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Cellular immunotherapies represent a promising approach for the treatment of cancer.
Engineered adoptive cell therapies redirect and augment a leukocyte’s inherent ability to
mount an immune response by introducing novel anti-tumor capabilities and targeting
moieties. A prominent example of this approach is the use of T cells engineered to express
chimeric antigen receptors (CARs), which have demonstrated significant efficacy against
some hematologic malignancies. Despite increasingly sophisticated strategies to harness
immune cell function, efficacy against solid tumors has remained elusive for adoptive cell
therapies. Amongst cell types used in immunotherapies, however, macrophages have
recently emerged as prominent candidates for the treatment of solid tumors. In this review,
we discuss the use of monocytes and macrophages as adoptive cell therapies.
Macrophages are innate immune cells that are intrinsically equipped with broad
therapeutic effector functions, including active trafficking to tumor sites, direct tumor
phagocytosis, activation of the tumor microenvironment and professional antigen
presentation. We focus on engineering strategies for manipulating macrophages, with a
specific focus on CAR macrophages (CAR-M). We highlight CAR design for
macrophages, the production of CAR-M for adoptive cell transfer, and clinical
considerations for their use in treating solid malignancies. We then outline recent
progress and results in applying CAR-M as immunotherapies. The recent development
of engineered macrophage-based therapies holds promise as a key weapon in the
immune cell therapy armamentarium.

Keywords: CAR (chimeric antigen receptor), solid tumor, adoptive cell immunotherapy, synthetic biology,
macrophage/monocyte
INTRODUCTION

In recent years, cellular immunotherapy has emerged as a promising approach for treating cancer.
These therapies harness the immune system’s capacity to clear foreign pathogens and redirect the
response towards tumor associated antigens (TAAs). Cells expressing chimeric antigen receptors
(CARs) represent a major class of cellular immunotherapy that program immune cells to recognize
TAAs and initiate a targeted antitumor response (1). T cells equipped with CAR (CAR-T) have shown
org November 2021 | Volume 12 | Article 7833051
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clinical efficacy in numerous hematological malignancies, leading
to the approval of CD19 and BCMA targeted CAR-T products (2).

Although some hematological malignancies have been
readily treated by CAR-T, solid tumors present distinct
challenges that limit anti-tumor activity. Unlike hematologic
malignancies – which allow for disease access in the peripheral
blood, bone marrow, lymph nodes, or spleen – solid tumors
require active trafficking, extravasation, and penetration into
often immunologically cold and dense fibrotic masses.
Developing tumors limit T cell recruitment and infiltration,
activate broad suppressive pathways to limit T cell activation,
and demonstrate heterogenous TAA expression (3–5).
Highlighting the potential of CAR-T against solid tumor targets
and the barrier of tumor infiltration, a recent case report
demonstrated that anti-HER2 CAR-T were able to clear HER2+
sarcoma that metastasized to the bone marrow – a niche to which
CAR-T have access (6). Overwhelmingly, systemic therapy with
CAR-T have led to minimal efficacy or transient responses.
Numerous efforts have therefore been made to create improved
iterations of CAR therapies that overcome solid TME challenges.
One approach has been to better equip T cells for the TME using
synthetic biology – optimization of CAR framework and signaling
domains, deletion of inhibitory receptors with CRISPR, and
overexpression of accessory genes such as cytokines, immune
ligands, and/or transcription factors (7, 8). Combination
therapies with checkpoint inhibitors have also improved CAR-T
efficacy, as demonstrated with mesothelin-targeting CAR-T and
programmed cell death protein 1 (PD-1) blockade (9).

More recently, significant progress has been made in extending
the CAR platform from T cells to alternative leukocytes, such as
CAR-expressing NK and gamma-delta (gd) T cells, whose
biological functions may offer improved safety profiles or off-
the-shelf potential (10, 11). Compared to conventional CAR-T,
these lymphocytes offer reduced risk of alloreactivity, distinct
modes of cytotoxicity, and reduced likelihood of cytokine release
syndrome (CRS) (11). The success of these novel CAR-
lymphocytes raises the question: which immune cells are the
best chassis for adoptive CAR immunotherapies? An ideal CAR-
immune cell would localize to and persist within the TME while
coordinating a broad and robust immune response. The careful
choice of immune cell could provide the critical foundation for
efficacious CAR therapies, building upon the extensive body of
work that has been achieved with CAR-T. Given that CARs have
only been tested in a subset of immune cells, continued
exploration is warranted to identify the optimum cell type for
targeting solid tumors.

Macrophages and other cells of the myeloid lineage could
potentially overcome the barriers to treating solid tumors that
have hindered CAR-T thus far (12–16). Macrophages are
phagocytic cells of the innate immune system that are critical for
clearing foreign pathogens (13). Unlike lymphocyte-based therapies,
macrophages readily localize to and persist within the TME (14).
Macrophages can influence surrounding immune cells in both pro-
and anti-inflammatory manners and are adept at remodeling the
extracellular matrix (ECM) (13, 15). Macrophages are innate
immune cells with potent phagocytic and cytotoxic capabilities
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that can initiate and potentiate an adaptive immune response via
T cell recruitment, antigen presentation, co-stimulation, and
cytokine secretion (13, 16). Taken together, these effector
functions enable epitope spreading and alleviate challenges from
target antigen heterogeneity. In this review, we discuss the
application of macrophages as cell therapies for targeting solid
tumors. We outline strategies and challenges for engineering
antitumor functions in adoptively transferred macrophages. We
particularly focus on the design of CAR-Macrophages (CAR-M)
and provide a current perspective on the field.
MACROPHAGES FOR TARGETING
SOLID TUMORS

Macrophages are capable of numerous effector functions that
could support tumor clearance. Their phenotype is highly plastic
and exists across a spectrum of pro- and anti-inflammatory
states. Several reviews have comprehensively summarized the
dichotomous nature of macrophage polarization (17, 18); here,
we provide a brief overview of macrophage phenotype for the
context of solid tumor therapies. “Classically activated” (M1)
macrophages feature a proinflammatory phenotype that is
typically induced by IFN-g from T helper cells Type 1 (Th1).
M1 macrophages secrete pro-inflammatory cytokines such as
TNF-a, IL-6, IL-12 and IL-1b which can coordinate an immune
response and generate reactive oxygen species to facilitate killing
of pathogens (19, 20). Through such mechanisms, M1
macrophages have been shown to exhibit increased tumoricidal
activities in vitro (21). Activated macrophages upregulate
expression of antigen presentation machinery, such as major
histocompatibility complex class II (MHC-II), CD80 and CD86,
and can thereby serve as antigen presenting cells (APCs) that
activate the adaptive immune response by cross-presenting
phagocytosed antigens (22–24). Macrophages can thus remove
pathogens either directly or by educating the surrounding
immune system, both of which would be invaluable for
eradicating solid tumors.

In cancer, macrophages often adopt an anti-inflammatory or
“alternatively activated” (sometimes referred to as M2)
phenotype. Alternatively activated macrophages mediate tissue
repair and secrete immunoregulatory cytokines such as IL-4,
IL-10, IL-13 and TGF-b, which many solid tumors exploit to
support their own growth (25–27). Monocytes are actively
recruited to the TME via chemoattractants such as CCL2,
where they differentiate into tumor-associated macrophages
(TAMs) (28). Within the TME, hypoxia and elevated T helper
cells Type 2 (Th2) cytokine levels bias TAMs to express tumor-
favoring genes (29–31). TAMs support angiogenesis and
increased vascular density, thereby promoting tumorigenesis
(32). Furthermore, TAMs favor regulatory T cell responses and
suppress effector T cell functions through mechanisms including
immunosuppressive cytokine secretion, upregulation of
programmed death ligand-1 (PDL-1), and enzymatic depletion
of L-arginine (33, 34). TAM enrichment in the TME is thus
correlated with poor overall prognosis during natural tumor
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progression (35). While M1 and M2 macrophage categorization
is a significant simplification of the intratumoral phenotypic
spectrum, macrophages have a dynamic relationship with the
TME, supporting the notion that using synthetic biology to
control macrophage phenotype and function has significant
potential to drive anti-tumor immunity.
REPROGRAMMING MACROPHAGES
FOR TUMOR SUPPRESSION WITH
CELLULAR ENGINEERING

A crucial challenge when generating macrophage-based cancer
therapies is enabling proinflammatory effector functions that
persist despite the immunosuppressive TME. Efforts to do so
broadly fall into two camps – in situ reprogramming of TAMs, or
ex vivo priming of macrophages for adoptive cell transfer.
Extensive work has been done on the former to repolarize or
deplete TAMs in situ, and this work has recently been reviewed
elsewhere (36, 37). Here, we focus on ex vivomanipulations used
in adoptive therapies, including pre-treatment with recombinant
proteins, expression of therapeutic transgenes, and gene editing
with CRISPR-Cas9.

Historically, adoptive macrophage therapies have used
recombinant proteins or small molecules to prime immune
responses ex vivo (38–42). Earlier studies have shown that
IFN-g treatment enhances macrophage cytotoxicity in vitro
(21). The first dose-escalation studies in humans therefore
isolated peripheral blood monocytes from patients, cultured
and differentiated them into macrophages over the course of 7
days, and primed them with IFN-g for 18 hours prior to infusion
(38, 39). However, IFN-g-primed macrophages had minimal
clinical efficacy and failed to induce significant tumoricidal
activity. The adoptive transfer of M1-activated macrophages
was well-tolerated by patients, with clinical side effects
primarily limited to fever and flu-like symptoms (41). Follow-
up studies further showed that radiolabeled macrophages were
detected at sites of metastasis for more than 7 days following
infusion (43). Collectively, these trials demonstrated the
feasibility of manufacturing and safety of delivering billions of
autologous macrophages through intravenous administration.
Results from these early trials thus provided a critical
foundation for adoptive myeloid cell therapies.

Recent approaches have used genetic engineering to design
macrophages that express proinflammatory transgenes of interest
(12, 44–49). These strategies leverage the tumor-homing
tendences of macrophages to locally deliver therapeutic cargo
and induce cytotoxic activity within the tumor niche. For
example, IL-12 is a pro-inflammatory cytokine that activates T
and NK cells, but its clinical application is hindered by a narrow
therapeutic window that precludes safe systemic administration
(50). Multiple groups have attempted to overcome the limitations
of IL-12 cytokine therapy by recombinantly expressing the
cytokine within genetically engineered macrophages (GEMs) or
myeloid cells (GEMys) (44, 45). Preclinical models demonstrated
that GEMs and GEMys were able to activate a T cell response and
Frontiers in Immunology | www.frontiersin.org 3
prolong survival without inducing systemic toxicity. Similarly,
studies have used GEMs to locally deliver interferon a (IFN-a)
or IL-21, which promote immune cell activation, or soluble
transforming growth factor receptor II (TGFbR2), which
impedes TGFb-mediated immunosuppression (46, 47). Whereas
these approaches stimulate the immune system in a constitutive
manner, other studies have focused on confining cytotoxicity to
antigen-specific contexts. Gardell et al. engineered antigen-specific
killing using GEMs that secrete a bispecific T cell engager (BiTE),
which creates a functional bridge between T cell receptors and
mutated epidermal growth factor receptor variant III (EGFRvIII)
on glioblastoma cells (48). BiTE-secreting GEMs facilitated
antigen-specific killing by T cells, which was further augmented
by the groups work on IL-12 GEMs (44). Cha et al. similarly
targeted EGFR by encoding a secreted single-chain variable
fragment (scFv) fused to a Fc moiety, which opsonized tumor
cells and induced antibody-dependent cellular phagocytosis
(ADCP) by macrophages (49). Notably, engineered macrophages
can deliver cargo other than genetically encoded proteins; for
example, Huang and colleagues used nanoparticles to engineer
macrophages that carry photo-sensitive cytotoxic agents, which
are released and induce immunogenic cell death upon exposure
to near infrared light (51).

Rather than overexpressing transgenes, inhibiting gene
expression using CRISPR-Cas9, zinc finger nucleases, and
TALENs have been utilized to augment CAR-T and NK cell
function (52–54). Recently, there has been increasing interest in
gene editing human myeloid cells, and several nucleofection-based
methods for transiently delivering CRISPR-Cas9 ribonucleoproteins
(RNPs) to primary myeloid cells have been employed (55, 56), as
well as specialized methods using nanoparticles to deliver Cas9
plasmid or RNPs (57, 58). Attractive targets for gene editing include
regulatory proteins that block anti-tumor functions, such as signal
regulatory protein-a (SIRPa). Cancer cells expressing CD47
stimulate macrophage SIRPa to generate a “don’t eat me” signal
to evade phagocytosis (59), and the SIRPa/CD47 signaling axis is
now a well-established checkpoint in tumor immunity (60). Ray
et al. therefore performed a SIRPa knockout (KO) in the murine
monocyte/macrophage cell line RAW264.7 using CRISPR-Cas9 and
demonstrated that SIRPa-KOmacrophages in this system exhibited
enhanced phagocytic ability against cancer cells in vitro (58). A
subsequent study by Bian et al. demonstrated the therapeutic
potential of SIRPa-KO macrophages using syngeneic in vivo
models and SIRPa-deficient mice (61). The authors in this study
demonstrated that SIRPa-deficient macrophages gained potent
anti-tumor properties and coordinated a robust immune response
when delivered in combination with radiotherapy (61). Similarly
promising results were generated by Myers et al. upon targeting the
tyrosine phosphatase Shp1, which signals downstream of SIRPa to
propagate anti-phagocytic signals (62). Instead of irreversibly
editing genes, numerous CRISPR-based technologies regulate gene
transcription using a catalytically dead Cas9 (dCas9) and chromatin
remodeling factors (63). For example, Liu et al. silenced CD45,
CD209 and TICAM1 genes in primary human monocytes using
CRISPR interference (CRISPRi), wherein dCas9 is fused to a KRAB
domain (64). Dong et al. used dCas9 fused to a histone methylase to
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epigenetically silence hypoxia inducible factor 1 subunit alpha
(Hif1a), which mediates TAM immunosuppressive functions
(65). When tested in a murine melanoma model, their Hif1a
Epigenetically Repressed Macrophage (“HERM”) was able to
reprogram the tumor’s immunosuppressive microenvironment
and prolong survival (65).
CAR-M: MACROPHAGES TAKE
THE WHEEL

CARs provide a flexible platform for directing immune cell
effector functions towards antigen-expressing tumor cells and
can promote macrophage antitumor capabilities. Initial studies
demonstrating the success translating the synthetic receptors to
macrophages are summarized in Figure 1.

Designed, Sealed, and Delivered;
Producing CARs for Expression
in Macrophages
Current efforts to engineer CAR-M have found that basic CAR
design principles from the T cell field hold true for macrophage
biology. Traditional CARs are modular transmembrane proteins
consisting of an extracellular antigen-recognition domain, a
hinge domain, and one or more cytoplasmic signaling domains
(1, 66). We have demonstrated that CARs comprising an scFv
against broadly representative targets CD19, HER2, and
mesothelin, a CD8 hinge and transmembrane domain, and the
CD3z intracellular domain efficiently redirect macrophages,
Frontiers in Immunology | www.frontiersin.org 4
guiding antigen dependent phagocytosis, cytokine release, and
anti-tumor activity (67). Macrophages expressing CARs with
CD3z, but not with CD3z deletions/tyrosine mutations, killed
and phagocytosed tumor cells in an antigen-specific manner.
Although CD3z is canonically used in CARs due to its role in T
cell activation, its cytosolic domain bears significant homology
with the macrophage-native Fc receptor common gamma chain
(FcRg) that drives ADCP, though with 3 ITAM domains. We
confirmed that CAR-M constructed with either the CD3z or
FcRg activating domain were functionally similar in phagocytosis
assays, conversely complementing earlier findings showing that
CD3z- and FcRg-based chimeric receptors were comparably
capable of activating T cells (66).

Indeed, the choice of signaling domain is of particular interest
when designing CAR-M, and several groups have explored
alternative domains. Morrissey et al. designed CAR-M by
screening cytoplasmic domains from murine phagocytic
receptors including multiple EGF-like-domains protein 10
(Megf10), FcRg, adhesion G protein-coupled receptor B1 (Bai1)
and tyrosine-protein kinase Mer (MerTK) (68). Primary murine
macrophages expressing the FcRg- or Megf10-based CAR
exhibited antigen-specific phagocytic capabilities. Niu et al.
designed anti-C-C chemokine receptor type 7 (CCR7) CAR-M
to target a newly identified LDhiCCR7hi immunosuppressive cell
population (69). Their design utilized CCL19, the natural ligand of
CCR7, as the receptor’s antigen-recognition domain, rather than
an scFv. For the intracellular domain, they evaluated activation
domains from MerTK, toll-like receptor 2 (TLR2), TLR4, TLR6
and the CAR-T second-generation 4-1BB-CD3z. When screened
FIGURE 1 | Methods of targeting tumors using CAR-M. (Top) Representative viral and non-viral methods for delivering transgenes to macrophages are listed.
(Middle) Representative CAR designs that have been functionally validated in macrophages, with annotated antigen-targeting and cytosolic domains. The system in
which the receptors were validated is noted: either human or murine, testing with primary cells or exclusively with immortalized cell lines. (Bottom) Major mechanisms
of tumor clearance by CAR-M.
November 2021 | Volume 12 | Article 783305
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in the RAW264.7 cell line, CAR-M bearing the MerTK activation
domain exhibited the greatest tumor cell toxicity. Interestingly,
while anti-CCR7 MerTK-based CAR-M performed well in this
context, Morrissey et al’s anti-CD19 CAR bearing the same
cytosolic domain was unable to bind antigen-functionalized
beads, despite expression at the cell surface (68). Such
discrepancies hint that optimization and careful functional
evaluation is necessary when generating new CAR-M
architectures. In a final example, Zhang et al. designed a CAR
bearing the activation domain from CD147 (CAR-147), a protein
that regulates matrix metalloproteinase (MMP) expression and
ECM remodeling (70). Instead of triggering phagocytosis, CAR-
147 targeted the tumor ECM by upregulating expression of MMPs
upon antigen recognition. While CD147 itself is not macrophage-
specific, the utilization of this CAR design allowed for CAR-
dependent secretion of MMPs within the tumor. These studies
collectively illustrate that the modular CAR template can
customize how macrophages respond to target antigens. Future
efforts to engineer CAR-M will likely tap into the plethora of
sophisticated CAR designs that have been developed for T cells,
incorporating tandem activation domains (71), multi-antigen logic
gates (72, 73), or drug-sensitive modules (74–76).

Delivering CARs and other transgenes to macrophages can
present a challenge for researchers, but recent advances in gene
delivery have enabled several viral and non-viral strategies for
doing so. Myeloid cells are proficient at detecting and responding
to foreign nucleic acids (77), making macrophages and
monocytes resistant to genetic manipulation. Bobadilla et al.
created novel HIV-1-derived lentiviral particles capable of
infecting myeloid cells by leveraging the viral accessory protein
Vpx (78). Upon infection, Vpx mediates degradation of
SAMHD1, a myeloid-specific HIV-1 restriction factor that
inhibits lentiviral transduction by limiting the deoxynucleotide
pool and preventing efficient reverse transcription (79). The
group demonstrated that modified lentiviral virions containing
Vpx can efficiently deliver transgenes to myeloid cells. The Vpx
platform can accommodate any pre-existing HIV-based
lentiviral vector and thus provides an accessible strategy for
modifying myeloid cells (47, 64, 78). Given that macrophages
have limited proliferative capacity, we hypothesized that non-
integrating, replication deficient adenoviral vectors may allow for
efficient and long-term transduction. However, human myeloid
cells do not express the Coxackie-adenovirus receptor, which
serves as the primary docking site for traditional Ad5 vectors.
Monocytes and macrophages highly express CD46, which
mediates docking of group B adenoviruses such as Ad35 (80,
81). We thus evaluated the replication-incompetent chimeric
adenoviral vector Ad5f35 and demonstrated that Ad5f35
exhibited robust transduction of primary human macrophages
and monocytes – with CAR% and viability routinely >80% (67,
82). Ad5f35-transduced macrophages maintained CAR
expression for at least 1 month in vitro and at least 62 days
in vivo, as measured by co-expression of CAR-P2A-luciferase.
Notably, Ad5f35 activated the macrophage inflammasome and
provided a beneficial proinflammatory priming signal, which
synergized with CAR activity and rendered the CAR-M locked
Frontiers in Immunology | www.frontiersin.org 5
into an M1 phenotype (83). Such results highlight the prospect of
leveraging, rather than evading, the inflammatory response that
can occur when delivering genetic material.

Several non-viral strategies have also been developed for
engineering monocytes and macrophages. The bacterial origin
of plasmid DNA can contribute to inflammation and gene
silencing. Plasmids devoid of unmethylated cytosine-phospho-
guanine (CpG) dinucleotides – a signature of bacterial DNA –
were shown to evade detection by TLR9 and exhibit prolonged
gene expression in RAW 264.7 macrophages and primary
murine BMDMs (49). Other work has optimized the transient
delivery of mRNA to monocytes and macrophages, carefully
selecting mRNA modifications and transfection reagents to
minimize transfection-induced macrophage toxicity or
activation (84, 85). Lastly, transposon systems, which enable
non-viral integration into the host genome, have been explored
in porcine aortic macrophages (86).

Macrophages may be sourced through several production
pipelines. While proof-of-concept studies can be performed in
model cell lines such as THP1 and Raw 264.7 or with primary/
immortalized murine BMDM, clinical translation necessitates a
scalable source of primary human cells. For autologous cell
therapies, 2-3x109 peripheral blood monocytes can be obtained
by leukapheresis (87), and mobilization with filgrastrim or
sargramostim further increases the number of available
monocytes by approximately threefold (88). Our CAR-M
therapy is manufactured over 1 week using filgrastrim-
mobilized CD14+ monocytes (67). Monocytes are cultured and
differentiated in the presence of granulocyte-macrophage
colony-stimulating factor (GM-CSF), which is associated with
a pro-inflammatory differentiated phenotype (67, 89). Cells are
then transduced with CAR-encoding Ad5f35, which further
cements a pro-inflammatory phenotype. To further accelerate
manufacturing time, a rapid, same day CAR monocyte process
has been developed which yields CAR+ CD14+ monocytes with
the capacity to differentiate into M1 CAR-M or CAR-expressing
dendritic cells (CAR-DC) (82). Macrophages may be attractive as
allogeneic cell therapies since there is no risk of graft versus host
disease. Immune cells derived from induced pluripotent stem
cells (iPSCs) hold potential as a renewable, allogeneic source
for CAR-M therapies. Zhang et al. generated iPSC-derived
CAR-Macrophages (CAR-iMac) by reprogramming PBMC’s
into iPSC’s over the course of several weeks, transducing with
CAR-encoding lentivirus, then differentiating into macrophages
following a 4-week differentiation process (90). CAR-iMacs were
capable of antigen-dependent macrophage functions, such as
cytokine secretion and phagocytosis in vitro. However,
CAR-iMacs differentiated with the current protocol had a
lingering anti-inflammatory phenotype, and efficacy was
limited when tested in murine models. Additionally in
oncology applications, a significant consideration with iPSC-
derived CAR-M is MHC-matching; antigen cross-presentation is
likely an important component of CAR-M activity downstream
of TAA engagement, thus careful study is required to determine
whether CAR-M derived from MHC knockout iPSCs
can potentiate a sufficient anti-tumor T cell response.
November 2021 | Volume 12 | Article 783305
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Furthermore, continued optimization of the iPSC-to-
macrophage differentiation protocol, method of transduction,
method of phenotype control, and GMP scale-up are necessary
to translate these early findings into the clinic. Provided the
process is appropriately scaled, there is theoretically no limit to
the number of macrophages that can be expanded from iPSCs or
differentiation intermediates, though current optimized
protocols yield 2-6×107 macrophage progenitors per harvest
(91). Benchmarking iPSC-derived macrophage phenotype
against bona fide macrophages will be critical for advancing
this approach to CAR-M production.

Mechanisms of Tumor Control by CAR-M
CAR-M therapies are able to clear tumor cells in vitro and in
preclinical in vivo models. In vitro, human CAR-M exhibit
antigen-specific phagocytosis, cytokine/chemokine secretion,
and killing of target antigen expressing targets (67). In two
immunodeficient NSGS xenograft models, a single dose of
anti-HER2 CAR-M reduced tumor burden and prolonged
overall survival against HER2+ SKOV3 tumors. Furthermore,
IV-administered CAR-M localized to tumors in several xenograft
models and persisted in tumor-free mice (primarily within the
liver) for at least 62 days, detected by whole-body bioluminescent
imaging of CAR-P2A-luciferase. RNA sequencing revealed
that Ad5f35 transduction induced a proinflammatory profile
resembling that of classically activated M1 macrophages, which
resisted polarization by M2-inducing cytokines in vitro.
Furthermore, supernatant from CAR-M was sufficient to induce
a proinflammatory phenotype in cultured M2 macrophages.
These phenotypic results held true in a humanized immune
system (HIS) solid tumor xenograft model, where adoptively
transferred CAR-M maintained a durable M1 phenotype and
induced pro-inflammatory gene expression in host macrophages.
In vitro analysis further showed that CAR-M could coordinate an
antitumor T cell response by recruiting T cells and cross-
presenting antigens from phagocytosed cells. Recently, our
group established an immunocompetent, syngeneic CAR-M
model and demonstrated that murine CAR-M increased
intratumoral T cell infiltration, NK cell infiltration, dendritic
cell infiltration/activation, and TIL activation (92). We
found that CAR-M locally administered in HER2+ tumors
simultaneously controlled growth of contralateral HER2-

negative tumors and prevented antigen-negative relapse upon
HER2-negative tumor rechallenge, indicating epitope spreading
and induction of long-term immune memory. Notably, this work
also demonstrated for the first time that CAR-M synergize
with PD1 blockade in PD1-monotherapy resistant solid tumor
models (92).

Tumor killing by CAR-M was similarly achieved by Niu et al.
using CCR7-targeting CAR-M in the RAW264.7 cell line (69).
These CAR-M, which exhibited antigen-specific cytotoxicity
in vitro, prolonged survival and prevented metastasis to distal
tissues in a 4T1 breast cancer model. CAR-M recruited CD3+ T
cells and decreased PD-L1+ cells in the tumor site, confirming
that engineered macrophages themselves are not the sole driver
of the antitumor response. Adoptive macrophage therapy also
Frontiers in Immunology | www.frontiersin.org 6
increased levels of pro-inflammatory cytokines IL1-b, IL-6, and
TNF-a in the serum, indicative of a systemic immune
response (69).

CAR-M’s ability to facilitate an immune response was
underscored by the CAR-147 technology, which targeted the
tumor ECM rather than tumor cells directly (70). Zhang and
colleagues hypothesized that degrading the dense tumor ECM
would improve immune cell infiltration and thereby trigger
antitumor activity. CAR-M engineered with a CD147 cytosolic
domain upregulated MMP expression in an antigen-specific
manner in vitro, but exhibited no changes in phagocytosis,
killing, or cytokine release. In a HER2+ 4T1 breast cancer
model, CAR-M slowed tumor growth by reducing its collagen
content, enhancing the presence of T cells, and increasing IL-12
and IFN-g signaling. Taken together, these pioneering studies
showcase the ability of CAR-M to infiltrate the tumor niche and
initiate a broad anti-tumor response by the host immune system.
DISCUSSION

Toward CAR-M Combination Therapies
Co-administration of pharmacological immunotherapies or
chemotherapy could further improve CAR-M efficacy. For
example, antibody-based immunotherapies rely on macrophage
phagocytosis to stimulate an immune response and could be
evaluated for augmenting CAR-M efficacy (93, 94). The Fc region
of antibodies binds and stimulates macrophage-expressed Fc
receptors, leading to ADCP. Antibodies such as trastuzumab
and rituximab thus direct macrophages to phagocytose
opsonized target cells (95). Antibodies that block phagocytosis-
inhibiting signals, such as CD47/SIRPa or the inhibitory Fc
receptor FcgRIIB, have enhanced macrophage-mediated
immunotherapies (96–98). T cell checkpoint inhibitors
blocking PD1 signaling have also been shown to improve
macrophage phagocytic capabilities in vivo (99). Given the
impact of CAR-M on surrounding immune cells, we therefore
hypothesized that CAR-M could synergize with PD1 checkpoint
inhibitors. In a syngeneic CT26 model, which resists anti-PD1
monotherapy, we demonstrated that the combination of CAR-M
with PD1 blockade indeed additively improved overall survival
(92). Chemotherapy or radiation therapy could also synergize
with CAR-M by inducing immunogenic cell death (100). The
efficacy of combining radiation therapy and engineered
macrophages was demonstrated by Bian et al. using SIRPa-KO
macrophages (61). Furthermore, it is noteworthy that CAR
expression is not mutually exclusive from other engineering
manipulations described herein. Therefore, future iterations of
CAR-M could likely synergize with gene editing or accessory
transgene overexpression.

Clinical studies will be crucial to elucidating the toxicity
profile of CAR-M in patients. The FDA-approved anti-CD19
CAR-T products tisagenlecleucel, brexucabtagene autoleucel,
and axicabtagene ciloleucel carry black box warnings for CRS
and neurotoxicity (101). CRS is driven by significant CAR-T
expansion and secretion of pro-inflammatory cytokines for
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sustained periods of time in the peripheral blood. Given that
CAR-M have limited expansion potential and do not persist in
peripheral blood, severe CRS is not expected, and indeed was not
seen in older studies of M1 polarized non-engineered
macrophages (41). Engineered macrophages have been shown
to persist in pre-clinical glioblastoma models without associated
toxicity, indicating that CAR-M may safely interact with the
central nervous system (44, 47). A particular concern that may be
more relevant for CAR macrophages than CAR T cells is that the
TME could subvert tumor-localized CAR-M into a tumor-
supporting phenotype (102). Although preclinical models
suggest the opposite – that CAR-M reprogram the TME (67) –
correlative studies in patients will be necessary to understand the
bidirectional dynamics. At present, the first-in-human CAR-M
Phase I clinical trial is underway using Carisma Therapeutic’s
lead product CT-0508 for treating HER2 overexpressing solid
tumors (NCT04660929). Results from this Phase I trial and
others will provide invaluable insights to guide the design of
safe and effective CAR-M therapies.

Outlook: Beyond Oncology
Future therapies using engineered macrophages may extend
beyond oncology indications. CAR-T have been shown to target
Frontiers in Immunology | www.frontiersin.org 7
fibrotic cardiac and liver tissues, and CAR-M may be even better
suited for acellular pathogenic targets (103, 104). Novel therapies
could also leverage macrophage tissue remodeling and anti-
inflammatory capabilities, rather than their proinflammatory
functions. For example, adoptive transfer of anti-inflammatory
macrophages has been shown to reduce fibrotic tissue in liver
injury models (105). From remodeling synapses to repairing
cardiac tissue, macrophages are ubiquitous in maintaining tissue
homeostasis, and their therapeutic application should be
compatible with myriad tissue contexts (106, 107). In
conclusion, macrophage phenotypic plasticity, when combined
with synthetic biology, presents an exciting new platform for
therapeutic applications to advance cellular engineering and
deliver effective immunotherapies.
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