivimab and etesevimab together
group 15.2-fold higher compared to the median of the placebo
group, due to the presence of etesevimab in the serum (Figure 3).
Treatment with bamlanivimab alone or bamlanivimab and
etesevimab together reduced sera neutralization against the beta
variant B.1.351 compared with placebo (Figure 3). Reciprocal
IC50 values were slightly lower in both bamlanivimab
monotherapy (p=0.002) and bamlanivimab and etesevimab
together (p=0.019) treatment arms compared with placebo with
medians 2.9 and 2.3-fold lower than placebo median, respectively.

Early Viral Load Predicts Antibody Titer
Next, we explored whether the amount of SARS-CoV-2
nasopharyngeal viral load impacts the magnitude of the
endogenous, pharmacologically unmodified antibody
response. Viral load was measured by nasopharyngeal swab
followed by quantitative reverse transcriptase–polymerase
chain reaction (13). Using serum samples provided by
patients in the placebo cohort, we investigated the
relationship between early viral load at baseline and the log10
change from baseline in antibody titer against the full-length
spike and NCP at days 3, 15, 29, 60, and 85 (Figure 4). Patients
with higher viral loads at baseline showed greater fold increases
in antibody titers against the full-length spike and the NCP
Frontiers in Immunology | www.frontiersin.org 6
proteins on day 15 (r=0.47, r=0.43, respectively; p<0.0001) and
day 29 (r=0.49, r=0.39, respectively; p<0.0001) when antibody
responses peaked (but not on day 3 when most titers were
below the detection limit), indicating that baseline viral load
determines the magnitude of the humoral response. These
relationships between early viral load and antibody titers
against the full-length spike and the NCP proteins persisted
to day 60 (r=0.49, r=0.37, respectively; p<0.0001) and day 85
(r=0.43, r=0.3 respectively; p<0.001). Similar relationships were
observed between antibody titers and viral loads at day 3 (data
not shown).
DISCUSSION

This study provides a comprehensive assessment of the effects of
mAb treatment on endogenous antibody responses to SARS-
CoV-2 infection.

We found that patients produce a wide breath of serological
responses against SARS-CoV-2 epitopes regardless of mAb
treatment, with responses durable through to 85 days. To
explore the effects on endogenous responses among mAb
recipients, we utilized the finding that SARS-CoV-2 variants
carrying mutations in the RBD of the spike protein have the
potential to evade mAb treatment (15, 23, 29, 30). As the E484
residue is a key contact within the epitope of bamlanivimab
(25), E484K and E484Q substitutions greatly attenuate binding
of bamlanivimab; however, binding of etesevimab persists, due
to its distinct binding epitope (13). Therefore, we examined
changes in antibody titers against the Spike-RBD E484Q
protein, in addition to titers against proteins that lie outside
of the epitopes of both bamlanivimab and etesevimab (Spike-
NTD and NCP). We found that mAb treatment resulted in
smaller increases in anti-SARS-CoV-2 endogenous antibody
titers (1.4 to 4.1 fold) as compared to placebo, with some being
statistically significant. Despite these small reductions,
FIGURE 3 | Neutralization activity of serum samples against spike E484Q and beta variant (B.1.351) at day 29. Each data point represents the reciprocal IC50 titer
from serum samples collected from an individual patient. Median of the reciprocals of IC50 titers against the spike E484Q were 225, 213, and 220, for sera collected
from the bamlanivimab 700, 2800, and 7000 mg cohorts, respectively. Median of the reciprocals of the IC50 titers against beta (B.1.351) were 49, 87, and 86, for
sera collected from the bamlanivimab 700, 2800, and 7000 mg cohorts, respectively. Boxes and horizontal bars denote the interquartile range (IQR) and the median
reciprocal IC50 titer, respectively. The whiskers are equal to the maximum and minimum values below or above the median at 1.5 times the IQR. Ratio = median in
bamlanivimab or bamlanivimab and etesevimab vs median in placebo. p = p-value from non-parametric Steel’s test.
December 2021 | Volume 12 | Article 790469
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antibody titers among mAb recipients showed comparable
patterns to the placebo group from baseline to day 85.
Clinical relevance of these slightly lower titers is not known.
Further, it remains to be seen whether mAb-treated patients
and placebo-treated patients possess equal levels of protection
upon SARS-CoV-2 re-exposure. The effect of mAb treatment
on memory responses (including T and B cells) also remains
unknown. Importantly, the level of exogenously administered
antibody is much higher than the titer of endogenous anti-
spike antibodies, so patients who receive mAb treatment have
an overall greater ability to neutralize virus.

To assess the effects of mAb treatment on the spectrum of
epitopes neutralized, we measured IC50 titers against Spike
E484Q, Spike E484K, and the beta variant (B.1.351). The latter
is a variant of concern and has two key mutations in the RBD of
Frontiers in Immunology | www.frontiersin.org 7
spike, E484K and the K417N, and can escape both bamlanivimab
and etesevimab recognition and neutralization in vitro (15, 31).
We found that serum samples collected from patients who
received bamlanivimab treatment were slightly less effective in
neutralizing spike E484Q and beta variant compared with
placebo (by a factor of 3.1 and 2.9, respectively). As noted
before, it is unknown whether these small reductions are
clinically meaningful.

Finally, we investigated the relationship between the early
viral load and endogenous antibody titers over time within the
placebo cohort. The results show that individuals with lower
viral loads at baseline generate lower antibody titers at later
time points (i.e. from day 15 and beyond), suggesting that
early viral load determines the magnitude of the subsequent
antibody response. This finding, taken together with findings
FIGURE 4 | The natural history relationship between viral load at baseline (x-axis) and the fold change in antibody titer against the full-length spike (top panel) and
NCP (bottom panel) from baseline to day 3, 15, 29, 60, and 85 in the placebo cohort. 42% and 54% of patients were sero-negative at both baseline and day 3 for
full-length spike and NCP, respectively. r is the spearman correlation between viral load and log of titer fold change from baseline; p is the p-value associated with
spearman correlation test.
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from previous reports showing that mAb treatment
administered early during infection reduces SARS-CoV-2
viral load (13, 19) , suggest that the reductions in
endogenous antibody titers among mAb recipients may be
due to reduced early viral load as a result of the efficacy of
mAb treatment. In addition, bamlanivimab is an IgG1 and
may also inhibit endogenous B cell activation through
engagement of FcgRIIb, though we do not know the level of
contribution of this relative to the effect of decreased viral
antigen exposure. As mean viral load at baseline was similar
across treatment groups (13), the observed effects on
endogenous antibody responses can be attributed to mAb-
dependent reductions in viral load following treatment.
Importantly, this reduction in endogenous antibody
responses does not slow viral clearance during acute SARS-
CoV-2 infection; indeed, viral decay is significantly accelerated
among patients administered bamlanivimab alone or
bamlanivimab and etesevimab together (13, 19). This finding
may have implications for optimal timing of SARS-CoV-2
vaccination following recovery from COVID-19 as a result of
neutralizing mAb therapy.

Taken together, the similarity in breadth and duration of
response between the placebo and mAb treatment cohorts
suggest that a similar immune response was induced upon
SARS-CoV-2 infection, but that the magnitude of endogenous
antibody production was attenuated presumably due to the
reduction in antigen exposure (as suggested by reduced viral
load) achieved by mAb treatment.

This study has several limitations. First, it is not yet known
whether the risk to reinfection with SARS-CoV-2 is similar for
mAb-treated patients and placebo-treated patients. Second,
since mAb treatment resulted in a small effect on endogenous
antibody production, we hypothesize that treatment may also
impact vaccine-induced antibody responses. However, this
remains to be evaluated in future dedicated studies. Third, we
could not evaluate changes to antibody titers for additional
SARS-CoV-2 variants, nor wild-type spike/RBD proteins in
this study due to drug interference. Other groups have found
that the polyclonal immune response for some individuals has
at least a proportion that is directed at the E484 position (32).
By using the drug tolerant E484Q/K spike-RBDs in this
investigation, we may be underestimating the overall
endogenous spike immune response. Fourth, we assessed the
impact of just two mAbs (bamlanivimab alone or
bamlanivimab and etesevimab together) on the endogenous
immune response, and therefore we do not know the effect of
other mAbs on the immune response. However, we
hypothesize similar results, as those mAbs also reduce viral
load upon administration (33).

In conclusion, this research identified that mAb therapy for
COVID-19 infection does not abolish the endogenous
immune response against SARS-CoV-2, but instead results
in only minor attenuations of titer and neutralization
capacity. We hypothesize that these minor changes pose
very low risk for patients in terms of reinfection and long-
term immune protection.
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