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Abstract

SEL1L, a component of the endoplasmic reticulum associated degradation (ERAD) pathway, has been reported to regulate
the (i) differentiation of the pancreatic endocrine and exocrine tissue during the second transition of mouse embryonic
development, (ii) neural stem cell self-renewal and lineage commitment and (iii) cell cycle progression through regulation of
genes related to cell-matrix interaction. Here we show that in the pancreas the expression of SEL1L is developmentally
regulated, such that it is readily detected in developing islet cells and in nascent acinar clusters adjacent to basement
membranes, and becomes progressively restricted to the islets of Langherans in post-natal life. This peculiar expression
pattern and the presence of two inverse RGD motifs in the fibronectin type II domain of SEL1L protein indicate a possible
interaction with cell adhesion molecules to regulate islets architecture. Co-immunoprecipitation studies revealed SEL1L and
ß1-integrin interaction and, down-modulation of SEL1L in pancreatic ß-cells, negatively influences both cell adhesion on
selected matrix components and cell proliferation likely due to altered ERK signaling. Furthermore, the absence of SEL1L
protein strongly inhibits glucose-stimulated insulin secretion in isolated mouse pancreatic islets unveiling an important role
of SEL1L in insulin trafficking. This phenotype can be rescued by the ectopic expression of the ß1-integrin subunit
confirming the close interaction of these two proteins in regulating the cross-talk between extracellular matrix and insulin
signalling to create a favourable micro-environment for ß-cell development and function.
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Introduction

SEL1L encodes an endoplasmic reticulum transmembrane

protein with a complex structure implicated in a number of

cellular functions [1–4] mostly associated with the endoplasmic

reticulum associated degradation (ERAD) and unfolded protein

response (UPR) pathways [5–7]. SEL1L established function is to

complex with the E3 ligase HRD1 to regulate degradation and

turnover of luminal and membrane proteins [8]. SEL1L is located

close to the D14S67 locus on the chromosome 14q24 [9,10]

hypothesized to be a candidate region for the type I diabetes

mellitus (T1DM) [11]. However no evidence for SEL1L as

candidate gene for IDDM11 was found [12,13]. Interestingly, it

was suggested that mutations in SEL1L could influence MODY

onset and/or progression [14]. To date, six MODY genes have

been identified (glucokinase, hepatocyte nuclear factors HNF-1a,
HNF-4a and HNF-1b, insulin promoter factors IPF1 and

NEUROD1), all associated with islet cells development, mainte-

nance of differentiation, and endocrine secretory function [15–18].

Interestingly, HNF-1a and HNF-4a have been reported to bind

the SEL1L promoter, supporting its involvement in pancreas

development [19]. It was reported that mice homozygous for a

gene trap mutation in Sel1l developed systemic ER stress and died

during mid-gestation [20] like the Hrd1 knock-out mouse model

[21] but, in addition, Sel1l mutants displayed severe growth

retardation and impaired differentiation of pancreatic and neural

epithelial cells, suggesting an HRD1-indipendent function(s). Mice

carrying one functional allele, revealed an increased susceptibility

to diet-induced hyperglycemia and reduced b-cell mass [22,23],

and its depletion in bTC3 cells resulted in vitro growth arrest and

cell death [24]. All together these results suggest that SEL1L could

play a significant role in regulating ß-cell function and growth. To

date, a number of mechanisms have being proposed to explain the

progressive loss of b-cell function that eventually leads to T2DM.

Among them, ER-stress responses induced by chronically elevated

circulating levels of glucose and lipids, collectively known as

glucolipotoxicity [25], are centain to have a detrimental impact on

b-cell function, and possible b-cell death [26,27]. More recently,

evidence has been provided in support of more complex

mechanisms of progressive impairement of b-cell function that

involves a loss of b-cell identity rather than death by apoptosis,

which leads to b-cell dedifferentiation into embryonic-like

endocrine progenitors and interconversion into a-cell [28].
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Causative mutations in SEL1L are very rare, however

polymorphic variants have been reported: one associated with

pancreatic cancer [29], a second with persistent hyperinsulin-

emic hypoglycemia of infancy [30] and a third in progressive

childhood ataxia [31]. Of particular interest is the late

evolutionary addition of the Fibronectin type II domain to the

gene, increasing the protein functional complexity by contrib-

uting to cell-matrix interactions [32]. This domain is usually

found in extracellular matrix fibronectin and in extra cytoplas-

mic regions of membrane associated-proteins and are thought to

be involved in protein cell surface localization and activation

through collagen-b1 integrin binding [33,34]. Integrin engage-

ment is a key regulator of pancreatic b-cell function, induces

ERK-dependent insulin secretion and promotes epithelial to

mesenchymal transition (EMT) by regulating the WNT/SMAD

pathway [35–37]. More recently, b1 integrin-dependent signal-

ing has also been implicated in the regulation of embryonic and

perinatal ß-cell expansion [38]. Moreover, SEL1L has been

reported to play a key role in the improvement of pancreatic

plasticity being involved in the combined action of several

pathways such as WNT, TGF-b, NOTCH and MAPK [39].

Here we show that SEL1L down-modulation in pancreatic b-
cells negatively impacts on cell adhesion and proliferation, and

inhibits glucose-stimulated insulin secretion by affecting ERK

signaling. We also show that this phenotype can be rescued by

overexpressing b1 integrin subunit and restoring ERK activation

level.

Collectively, our results support a possible function of SEL1L in

regulating the cross-talk between integrin signaling and insulin

secretion.

Materials and Methods

Cell Lines, Culture Conditions and Transfections
CFPAC-1 human ductal adenocarcinoma cells (ATCC) were

grown in Iscove’s modified Dulbecco’s medium (Life Technolo-

gies) supplemented with 10% fetal bovine serum and 2 mM L-

Glutamine. MIN6 cells (obtained from Prof. Paolo Meda,

University of Geneva, Switzerland [40] originally from Dr

Miyazaki [41]) were grown in DMEM-high glucose medium with

2 g/L sodium bicarbonate, supplemented with 10% FBS and

70 mM of b-Mercaptoethanol.

Islets were isolated by intraductal injection of 0.5 mg/ml

liberase and purified on a Ficoll gradient [42]. Islets were cultured

overnight in RPMI-10% FCS and handpicked before being

further processed.

MIN6 cells were transiently trasfected with 100 nM of siRNA

against exon 3 of mSEL-1L or siRNA negative control (Applied

BioSystems, Life Technologies), with or without 1 mg of b1-
integrin expressing plasmid using Lipofectamine 2000 following

the manufacturer instructions (Life Technologies). This construct

was generated by subcloning the mouse full-length b1-integrin
cDNA sequence, generated by PCR (using the following primers:

ms Itgb1-BamHI: 59-CCGGGATCCACCATGAATTTG-

CAACTGGTTTCC-39; ms Itgb1-EcoRI: 59- CCGGAATTCT-

CATCATTTTCCCTCATACTTCGG-39) into pCDNA3.1(+)
using BamHI/EcoRI sites. The construct was verified by Sanger

sequencing.

Mouse islets were dissociated with 0.005% trypsin diluted in

Versene (Life Technologies) lightly expanded and transiently

nucleofected with 100pmoli of siRNA against exon 3 of mSEL-

1L or siRNA negative control. Program T-020 of the

NucleofectorH instrument (Lonza, Basel, Switzerland) and

Reagent V kit (Lonza) were used following the manufacturer’s

instructions. Nucleofected cells were plated onto HTB9-coated

dishes [43–45] and cultured for 48 hours in RPMI-10% FCS

medium.

Imunofluorescence and Immunohistochemistry
Dual immuno fluorescent labeling was performed on 4-mm

paraffin sections prepared from adult (3-month-old) and fetal

(E16.5) of C57BL/6J mice pancreata. Use of animal subjects

was carried out in strict accordance with the recommendations

for the Care and Use of Laboratory Animals of the National

Institute of Health (Italy). The protocol was approved by the

Committee on the ethics of Animal Experiments of the National

Research Council (Protocol Number Biunno-2/2011). All

surgery was performed under Avertin anesthesia, and all efforts

were made to minimize suffering. Human fetal pancreata (18–

21 weeks gestational age) were obtained from Advanced

BioResources (Alameda, CA) and samples of human adult

pancreas were prepared at The Diabetes Research Institute

(University of Florida, Miami, FL) as previously described [46].

Human pancreatic tissue specimens were provided as ‘‘preex-

isting pathological specimens’’ (i.e., not through the recruitment

of living human subjects), with written consent for tissue

donation obtained by the procurement entity. All studies

described in this study were reviewed and approved by the

Human research Protections Programs of the University of

California San Diego (la Jolla, CA) and the University of

Washington (Seattle, WA).

Tissues were fixed in 4% paraformaldehyde (PFA) and

processed for paraffin embedding. After rehydratation in grades

of ethanol, sections were boiled for 15 min in Citrate Buffer

pH6.0. Cultured MIN6 cells were grown onto glass coverslips

and fixed with 4%PFA for 20 min at 4uC, permeabilized with

0.1% Triton X-100 for 10 min and treated with 1 N HCl for

15 min at 65uC. After blocking, samples were incubated with

primary antibodies at the following dilution: anti-insulin (1:1000,

The Bindind Site PC059.X), anti-glucagon (1:100, Millipore

AB932), anti-SEL1L (5 mg/ml) [47], anti-BrdU (1:100, Sigma-

Aldrich B8434) and anti-b1-integrin (10 mg/ml, Millipore

MAB1997) and revealed with appropriate secondary antibodies

(Rhodamine-Red anti-sheep IgG, anti-rat IgG and anti-rabbit

IgG, Jackson Immuno Research, West Grove, PA, USA; Alexa

Fluor 488 anti-mouse IgG, Molecular Probes, Invitrogen,

Carlsbad, California, USA). Nuclei were counterstained with

Hoechst 33258 and samples were mounted with GelMount

aqueous mounting medium (SIGMA). Images were acquired

using a LEICA DMI4000B inverted fluorescence microscope

linked to a DFC360FX camera (LEICA Microsystems, Vienna,

Austria).

Cell Adhesion, Proliferation and Secretion Assay
For adhesion assay, MIN6 trasfected cells and untreated control

were plated onto different ECMs as previously described [48].

After 1 hour, cells were fixed in 4%PFA, stained with 1%

Tolouidine and counted under the microscope.

For in vitro proliferation assessment, MIN6 trasfected cells and

untreated control were pulsed with 10 mM BrdU (Sigma-Aldrich)

and cultured for 1 hour. Cells were then fixed and processed for

immunofluorescence analysis as described below. BrdU-positive

cells were counted in 5 random fields under a fluorescence

microscope and results expressed as percentage of total counter-

stained nuclei. For in vitro insulin secretion measurements, MIN6

transfected and mouse islet nucleofected cells were incubated in

HEPES-balanced Krebs-Ringer buffer (KRBH), pH 7.4 (10 mM

HEPES, 120 mM NaCl, 4.7 mM KCl, 1.2 mM MgCl2, 1.2 mM
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NaH2PO4, 25 mM NaHCO3, 2.5 mM CaCl2) supplemented

with 0.25% bovine serum albumin and deprived of glucose for 1

hour and then 2.8 mM glucose was added for a further hour. Cells

were washed and the medium was collected after 30-min

incubation with fresh KRBH solution containing 2.8 mM glucose

followed by 1-hour stimulation with 22.8 mM glucose. Insulin

secreted in the medium was measured by ultrasensitive EIA (Alpco

Diagnostic); results were normalized by DNA content determined

with Quant-IT PicoGreen reagent and Qubit fluorimeter (Life

Technologies).

Co-immunoprecipitation and Western Blot
For co-immunoprecipitation studies, CFPAC-1 cells were lysed

in 20 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM MgCl2,

2 mM EGTA, 10% glycerol and 1% NP40 in the presence of

protease inhibitors. The lysates were clarified by centrifugation

and total proteins were measured using the BCA protein assay

(Pierce). Proteins (,5 mg) were incubated with 5 mg of mAbs to

b1-integrin (Biogenex), b4-integrin (Ancell Corp, 325-020), a6-
integrin (Millipore, MAB1378) or 5 ml of pAbs to SEL1L (kindly

provided by Prof H. Ploegh, [49]), a5-integrin (Millipore, AB1949)

or a6-integrin (Millipore, AB1920) and incubated at 4uC
overnight. Corresponding amount of control IgG and normal

rabbit serum were used as negative controls. Immuno-complexes

were captured with protein A/G agarose beads (Calbiochem) for 2

hours at 4uC, eluted from the beads by boiling in reducing

Laemmli buffer and resolved on a 9% SDS-PAGE gel. Proteins

were transferred to a PVDF membrane, blocked and incubated

with 2 mg/ml mouse antibody to SEL1L [47] or mouse antibody

to b1-integrin (1:2500; Cell signaling).

For expression studies, MIN6 cells were lysed in RIPA buffer

containing protease inhibitors (Roche), 1 mM PMSF, 1 mM

EDTA, 1 mM sodium fluoride. Cell extracts were resolved on 9%

SDS-polyacrilamide gel, blotted onto PVDF membranes, and

probed with anti-SEL1L, anti-ß1-integrin, anti-ERK1/2 (1:1000;

Cell Signaling) anti-phospho ERK1/2 (1:1000; Cell Signaling).

Hybridizations were performed in sealed bags with X-blot-100

chamber (www.isenet.it), and proteins were detected with

appropriate HRP conjugated secondary antibodies (Jackson

Immuno Research) and the ECL system (Thermo Fisher

Scientific).

Q-PCR
Total RNA was purified from MIN6 and mous islet cells using

Tri-Reagent (Applied BioSystems) according to manufacturer’s

instructions and retro-transcribed with RevertAid cDNA synthesis

kit (Thermo Scientific). SYBR green qPCR was performed on

RotorGene Q (QIAGEN) machine, using Maxima SYBR green

master mix (Thermo Scientific) and the following primers:

Sel1l: 59-GCCCGATGAAGTGGAAAAC-39; 59-CATTCT-

TAAACAACTCCACTGC-39, Ccdn1:59-TCGTGGCCTCTAA-

GATGAAGGA-39; 59- CCTCGGGCCGGATAGAGTT-39

[50], p21:59-TTGTCGCTGTCTTGCACTCT-39; 59-

AATCTGTCAGGCTGGTCTGC-39, Hprt: 59-

GTGCTCAAGGGGGGCTATAA-39; 59- GGTCCTTTTCAC-

CAGCAAGC-39. Data were normalized to Hprt expression using

DDCt method.

Statistics
Statistical significance of differences in data values was validated

by two tailed student’s t test with significance limit set at p,0.05.

Results

Immunofluorescence (IF) Analysis of SEL1L Expression in
Fetal and Adult Pancreas
IF analysis of murine fetal (E16.5) and adult pancreas

identifies SEL1L-specific immunoreactivity in developing acinar

and in a- and b-cells (Fig. 1A–F). Interestingly, as development

proceeds, SEL1L expression becomes restricted to the a- and b-
cells (Fig. 1 G–L), virtually absent in the acini, with only

occasional single cells dispersed throughout the entire organ.

Among the different types of islet cells, SEL1L-specific

immunoreactivity is significantly stronger in the cytoplasm of

a-cells, compared to b-cells (Fig. 1G–L). This expression pattern

appears conserved in the human pancreas (Fig. 2A–L), with

strong immunoreactivity detected in developing islets, nascent

acinar clusters (Fig. 2A–F) and in differentiating islet a- and b-
cells (Fig. 2G–L). Interestingly, both in mouse and human

pancreas, SEL1L immunoreactivity localizes preferentially to

cells adjacent to the basement membranes and vascular/ductal

structures, suggesting a possible interaction with the extracellular

matrix (ECM) (Figure S1). Collectively, these results indicate the

existence of a spatiotemporal regulation of SEL1L expression

during pancreas development, and suggest important functions

in the islet cell compartment, possibly involving the regulation

of hormone secretory function.

SEL1L Co-immunoprecipates with b1 Integrin
The presence of the Fibronectin type II domain (a collagen

binding domain) in SEL1L exon 4 [1,30] led us to postulate the

possible interaction of SEL1L with integrin receptors. To

investigate this possibility, we used the human pancreatic ductal

cell line CFPAC-1, a valuable model for assessing pancreatic cell

adhesion and migration on selected ECMs [51,52], and tested

SEL1L ability to interact with integrin receptor subunits by

classical co-immunoprecipitation experiments. Due to lack of

reliable antibodies to mouse SEL1L for IP assays, and lack of

human pancreatic b-cell line, we decided to use the human

CFPAC-1 cell line only for co-IP experiments with integrins, and

the mouse b-cell line MIN6 for all of the functional studies.

Therefore, CFPAC-1 lysate were immunoprecipitated with anti-

integrin antibodies, resolved by SDS-PAGE, and probed with

SEL1L antibody. As shown in Figure 3A, a5-, b1-, b4- integrin-
specific antibodies co-immunoprecipitated SEL1L. Interestingly

among the a subunits only a5 integrin is able to co-immunopre-

cipate with SEL1L, while among the b subunits, b1-integrin is able

to pull-down SEL1L more efficiently than b4, suggesting that the

fibronectin receptor a5b1 is the main integrin heterodimer able to

interact with SEL1L. We therefore focused on the b1-integrin
subunit to test the reverse approach. Interestingly, SEL1L-specific

antibody co-immunoprecipitated the 110-kDa b1 precursor, but

not the mature 130-kDa form, suggesting that SEL1L may interact

with a protein complex prior to the post-translational modification

of the b1 integrin-subunit to mediate the recruitment and

assembly of integrin ab heterodimer receptors. However, it

remains to be determined whether this interaction occurs directly,

i.e. b1 integrin/SEL1L, or indirectly through an alternative

binding mechanism such as recruitment into a b1 integrin/

Collagen/SEL1L.

SEL1L Downmodulation Interferes with Integrin-
mediated Adhesion and ERK Activation in MIN6 Cells
The functional relationship between SEL1L and b1 integrin was

analyzed in MIN6 cells. These cells have extensively been used as

a reliable model system to study the biology of pancreatic b-cells

SEL1L in Pancreas Development and Function
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since they retain a high degree of endocrine differentiation (i.e.

insulin expression) and glucose-stimulated insulin secretion [41].

Hence, we first confirmed the colocalization of SEL1L and b1-
integrin in MIN6 cells. Immunofluorescence analysis revealed

SEL1L and b1-integrin specific immunoreactivity targeted to

plasma membrane, suggesting a functional activity in ‘‘inside-out’’

integrin signaling and/or trafficking of the integrin receptors

(Fig. 3B). MIN6 cells were transfected with either siRNA specific

for Sel1l transcripts, or with a scrambled control, and then used in

cell adhesion short-term assays to study their ability to adhere to a

panel of ECM proteins (Collagen-IV, Fibronectin, Laminin and

Vitronectin) known to promote b-cell attachment and function.

Sel1l-interfered cells adhered less efficiently to the matrixes tested

when compared to the mock-transfected ones (Fig. 4A). Interest-

ingly, overexpression of the b1 integrin subunit in Sel1l-interfered

cells rescued their adhesion defect to all matrixes analyzed,

suggesting that constitutive b1 integrin overexpression is able to

override its dependence on SEL1L. In fact, SEL1L-knockdown

appears to efficiently down modulate b1 integrin protein levels

resulting in impaired utilization of endogenous levels of b1 integrin
and reduced activation of ERK1/2 (phospho ERK1/2) (Fig. 4B–

C). Furthermore, interfered cells lost the usual polygonal shape

and assumed a round-shape morphology (Fig. 4D), suggesting a

switch from cell-matrix to cell-cell adhesion mechanisms as a

consequence of a reduced adherence to ECMs. Overexpression of

b1 integrin construct restored ERK activation (Fig. 4B) and the

cells re-acquired their normal morphological appearance (Fig. 4D).

Cells transfected with control siRNA-scrambled alone or co-

transfected with b1 integrin overexpressing construct did not

significantly alter ERK activation levels, nor cell morphology,

further attesting a significant functional interdependence between

SEL1L and b1 integrin.

Figure 1. SEL1L expression in fetal and adult mouse pancreas. Representative images of pancreatic sections from E16.5 mouse embryos (A–
F) and 8-weeks-old mice (G–L) immunostained for SEL1L (green; A, D, G and J), glucagon (red; B and H) and insulin (red; E and K). Dual-color
immunoflurescence showed SEL1L specific immunoreactivity (green, C and F) in the nascent acinar tissue and in the developing islets (asterisks)
stained for glucagon (red, C) and insulin (red, F). While exocrine tissue, in the adult mouse, didn’t show any SEL1L immunoreactivity (green, I and J),
endocrine cells revealed a marked expression of SEL1L protein with a strong cytoplasmic immunoreactivity in a-cells (stained for glucagon in red, I)
and a moderate expression in b-cells (stained for insulin in red, L). Scale bar = 50 mm.
doi:10.1371/journal.pone.0079458.g001

SEL1L in Pancreas Development and Function
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SEL1L Downregulation Impairs Glucose-stimulated
Insulin Secretion
Integrin heterodimers containing the b1 subunit have been

implicated in the regulation of insulin secretion through ERK

signaling, thus supporting an important function for this class of

integrins in the secretory function of pancreatic b-cells [36,37].

Therefore, we set out to determine if SEL1L down modulation

interfered with the b-cells response to glucose. For these studies,

MIN6 cells were first transfected with siRNA against Sel1l and, 48

hours later, used in assays of glucose-mediated insulin secretion. As

shown in Figure 5A, Sel1l-interfered cells failed to respond to

glucose stimulation at the maximal concentration of 22.8 mml/l,

whereas a 2-fold increase over basal was observed in scrambled

and un-treated control. Moreover, as predicted, overexpression of

b1 integrin subunit restored the glucose responsiveness in anti-

Sel1l-siRNA transfected cells.

Significantly, as shown in Figure 5B, these results were validated

using isolated mouse islet cells nucleofected with Sel1l siRNA and

grown for 48 hours onto HTB9 matrix coated dish [45].

Quantitative PCR performed on all samples confirmed the specific

down regulation of Sel1l transcript over the control cells (Fig. 5C–

D).

SEL1L Donwmodulation Affects Proliferation of MIN6
Cells
SEL1L has been previously described to regulate cell cycle

progression [53,54] and b-cell proliferation [24] but little is known

about how it can exert this function. This prompted us to

investigate if this mechanism could be mediated by b1 integrin.

MIN6 cells were transfected with siRNA against Sel1l, and

proliferating cells were pulsed for 1-hour with BrdU. As shown

in Figure 5E, Sel1l-interfered cells displayed about 50% reduction

in the percentage of BrdU positive cells compared to the scramble-

transfected control, or untreated cells. Overexpression of b1
integrin in Sel1l-interfered cells restored DNA synthesis in MIN6

cells. To confirm the involvement of SEL1L in the b1 integrin

signaling, changes in levels of expression of the key players of the

cell cycle progression mediated by integrins were analyzed by

qPCR. As shown in Figure 5F, Sel1l-interfered cells displayed a

significant down-regulation of the cyclin D1 (Ccnd1), and an up-

regulation of cyclin inhibitor p21 (Cdkn1a), while overexpression of

Figure 2. SEL1L expression in fetal and adult human pancreas. Representative images of pancreatic sections from 18 weeks fetus (A–F) and
54-years-old patient (G–L) immunostained for SEL1L (green; A, D, G and J), glucagon (red; B and H) and insulin (red; E and K). Dual-color
immunoflurescence showed SEL1L specific immunoreactivity (green, C and F) in the nascent acinar cells adjacent to basement membrane
(arrowheads) and in few interspersed cells (arrows); a strong cytoplasmatic staining is also observed in the developing islets (asterisks) stained for
glucagon (red, C) and insulin (red, F); in adult human pancreas, the exocrine tissue didn’t show any SEL1L immunoreactivity (green, G and J), while
endocrine cells revealed a marked expression of SEL1L protein with a strong cytoplasmic immunoreactivity in a-cells (stained for glucagon in red, I)
and b-cells (stained for insulin in red, L). Scale bar = 50 mm.
doi:10.1371/journal.pone.0079458.g002

SEL1L in Pancreas Development and Function
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b1 integrin in Sel1l-interfered cells restored cyclin D1 level and

strongly inhibit p21 expression. Collectively, these results demon-

strate that SEL1L plays multiple functions in pancreatic b-cells,
spanning from control of cell-matrix adhesion, to cell proliferation

and insulin secretion.

Discussion

Despite significant efforts devoted to the identification of

genes regulating b-cell ontogeny in either animal models of

pancreas development or in population of putative stem/

progenitor cells, our knowledge of mechanisms regulating b-
cell replication and/or regeneration remains relatively incom-

plete. In this report we present data supporting an important

involvement of SEL1L in islet cell adhesion through modulation

of b1 integrin signaling, insulin secretion, and replication.

Hence, we find that SEL1L is highly expressed in fetal and

adult islet clusters, and in developing acinar cells, with a

subcellular localization in the basal pole of islet cells adjacent to

the basement membrane and vascular/ductal structures, where

b1 integrin-specific immunoreactivity is preferentially identified

(Figure S1) [38], that is suggestive for a functional involvement

of SEL1L in integrin signaling and/or trafficking of the integrin

receptors. It has been reported that SEL1L is highly and

predominantly involved in the quality control system managing

Figure 3. SEL1L interacts with integrins. (A) Co-immunoprecipitation for integrin subunits followed by western blotting for SEL1L (left panel)
and viceversa (right panel); arrows indicate 130-kDa mature b1 integrin and 110-kDa precursor. (B) MIN6 cells immunostained for SEL1L (green) and b1
integrin (red); a higher magnification of SEL1L/ß1 integrin co-localization to plasma membranes is shown in the inset of the right panel. Nuclei (blue)
are counterstained with Hoechst 33258.
doi:10.1371/journal.pone.0079458.g003

SEL1L in Pancreas Development and Function
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UPR-inducing stresses [2,55] and studies on mouse models have

shown that haplo-insufficiency of SEL1L predisposes mice to

high fat-induced hyperglycemia probably due to elevated ER

stress and up-regulation of the unfolded protein response

Figure 4. SEL1L affects cell adhesion. (A) MIN6 cells were transfected with: scrambled-control (white bars), siRNA against Sel1l (black bars) or co-
transfected with Sel1l-siRNA and b1 integrin over-expressing construct (grey bars) were left to adhere for 1 hour on 96-well plate coated with
Collagen-IV (CollIV), Fibronectin (FN), Laminin (LN) and Vitronectin (VN). Adherent cells were then fixed, stained and counted under a microscope.
Values are relative to untransfected adherent cell and presented as means 6 SD from three independent experiments. (B) Western blot analysis of
MIN6 cells (NT) transfected with scramble-control (Scr), with siRNA against Sel1l (iSel1l) and co-transfected with b1 integrin over-expressing construct
(Scr+Itgb1and iSel1l+Itgb1) probed for SEL1L, b1 integrin (ITGB1), phospho-ERK1/2 and total-ERK1//2. (C) Quantification of the immunoblot bands;
values are representative of three independent experiments and are expressed as fold of expression 6 SD relative to NT and normalized to total
ERK1/2 as loading control. (D) Photomicrographs showing the effect of SEL1L down-modulation on MIN6 morphology; the Sel1l-interfered cells
(iSel1l) appears round-shaped compared to controls (Scr, NT, Scr+Itgb1) while overexpression of b1 integrin subunit restore MIN6 polygonal spindle-
like morphology (iSel1l+Itgb1).
doi:10.1371/journal.pone.0079458.g004
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pathway. Loss of b-cell function in T2DM has been associated

to endoplasmic reticulum stress responses induced by chronically

elevated circulating levels of glucose and lipids, collectively

referred to as glucolipotoxicity [25,27]. However, how ER stress

Figure 5. Impact of SEL1L down-modulation on insulin secretion and cell proliferation. Insulin release of MIN6 transfected (A) and mouse
islet nucleofected (B) cells was quantified after 1-hour stimulation with 22.8 mM glucose. Values are normalized by DNA content and are expressed as
a mean 6 SD of fold increase in insulin release over basal glucose concentration from three separate experiments. MIN6 transfected cells (C) and
mouse islet nucleofected cells (D) were assayed by qPCR for effective Sel1l down-modulation by siRNA. Values are expressed as fold expression6 SD
relative to un-treated sample (value = 1) and normalized to Hprt. (E) To assess SEL1L-dependent cell proliferation, MIN6 transfected and untransfected
cells were pulsed for 1 hour with BrdU, fixed and immunostained. Frequency of BrdU-positive cells were represented as percentage of total number
of nuclei counted and expressed as means 6 SD from three independent experiments. (F) Changes in the expression of the key regulators of the cell
cycle progression Cyclin D1 (Ccdn1) and p21 (Cdkn1a) were validated by qPCR; values are expressed as fold expression relative to un-treated sample
(value = 1) and normalized to Hprt.
doi:10.1371/journal.pone.0079458.g005
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mechanistically impacts on b-cell replication and insulin

secretion remains unclear [22].

Our data demonstrate that SEL1L is able to regulate cell

adhesion, proliferation and secretion of b-cells through b1 integrin

signaling. Both integrins and the extracellular matrixes are known

to play an essential role in promoting b-cell migration, prolifer-

ation and differentiation through the activation of the ERK

pathway. Our experiments of SEL1L knockdown uncovered a

mechanistic link with b1 integrin-dependent adhesion and

proliferation, possibly by a decreased activation of ERK signaling.

Thus, SEL1L, as a key regulator of the ERAD pathway, may play

an important role in the trafficking/folding of b1 integrin, such

that its downregulation may lead to improper degradation of this

adhesion receptor and a defective activation of downstream ERK

signaling that can only be rescued by the ectopic overexpression of

b1 integrin.

Although the direct interaction between SEL1L and b1 integrin

remains to be demonstrated, it is likely to occur through the

fibronectin type II domain within SEL1L. This domain is missing

from the invertebrate orthologs of SEL1L, and arises only in the

chordate lineage, indicating the acquisition of new functions in

higher organisms. It is worth mentioning that among the

chordates, only the mouse and rat SEL1L proteins show a variant

form consisting in the absence of the FNII domain, likely due to

alternative splicing (NP_035474 and NP_808794, respectively).

Interestingly, the SEL1L-FNII domain contains two inverse

RGD motifs (DGR), a non-canonical adhesion sequence capable

of binding to various RGD-dependent integrins, albeit with a low

affinity [56]. DGR-containing peptides have been shown to

compete with adhesive proteins for integrin interaction [56–59],

and found to be important for the cell adhesion and biological

activities mediated by basic fibroblast growth factor (FGF2) and

secreted frizzled-related protein (sFRP) through modulation of

Wnt signaling [60,61]. Based on the well-known role of these

pathways in the control of cell growth and differentiation, DGR

containing proteins such as SEL1L may contribute to regulate the

crosstalk between Wnt, integrin, and growth factor signaling.

Further studies will be required to identify protein domains

mediating SEL1L–/b1-integrin interaction.

SEL1L may also be involved in the regulation of glucose-

induced insulin secretion. Thus, this is a complex function that

requires a multifactorial regulations: (i) insulin needs to be properly

folded and packaged in secretory granules before being shuttled to

the plasma membrane, (ii) the right outside-in integrin-signaling

cascade must be properly enacted, and (iii) glucose sensing

mechanisms efficiently activated. In this complex cascade of

events, SEL1L may control both the ‘‘inside-out’’ and ‘‘outside-in’’

trafficking of molecules important in islet b-cell function such as

folding of insulin, integrin-transduction cascades from the

microenviroment, and turnover of glucose transporters. Matrix

interaction can also influence insulin secretion via engagement of

b1 integrin, and alteration in the glycosylation levels of the glucose

transporter GLUT2 can impair glucose-stimulated insulin release

[62]. Our findings on SEL1L-dependent insulin secretion are

consistent with prior reports linking SEL1L deficiency to severe

impairment of protein secretory pathways [23]. In this context,

our demonstration, that overexpression of b1 integrin rescues the

insulin secretory defect resulting from SEL1L knockdown, further

support an important role of SEL1L in the integration of

extracellular cues with the intracellular machinery regulating

endocrine secretory functions.

Collectively, our studies provide new insights on the implication

of SEL1L in pancreatic islet cell development and function that

involve the recruitment and interaction with cell adhesion

receptors of the integrin family. Further exploration of SEL1L

function in the integration of mechanism governing b-cell
replication and function may have significant implications for

the development of cell-based replacement therapies for diabetes.
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