
fgene-10-00419 May 2, 2019 Time: 17:44 # 1

ORIGINAL RESEARCH
published: 03 May 2019

doi: 10.3389/fgene.2019.00419

Edited by:
Monica Bianchini,

University of Siena, Italy

Reviewed by:
Nitish Kumar Mishra,

University of Nebraska Medical
Center, United States

Sen Peng,
Translational Genomics Research

Institute, United States
Max Shpak,

St David’s Medical Center,
United States

*Correspondence:
Xingjun Jiang

jiangxj@csu.edu.cn;
jxjyjz@163.com

Specialty section:
This article was submitted to

Bioinformatics and Computational
Biology,

a section of the journal
Frontiers in Genetics

Received: 20 December 2018
Accepted: 17 April 2019
Published: 03 May 2019

Citation:
Yin W, Tang G, Zhou Q, Cao Y,

Li H, Fu X, Wu Z and Jiang X (2019)
Expression Profile Analysis Identifies

a Novel Five-Gene Signature
to Improve Prognosis Prediction

of Glioblastoma.
Front. Genet. 10:419.

doi: 10.3389/fgene.2019.00419

Expression Profile Analysis Identifies
a Novel Five-Gene Signature to
Improve Prognosis Prediction of
Glioblastoma
Wen Yin1, Guihua Tang2, Quanwei Zhou1, Yudong Cao1, Haixia Li3, Xianyong Fu1,
Zhaoping Wu1 and Xingjun Jiang1*

1 Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, China, 2 Department of Clinical
Laboratory, Hunan Provincial People’s Hospital (First Affiliated Hospital of Hunan Normal University), Changsha, China,
3 Department of Operative Nursing, Xiangya Hospital of Central South University, Changsha, China

Glioblastoma multiforme (GBM) is the most aggressive primary central nervous system
malignant tumor. The median survival of GBM patients is 12–15 months, and the 5
years survival rate is less than 5%. More novel molecular biomarkers are still urgently
required to elucidate the mechanisms or improve the prognosis of GBM. This study
aimed to explore novel biomarkers for GBM prognosis prediction. The gene expression
profiles from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO)
datasets of GBM were downloaded. A total of 2241 overlapping differentially expressed
genes (DEGs) were identified from TCGA and GSE7696 datasets. By univariate COX
regression survival analysis, 292 survival-related genes were found among these DEGs
(p < 0.05). Functional enrichment analysis was performed based on these survival-
related genes. A five-gene signature (PTPRN, RGS14, G6PC3, IGFBP2, and TIMP4)
was further selected by multivariable Cox regression analysis and a prognostic model
of this five-gene signature was constructed. Based on this risk score system, patients
in the high-risk group had significantly poorer survival results than those in the low-
risk group. Moreover, with the assistance of GEPIA http://gepia.cancer-pku.cn/, all five
genes were found to be differentially expressed in GBM tissues compared with normal
brain tissues. Furthermore, the co-expression network of the five genes was constructed
based on weighted gene co-expression network analysis (WGCNA). Finally, this five-
gene signature was further validated in other datasets. In conclusion, our study identified
five novel biomarkers that have potential in the prognosis prediction of GBM.

Keywords: glioblastoma, differentially expressed genes, gene signature, prognosis, TCGA, GEO

INTRODUCTION

Glioblastoma multiforme (GBM) is the most common and aggressive primary central nervous
system malignant tumor with high morbidity and mortality. According to genomic abnormalities
and gene expression, GBM can be divided into four molecular subtypes: classical, mesenchymal,
neural, and proneural, which lay a foundation for understanding its inherent heterogeneity
(Verhaak et al., 2010; Ma et al., 2018). In the United States, the incidence of GBM is 2.96
cases/100,000 population/year (Jhanwar-Uniyal et al., 2015). Although there are several treatment
options, including surgery, radiotherapy and chemotherapy, the median survival of GBM
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patients remains 12–15 months, and the 5 years survival rate is
less than 5% (Wen and Kesari, 2008; Ostrom et al., 2013).

With the development of next-generation sequencing
technologies, many specific molecular signatures have been
identified to better understand the molecular pathogenesis
of GBM (Aldape et al., 2015). As a result, many potential
diagnostic and prognostic biomarkers have been discovered
that enable a more specific classification and a more precise
outcome prediction of GBM. Some molecular markers including
MGMT (O6-methylguanine DNA methyltransferase), IDH
(isocitrate dehydrogenase), EGFR (epidermal growth factor
receptor), and PTEN (phosphatase and tensin homolog) have
been routinely tested in GBM patients clinically (van den
Bent et al., 2017; Binabaj et al., 2018). More importantly,
these molecular signatures have contributed to personalized
therapeutic approaches and targeted anti-GBM therapies
(Huang et al., 2017; Szopa et al., 2017). However, considering
the poor prognosis of GBM, novel molecular biomarkers
and new therapeutic strategies are still urgently required
to elucidate the mechanisms of GBM or increase overall
patient survival.

Previous studies have shown that gene expression profile
analysis could detect gene signatures to predict the outcome for
malignancy tumors (Luo et al., 2018; Mao et al., 2018; Zeng
et al., 2018). Shergalis et al. (2018) discovered that 20 genes
were overexpressed and correlated with poor survival outcomes
in GBM patients by bioinformatics analysis using data from
The Cancer Genome Atlas (TCGA) project. Bao et al. (2014)
identified a nine-gene signature to predict the prognosis of
glioma patients based on mRNA expression profiling from the
Chinese Glioma Genome Atlas (CGGA) database. Therefore, it
is necessary to understand the development and progression of
GBM by identifying GBM-related genes and to investigate of their
potential clinical roles and molecular mechanisms.

In this study, RNA-Seq data from TCGA and microarray
data from the Gene Expression Omnibus (GEO) database of
GBM were downloaded. Based on the overlapping differentially
expressed genes (DEGs), the genes related to prognosis were
screened. By using Cox regression, we developed a five-gene
signature based risk score to demonstrate the association between
gene expression and the prognosis of GBM. Moreover, we
validated this signature in the GEO dataset and TCGA array
dataset. These results might be able to provide new reference for
the prognostic predication of GBM.

MATERIALS AND METHODS

Data Source
The GBM RNA sequencing (RNA-seq) dataset and
corresponding clinical follow-up information were downloaded
from TCGA database (March, 2018). Subtype data of GBM were
downloaded from UCSC Xena1. A total of 159 patients, including
154 samples of primary GBM patients and five samples of normal
brain tissue were extracted for subsequent analysis.

1http://xena.ucsc.edu/

Gene expression microarray data GSE7696 (Lambiv et al.,
2011), including 71 samples of primary GBM patients and four
samples of normal brain tissue, were downloaded from the
National Center of Biotechnology Information (NCBI) Gene
Expression Omnibus2. The dataset was based on the GPL570
platform of [HG-U133_Plus_2] Affymetrix Human Genome
U133 Plus 2.0 Array (Affymetrix, Santa Clara, CA, United States).

Differential Expression Analyses
Then, gene profiles were standard normalized within and among
samples, respectively. Because the numerical distribution of
RPKM (reads per kilo-base per million mapped reads) is too
wide, the final expression level of a gene was defined as the log2(x
+ 1) of the raw expression level. Next, the DEGs between the
tumor and normal samples were calculated by the limma package
(Padj < 0.05 and | log2FC| > 1). The Venn diagram was produced
by the VennDiagram R package (Chen and Boutros, 2011).

Identification and Selection of
Survival-Related Genes
Only the patients with detailed follow-up times were extracted for
subsequent survival analyses. Univariate Cox regression survival
analysis using the Survival package in R was performed to identify
survival-related genes (Yang et al., 2016). Genes were selected
with a p-value of less than 0.05.

Go and KEGG Annotation of
Survival-Related Genes
Gene Ontology (GO) enrichment and KEGG (Kyoto
Encyclopedia of Genes and Genomes) analysis were performed
on the survival-related genes (Ogata et al., 1999; Wanggou et al.,
2016; Li et al., 2018). DAVID (The Database for Annotation,
Visualization, and Integrated Discovery) (Dennis et al.,
2003) software and the clusterProfiler package (Yu et al.,
2012) in R were used to annotate and visualize GO terms
and KEGG pathways.

Gene Signature Identification and Risk
Score System Establishment
Based on the top 100 survival-related genes in TCGA dataset,
multivariable Cox proportional hazard regression analysis was
performed to establish a risk score formula (O’Quigley and
Moreau, 1986). As previously reported, a prognosis risk score
formula could be constructed on the basis of a linear combination
of the expression level (exp) multiplied by a regression coefficient
(β) derived from the multivariate cox regression model.

Risk Score (RS) = expPTPRN
∗βPTPRN + expRGS14

∗βRGS14

+expG6PC3
∗βG6PC3 + expIGFBP2

∗βIGFBP2 + expTIMP4
∗βTIMP4

Based on the formula, the risk score of each GBM patient
was calculated, and then GBM patients were divided into high-
risk score and low-risk score groups. The receiver operating
characteristic (ROC) curve analysis was conducted using the R

2http://www.ncbi.nlm.nih.gov/geo/
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FIGURE 1 | Identification of DEGs among TCGA and GEO datasets of GBM. (A) Volcano plots of DEGs in TCGA dataset. (B) Volcano plots of DEGs in GSE7696
dataset. (C) The Venn diagram of overlapping DEGs among TCGA and GSE7696 datasets.

FIGURE 2 | The most significantly enriched GO annotations and KEGG pathways of genes related to survival. The length of the bars represents the number of
genes, and the color of the bars corresponds to the p-value according to legend. (A) Top 5 significantly enriched biological process. (B) Top 5 significantly enriched
cellular component. (C) Top 5 significantly enriched molecular function. (D) Top 5 significantly enriched KEGG pathways.

package “pROC.” After choosing an optimal cut-off point with
the maximal sensitivity and specificity, the survival differences
between the low-risk and high-risk groups were assessed by the
Kaplan–Meier analysis with log-rank test. Similarly, to evaluate
the predictive power of the five-gene signature in internal dataset,
we assessed the gene signature within each subtype (classical,
mesenchymal, neural, and proneural).

Analysis in GEPIA and Exploring
Co-expression by WGCNA
The expression levels of the five genes were acquired with the
assistance of GEPIA3, which is a newly developed interactive
web server for analyzing the RNA sequencing expression data
of 23 types of cancers and normal samples from TCGA

3http://gepia.cancer-pku.cn/

TABLE 1 | Information about the five genes screened to build the
risk score system.

Genes Coefficient HR 95% CI P-value

PTPRN 0.50894 1.66353 1.4010–1.9753 6.35e-09

RGS14 0.54671 1.72757 1.2026–2.4816 0.00309

G6PC3 1.20753 3.34520 1.9960–5.6063 4.57e-06

IGFBP2 0.25845 1.29492 1.1096–1.5112 0.00104

TIMP4 −0.20684 0.81315 0.6951–0.9513 0.00976

and the GTEx projects according to the standard processing
pipeline (Tang et al., 2017).

To explore the regulatory network of the five genes, all the
overlapped DEGs were analyzed by WGCNA (Ahn et al., 2016;
Chen et al., 2018). Finally, the co-expression network of the
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FIGURE 3 | Risk score analysis, expression distribution and survival analysis of the five-gene signature in TCGA dataset. (A) The five-gene signature risk score
distribution. (B) The heat-map of the five-gene expression profiles. Red indicates a higher expression and green indicates a lower expression. Blue bar: low-risk
group. Red bar: high-risk group. (C) Kaplan–Meier analysis using the median risk score cut-off which divided patients into low-risk and high-risk groups.
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FIGURE 4 | ROC and Kaplan–Meier analysis of the five-gene signature in TCGA dataset. (A) ROC analysis of the sensitivity and specificity of the survival time
according to the five-gene signature based on risk score. (B) Kaplan–Meier analysis of the five-gene signature based risk score. Patients were divided into low-risk
and high-risk groups based on the optimal cut-off point.

five genes was constructed based on WGCNA and visualized by
Cytoscape 3.6.1 (Shannon et al., 2003).

Validation of the Five-Gene Prognostic
Signature by the GEO Dataset and TCGA
Microarray Dataset
Dataset GSE13041 from the GEO and TCGA microarray dataset
were used to validate this five-gene prognostic signature (Lee
et al., 2008). The GSE13041 dataset including 188 samples of
GBM patients and the TCGA microarray dataset including 498
samples of GBM patients were both based on the Affymetrix
Human Genome U133A Array platform (GPL97). The ROC
curves and Kaplan–Meier analyses were used to validate the
prognostic value of the five-gene for GBM patients.

RESULTS

Differentially Expressed Genes (DEGs) in
TCGA and GSE7696
Altogether, 4473 DEGs in TCGA dataset (Figure 1A) and 5789
DEGs in the GSE7696 dataset (Figure 1B) were screened by the
limma package. The 2241 overlapping DEGs were screened for
further analysis (Figure 1C).

Survival-Related Genes in GBM
In TCGA dataset, every overlapped DEG was evaluated by
univariate Cox regression survival analysis. Altogether, 292
significantly changed genes were considered -survival-related

genes by the threshold of p < 0.05. The top 100 survival-related
genes are shown in Supplementary Table 1.

Go and KEGG Analysis of
Survival-Related Genes
For the “biological processes” (BP), negative regulation of
catalytic activity, regulation of cell shape, negative regulation
of monocyte chemotaxis, long-term synaptic potentiation and
insulin secretion involved in cellular response to glucose stimulus
were the commonly enriched categories (Figure 2A). For
the “cellular component” (CC), the enriched categories were
correlated with focal adhesion, extracellular space, synaptic
vesicle membrane, extracellular exosome, and endoplasmic
reticulum (Figure 2B). For the “molecular function” (MF),
those genes mainly showed enrichment in calcium ion binding,
phospholipase inhibitor activity, calcium-dependent protein
binding, calcium-dependent phospholipid binding, and signal
transducer activity (Figure 2C). KEGG pathway enrichment
analysis suggested that glycosaminoglycan degradation was the
most significant pathway. These genes also participated in
following pathways: proteoglycans in cancer, lysosome, and
regulation of the actin cytoskeleton (Figure 2D).

Risk Score System Based on Five-Gene
Signature
After multivariate Cox regression analysis was conducted for
these 100 genes, five genes (PTPRN, RGS14, G6PC3, IGFBP2,
and TIMP4) were selected as signature genes that can optimally
predict the overall survival of patients with GBM (Table 1). To
comprehensively investigate the association between these five
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FIGURE 5 | Kaplan–Meier analysis of the five-gene signature in different molecular subtypes of glioblastoma. Classical (A), mesenchymal (B), neural (C), and
proneural (D).

genes and the prognosis of GBM, a five-gene survival risk score
system was established based on their Cox coefficients.

Risk Score (RS) = 0.50894∗expPTPRN + 0.54671∗expRGS14

+1.20753∗expG6PC3 + 0.25845∗expIGFBP2 − 0.20684∗expTIMP4

Then, the risk score for each patient was calculated in TCGA
dataset and ranked according to the risk scores. Thus, patients
were divided into a high-risk group (n = 75) and a low-risk
group (n = 76). The survival time of GBM patients was adversely

associated with their risk scores (Figure 3A). A remarkably lower
expression was noted for TIMP4 in the high-risk groups, while a
higher expression was observed for the other genes in the high-
risk groups (Figure 3B). The Kaplan–Meier analysis and log-rank
test showed that patients in the low-risk group had a significantly
positive overall survival time compared to the high-risk group
(p = 7.055906e-11) (Figure 3C).

Moreover, ROC analysis was performed for this risk score
system. Figure 4A shows that the area under the ROC Curves
(AUC) was 0.704. The optimal cutoff point was selected as 8.421.
With this cutoff point, the patients were further divided into a
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FIGURE 6 | Comparisons of the expression of the five genes between GBM and non-GBM tissues in TCGA and GTEx based on GEPIA. The Y axis represents the
log2 (TPM + 1) for gene expression. The gray bar indicates the non-GBM tissues, and the red bar shows the GBM tissues. These figures were derived from GEPIA.
TPM: transcripts per kilobase million. ∗p < 0.05.

high-risk group and a low-risk group. The Kaplan–Meier analysis
and log-rank test further indicated a significant difference in
overall survival between the two groups (p = 1.075619e-11)

(Figure 4B). Similarly, with different cutoff points, the patients
in each subtype were divided into a high-risk group and a low-
risk group. The Kaplan–Meier analysis and log-rank test also
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FIGURE 7 | The co-expression network of the five-gene signature. Red diamonds showed the key genes and green nodes are genes which co-expressed with the
key genes.

indicated a significant difference between the two groups in each
subtype (Figures 5A–D).

Analysis in GEPIA and Exploring
Co-expression by WGCNA
Based on the results derived from GEPIA, the expression of
G6PC3, IGFBP2, and TIMP4 were significantly up-regulated
in GBM, while the expression of PTPRN and RGS14 were
significantly down-regulated (Figure 6). By using GEPIA, the
selected five genes were verified as DEGs in GBM with amplified
normal sample sizes.

The co-expressed genes of the five genes were determined by
WGCNA. Finally, 129 genes were discovered to be co-expressed
with PTPRN, 41 genes were co-expressed with IGFBP2, 10 genes
with RGS14 and 1 gene with TIMP4. However, no gene was co-
expressed with G6PC3. The co-expression network of the four
genes is visualized by WGCNA in Figure 7.

Validation of the Five-Gene Prognostic
Signature by GEO Dataset and TCGA
Microarray Dataset
The GSE13041 dataset including 188 GBM patients and the
TCGA microarray dataset including 498 GBM patients were used
for the validation of the five-gene signature separately. Similarly,
the risk score for each patient was calculated. ROC analyses
were used to identify the optimal cutoff points (Figures 8A,C).
Then, we divided the patients into a high-risk group and a low-
risk group using the selected optimal cut-off points, respectively.
The Kaplan–Meier analyses suggested a significantly prolonged
survival time in the low-risk patients compared to that in
the high-risk patients (p = 3.480445e-06 and p = 0.00011)
(Figures 8B,D).

DISCUSSION

GBM is the most aggressive brain tumor associated with
poor prognosis. By analyzing TCGA and GSE7696 datasets,
we identified 2241 significantly overlapping DEGs. A total of
292 survival-related DEGs were selected from the overlapping
DEGs. Functional analyses demonstrated that these genes are
mainly associated with following pathways: glycosaminoglycan
degradation, proteoglycans in cancer, lysosome, and regulation of
the actin cytoskeleton. More importantly, based on multivariate
Cox regression analysis of TCGA dataset, five genes which could
predict overall survival were screen out, namely PTPRN, RGS14,
G6PC3, IGFBP2, and TIMP4. According to their Cox coefficients
derived from cox regression, a risk score system based on the five
genes was established. Additionally, after identifying the optimal
cut-off point by ROC analysis, patients were classified into high-
risk and low-risk groups. This five-gene signature was further
successfully validated as a prognostic marker in each subtype of
GBM, another independent GEO dataset (GSE13041) and TCGA
microarray dataset. Furthermore, differential expression analysis
of the five genes in GEPIA validated that three genes (G6PC3,
IGFBP2, and TIMP4) were significantly up-regulated and two
genes (PTPRN and RGS14) were significantly down-regulated
in GBM. Co-expression network analysis revealed the regulation
network of the five genes. These results suggest that these genes
may play an important role in the molecular pathogenesis,
progression and prognosis of GBM.

Based on GO and KEGG enrichment analyses of the survival-
related DEGs among different studies, “negative regulation of
catalytic activity” was the most significant enrichment in BP.
This indicated that inhibiting the catalytic activity of some
genes may be critical for cancer progression. Coincidentally,
Zhao et al. (2009) found that IDH1 mutation could inhibit
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FIGURE 8 | ROC and Kaplan–Meier analyses of the five-gene signature in validation datasets. (A) ROC analysis of the GSE13041 dataset. (B) Kaplan–Meier analysis
of the GSE13041 dataset. (C) ROC analysis of the TCGA microarray dataset. (D) Kaplan–Meier analysis of the TCGA microarray dataset.

IDH1 catalytic activity and contribute to the tumorigenesis
of glioma. Other BPs such as regulation of cell shape and
negative regulation of monocyte chemotaxis were also enriched.
For the CC category, focal adhesion was the most significant
enrichment which has been shown to be as a major determinant
of cell migration and an essential process in tumor invasion
(Garzon-Muvdi et al., 2012). The following three kinds of CCs,
extracellular space, synaptic vesicle membrane and extracellular
exosome, may also play important roles in tumor development
and its micro-environmental manipulation (Wei et al., 2017).
Regarding the MF category, calcium ion binding was the most
affected MF. Ca2+-mediated cell connectivity and plasticity
are unique features of the central nervous system, and the
Ca2+/calmodulin-dependent process is able to regulate cell
cycle progression and inhibit proliferation of malignant glioma

(Cheng et al., 1995; Liu et al., 2011). For KEGG pathway
enrichment analysis, glycosaminoglycan degradation was the
most significant pathway. Extracellular proteoglycans play critical
roles in driving oncogenic pathways in tumor cells and
promoting critical tumor-microenvironment interactions (Wade
et al., 2013). The other KEGG pathways, proteoglycans in cancer,
lysosome, and regulation of actin cytoskeleton, were also closely
related to oncogenesis (Liu et al., 2012; Terakawa et al., 2013;
Wade et al., 2013).

The five-gene signature provides a wealth of potential
biological and therapeutic information about GBM. PTPRN
(protein tyrosine phosphatase, receptor type N), located on the
long arm of human chromosome 2 (2q35) (Lan et al., 1996),
is an integral transmembrane protein of dense core vesicles
and plays an important role in the secretion of hormones and
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neurotransmitters (Xu et al., 2016). PTPRN has been confirmed
to be negatively related to the survival of hepatocellular
carcinoma patients and closely related to liver tumorigenesis
(Zhangyuan et al., 2018). Moreover, the hypermethylation of
PTPRN is also associated with shorter survival in ovarian cancer
patients (Bauerschlag et al., 2011). A high expression of PTPRN
in small cell lung cancer is associated with tumor growth and
proliferation. Interestingly, Shergalis et al. also found that a high
PTPRN expression is strongly associated with a poor prognosis in
GBM patients, which was consistent with our finding (Shergalis
et al., 2018). RGS14 is a member of the regulator of the G-protein
signaling (RGS) protein family and is highly expressed in the
caudate nucleus of the brain, spleen and thymus (Cho et al.,
2005; Gerber et al., 2016). Previous study found that RGS14 is
important for centrosome function, transcriptional regulation
and stress-induced cellular responses (Cho et al., 2005). However,
little work has been done to elucidate the role of RGS14 in
cancer. Interestingly, PTPRN and RGS14 expressed at low levels
in GBM tissue, but their increased expression was associated
with poor prognosis. The reason may be that they have different
functions in normal and tumor tissues. More work is needed
elucidate their functions in GBM. G6PC3, namely, glucose-6–
phosphatase isoform β, is a catalysis subunit of- G6PC (Gao
et al., 2017). G6PC (glucose-6–phosphatase) is a key enzyme
that regulates glucose homeostasis and glycogenolysis, which
has been reported as a specific enzyme regulating proliferation
and invasiveness in several tumors, such as liver, kidney and
ovarian cancer (Gao et al., 2017). Furthermore, a previous study
revealed that G6PC is a key enzyme regulating glioblastoma
invasion (Abbadi et al., 2014). Our study demonstrated that
G6PC3 was significantly up-regulated in GBM samples compared
with normal brain tissue, and the high expression of G6PC3
was closely related to a poor prognosis in GBM patients.
IGFBP2 (Insulin-like growth factor binding protein 2), an
important member of the Insulin-like growth factor binding
protein family, modulates cell growth, differentiation, migration,
and invasion in neoplasms (Fukushima and Kataoka, 2007).
IGFBP2 is involved in immunosuppressive activities and is
a potential immunotherapeutic target for GBM (Cai et al.,
2018). Our study confirmed that IGFBP2 was significantly
up-regulated in GBM and predicted a worse outcome for
patients, which was consistent with the previous study (Cai
et al., 2018). TIMP4 is a member of tissue inhibitors of
matrix metalloproteinases (TIMPs), which are involved in several
processes of tumorigenesis including proliferation, migration,
and invasion (Boufraqech et al., 2016). A high-expression of
TIMP4 has been found in patients with breast, cervical, and
prostate cancers, whereas a low expression has been observed
in patients with pancreatic cancer (Boufraqech et al., 2016).

Interestingly, our study found that TIMP4 was high-expressed
in GBM patients, however, its high expression was associated
with a good prognosis in patients with GBM. More work is
also needed elucidate its functions in GBM. In summary, the
five-gene signature not only is robust for predicting the overall
survival for GBM, but also has promising practical value in the
treatment of GBM.

There are some limitations in our work. First of all, there were
only very limited normal samples included in our differential
expression analyses, which might neglect some potential
mRNAs. Moreover, the efficiency of the five-gene signature
should be confirmed in more GBM patients. Furthermore, the
molecular mechanisms how the five-gene signature affected the
prognosis of GBM patients should be further elucidated by a
series of experiments.

CONCLUSION

In conclusion, our study identified five novel biomarkers that
have potential for the prognosis prediction in GBM. Moreover,
our findings provide new insights into the pathogenesis and
prognosis of GBM.
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