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Abstract
Pathogen density and genetic diversity fluctuate in the outside-host environment during and

between epidemics, affecting disease emergence and the severity and probability of infec-

tions. Although the importance of these factors for pathogen virulence and infection proba-

bility has been acknowledged, their interactive effects are not well understood. We studied

how an infective dose in an environmentally transmitted opportunistic fish pathogen, Flavo-
bacterium columnare, affects its virulence both in rainbow trout, which are frequently

infected at fish farms, and in zebra fish, a host that is not naturally infected by F. columnare.
We used previously isolated strains of confirmed high and low virulence in a single infection

and in a co-infection. Infection success (measured as host morbidity) correlated positively

with dose when the hosts were exposed to the high-virulence strain, but no response for the

dose increase was found when the hosts were exposed to the low-virulence strain. Interest-

ingly, the co-infection resulted in poorer infection success than the single infection with the

high-virulence strain. The rainbow trout were more susceptible to the infection than the

zebra fish but, in both species, the effects of the doses and the strains were qualitatively

similar. We suggest that as an increase in dose can lead to increased host morbidity, both

the interstrain interactions and differences in infectivity in different hosts may influence the

severity and consequently the evolution of disease. Our results also confirm that the zebra

fish is a good laboratory model to study F. columnare infection.

Introduction
Virulence (the harm caused to the host by a pathogen) is influenced by several ecological and
evolutionary processes that often involve a trade-off between host exploitation and pathogen
reproduction [1, 2]. The key factors driving the virulence of a pathogen (e.g. host susceptibility,
pathogen growth rate and host-specificity) coevolve in an arms race between the pathogen and
its host [1]. Opportunistic pathogens are often host-generalists and can have the ability to
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survive and replicate outside the host, thus not being restricted by the transmission-virulence
trade-off [3]. Despite the opportunists having a great impact on general health, their infection
dynamics and infectivity in different host species are poorly characterized, and not covered by
the traditional theories of virulence.

In nature, populations of hosts and their pathogens are diverse, and the hosts are often
infected by several pathogen genotypes or species, which often leads to increased virulence [4,
5, 6, 7]. Interactions of co-infecting pathogens can have a significant role in virulence evolution,
either due to strain competition or by facilitating infection with cooperative interactions [4, 8,
9, 10]. Co-infections may be especially important for generalist pathogens that have a wide
host range and, thus, a higher likelihood of coming across potential hosts than host-specialists
[3, 11]. However, pathogen virulence may face trade-offs as a result of the ecological and evolu-
tionary costs of generalism [12], which could lead to higher pathogen doses needed for the ini-
tiation of an infection. As a consequence, the virulence of a generalist pathogen in different
hosts may not always be easy to predict [11].

Infective dose (the number of cells needed to infect a host) varies greatly among pathogen
species [13]. The infective dose is generally recognized to influence disease dynamics and sever-
ity [14, 15], as virulence typically increases with the dose [8, 14]. Although dose effects in mul-
tiply infected hosts can have important evolutionary consequences [16], the strain interactions
in the context of dose effect are still poorly understood.

Previous studies on co-infections with eukaryotic parasites have demonstrated the virulence
increase in the fish pathogen Flavobacterium columnare [17, 18]. However, it has remained
unknown how the interstrain interactions of different F. columnare strains affect the virulence
during co-infection. Using two host species we investigate how an increasing pathogen dose
and co-infection (with two bacterial strains differing in their virulence), affect the virulence of
this host-generalist pathogen in two phylogenetically distant host species. Our aim is to shed
light on how the infective doses and co-infections in opportunistic pathogens shape the disease
outcome in different host species, and thus increase the present understanding of disease evolu-
tion and how disease epidemics emerge in differing conditions. As an infection model we use
the opportunistic fish pathogen F. columnare, and as hosts the rainbow trout (Oncorhynchus
mykiss), a Salmonid host frequently infected in fish farms, and the zebra fish (Danio rerio), a
Cyprinid host.

Materials and Methods

Pathogen
Flavobacterium columnare is a globally important fish pathogen in freshwater aquaculture [19,
20] and known to affect several fish species in fish farming and in the wild as a causative agent
of columnaris disease [21, 22, 23]. The common clinical signs of the disease include gill necro-
sis, fin erosion and skin lesions such as the typical saddleback symptom around the dorsal fin
[20, 24]. The disease is transmitted from infected fish via water and biofilms [25, 26]. In
Europe, F. columnare is an especially difficult pathogen in salmonid fish farming, where it can
cause severe fish mortality within the rearing units [20, 25]. The disease outbreaks occur in the
summer when the water temperature naturally rises above 20°C [27]. Two previously isolated
F. columnare strains were used in this study: a high-virulence strain B185 isolated during a
columnaris disease outbreak at a salmonid fish farm in Central Finland (farm L, see details on
the strain isolation and virulence in our previous studies [28, 29]) and a low-virulence strain
B398 isolated from the inlet water of another salmonid fish farm in the same area (farm V, see
[25]). Pure cultures were stored frozen at -80°C in a stock containing 10% glycerol and 10%
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fetal calf serum. For the experiments, the bacterial strains were grown in modified Shieh
medium [30] at 26°C with constant agitation (150 rpm).

Host species
The rainbow trout is a cold-adapted fish species, occurring naturally in the Pacific Ocean and
cold streams in the North American continent from Alaska to Mexico [31]. After introduction
into Finland around 1900, the rainbow trout has become the most important commercially
farmed fish species in the country [32], and since the 1990’s has been severely affected by
columnaris disease during warm water periods [20]. As F. columnare is prevalent at salmonid
farms and their inlet waters in Finland, we used rainbow trout as a model species representing
a natural host of F. columnare. For the study, apparently healthy fingerling rainbow trout with
no known history with F. columnare were obtained from a stock of a fish farm (farm V) in Cen-
tral Finland. The fish were obtained from the farm during a cold water season (when no out-
breaks occur), brought to our fish rearing facilities where F. columnare-free well water is used,
and maintained for two months at 15.0–16.0°C before conducting the experiments. The aver-
age weight of the fish was 1.25 g.

The zebra fish is a well-established laboratory animal that shares the temperature optimum
of the pathogen (for zebra fish, see [33]; for F. columnare, see [24]). It is a tropical species indig-
enous to South Asia, and thus it does not have a recent co-evolutionary history with the bacte-
rial strains used in this study. The adult, unsexed, disease-free zebra fish (average weight 0.21
g) were obtained from Core Facilities (COFA) and Research Services of Tampere (University
of Tampere, Finland).

Both rainbow trout and zebra fish have been previously used as experimental hosts for F.
columnare [21, 25, 34, 35], but how the bacterial strain and the dose affect the onset of colum-
naris disease has not yet been thoroughly studied. If the zebra fish are found to respond to the
experimental columnaris infection in a similar way to the rainbow trout, they could be used as
a reliable model in further columnaris disease experiments.

Infection treatments
To examine the interactions between virulence, infection dose, and host species, the fish were
infected with the two F. columnare strains, and with a 1:1 mixture of these strains, by bath chal-
lenge [29]. The fish were individually challenged in 50 ml of aerated ground water with 5.×105,
1.0×106, 3.0×106, 6.0×106, 9.0×106, 1.2×107, 1.6×107, 2.0×107 and 3.0×107 CFU (colony form-
ing units) ml-1 of overnight-grown bacteria for 2 hours at 25°C in two fish per dose. The dose
was treated as a continuous variable, totaling 18 replicate fish per species per each treatment
group (high-virulence strain, low-virulence strain and co-infection). Per species, 5 replicates of
negative control fish (sham-exposed to sterile Shieh medium) were used. After being chal-
lenged, the fish were transferred individually into 1 liter aquaria with 0.5 liter of ground water,
and monitored for clinical signs of disease and morbidity for 5 days, the first 48 hours at
2-hour intervals. The water temperature was maintained at 25.0–26.3°C throughout the experi-
ment. The fatally moribund fish were euthanized by decapitation. Also the surviving and the
control fish were euthanized in the end of the experiment. To verify the columnaris infection,
cultivations from gills were spread on Shieh agar supplemented with tobramycin [36]. The yel-
low colonies with the rhizoid morphology typical to F. columnare were considered as an indica-
tor of columnaris infection. The experiment was conducted under permission ESAVI-2010-
05569/Ym-23, granted by the National Animal Experiment Board at the Regional State Admin-
istrative Agency for Southern Finland.
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Statistical analysis
The data were analyzed using a generalized linear model (GLM) for binomial distribution.
Two factors (‘host species’ and ‘treatment’ (high-virulence strain, low-virulence strain or co-
infection)), a continuous covariate (‘dose’), and all their possible interactions were included as
variables to explain the fate of the fish (dead or surviving) within the time from the beginning
of the experiment (see [37]). All the infected rainbow trout ‘died’ during the experiment. The
last moribund rainbow trout were euthanized 42 hours before the end of the experiment. As
the gill cultures taken from the infected and moribund fish were positive for F. columnare and
cultures from the surviving fish were negative, it can rather safely be assumed that zebra fish
surviving up to 141 hours (i.e. until the end-point of the experiment) were able to resist, or tol-
erate and survive, the infection. Thus, we did not consider the surviving individuals as censored
cases. The model selection was based on Akaike information criteria (AIC; Table 1) and the
analysis was conducted with the software R 2.15.2 and the package Lme4. When interpreting
the effects of the terms included in the model, a significance level of 0.05 or less was used.

Results
The risk of fatal infection of the host was significantly influenced by the dose, the treatment
(high-virulence strain, low-virulence strain or co-infection) and the host species (Fig 1, Tables
2 and 3). We found that 1) the increase in the dose correlates positively with the host morbidity
risk when the hosts are exposed to the high-virulence strain or the mixture; 2) the infection
success in the co-infected hosts is approximately an average of that of hosts infected with the
high-virulence and the low-virulence strains (Fig 1), indicating that only the high-virulence
strain is responsible for the host morbidity; and 3) the rainbow trout is more susceptible to the
columnaris infection than the zebra fish (Fig 1), but both hosts respond to the bacterial doses
and strains qualitatively similarly. All the moribund hosts were found positive for F. columnare
in bacterial culture taken from fish gills, whereas the unexposed hosts and hosts surviving the
infection were found negative.

Discussion
Opportunistic pathogens are often host-generalists and may survive and replicate outside the
host [3], thus having different environmental dynamics than obligate pathogens. Pathogens
that are durable in the outside-host environment may not have high fitness costs related to vir-
ulence [38], which has also been observed for F. columnare [39, 40]. The ability to survive and

Table 1. Model selection based on Akaike information criteria (AIC).

Model AIC df P

host*treatment*dose 234.23

host+treatment+dose+host:treatment+host:dose+dose:treatment 231.22 2 0.611

host+treatment+dose+host:treatment+dose:treatment 230.72 2 0.173

host+treatment+dose+host:treatment 232.93 2 0.104

host+treatment+dose+dose:treatment 236.78 1 0.009

The model with smallest AIC value estimating the morbidity risk of the host (rainbow trout or zebra fish)

within time is underlined.

The degrees of freedom (df) and significance levels (P) are given for the goodness of fit compared to the

next higher level model.

Single- and co-infections are included in the term ‘treatment’.

doi:10.1371/journal.pone.0139378.t001
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replicate outside the host can contribute significantly to the infective bacterial populations in
the environment, and therefore information on the relationship between the number of free-
living bacteria (the infection dose) and disease virulence is needed. Although the influence of
dose on disease dynamics has been widely acknowledged, its effect on parasite virulence and
reproduction is sometimes unclear or even contradictory [14]. Additionally, the experimental
evidence from the infective doses of opportunistic pathogens is scarce, especially in different
host species. We addressed these issues by infecting two host species with increasing doses of a
high-virulence and a low-virulence bacterial strain in a single and in a co-infection.

We found a strong positive relationship between the dose and the host morbidity risk in the
treatments in which the high-virulence strain was involved (Fig 1). As the host morbidity risk
in this study is a measure of pathogen virulence (as demonstrated in e.g. [2, 41, 42, 43]), our
result suggests that the virulence of F. columnare is strongly dose-dependent. This finding is in
agreement with the experimental evidence from obligatory pathogens [14, 44]. Interestingly, in
contradiction with numerous previous studies [5, 7, 45, 46, 47], we did not observe any additive
effects of co-infection on the host morbidity risk. This indicates that the outcome of the infec-
tion in this study is affected by the interplay between the bacterial strain and the dose. Previous
studies (e.g. [48, 49]) have shown that the more virulent strains have a competitive advantage
in mixed infections, whereas in some systems, like Schistosoma mansoni, co-infections may
favor the less virulent strains [50]. Our result suggests that the presence of a low-virulence

Fig 1. Estimated mortality risk per hour of A) zebra fish (Danio rerio), and B) rainbow trout
(Oncorhynchusmykiss) infected with a high-virulence (continuous line) and a low-virulence (dotted
line) strain of F. columnare, and their mixture, i.e. co-infection (dashed line).

doi:10.1371/journal.pone.0139378.g001

Table 2. The significance and test values of the bacterial dose, the treatment and the host species on the morbidity risk of the hosts.

Source Df Deviance Residual deviance P

Host 1,106 84.350 116.663 <0.001

Dose 1,105 9.606 107.057 0.002

Treatment 2,103 14.654 92.403 <0.001

Host:Dose 1,102 10.205 82.198 0.002

Dose:Treatment 2,100 4.522 77.677 0.104

Significant P values are denoted in bold.

doi:10.1371/journal.pone.0139378.t002
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strain may significantly alter the co-infection outcome, most likely by diluting the infection
dose. Indeed, if the low-virulence strain lacks the ability to produce essential virulence factors
needed for a successful infection, its presence may reduce the total severity of the disease out-
break. This is an important finding as the interactions between high-virulence and low-viru-
lence strains are generally poorly understood. Yet, pathogen strains with variable levels of
virulence often co-occur in the environment [20, 22], thus influencing the onset of disease out-
breaks or host immune response.

Also interference competition via antimicrobial compounds like colicins (i.e. inhibitory
compounds targeted to hamper the growth of other conspecific strains) may have trade-offs
with virulence [51]. F. columnare has been reported to produce bacteriocins that are equivalent
to colicins, as demonstrated in [52]. However, in order to find out if the mechanism leading to
reduced virulence in our system builds upon the competitive interactions between the bacterial
strains, more studies are needed in the context of virulence evolution.

Although maintaining the ability to infect multiple host species can be an efficient survival
strategy, it may result in a trade-off, leading to lower pathogen virulence [11, 12, 53]. We found
the two host species to respond qualitatively similarly to the increase in the infection dose, but
the rainbow trout was more sensitive to the increase than the zebra fish. Similar associations
between F. columnare strains and the host species have also been found in salmonids in general
and in channel catfish [35, 54, 55]. However, more extensive studies on a variety of host species
would be needed to find out if our results are due to adaptation of the strains to the rainbow
trout, or if host generalism has trade-offs with virulence of F. columnare. Nevertheless, our
result has important implications because F. columnare populations encounter a wide range of
host species both in the wild and at fish farms [21, 22, 23, 56].

The sensitivity of the rainbow trout in this study can also be partly caused by the experimen-
tal conditions. The water temperature during the experiment was not optimal for the cold-
adapted rainbow trout, although it still was within the temperature range naturally occurring
in fish farming conditions. Indeed, columnaris disease outbreaks at fish farms are typically
prevalent during the warm water season [20, 57]. Yet, our findings confirm that zebra fish is a
suitable model species for experimental studies of F. columnare infections. Zebra fish has been
successfully used as an infection model for columnaris disease already in prior studies [34, 35],
but the infection dynamics of F. columnare in zebra fish compared to rainbow trout has
remained unclear. Information about the comparability of the dose responses in these two spe-
cies is therefore intensely needed to be able to replace the stress-sensitive rainbow trout in the
demanding laboratory experiments. Unlike the rainbow trout, the zebra fish is well suited to

Table 3. The effect of the bacterial dose, the treatment and the host species on the host morbidity
risk.

Source Estimate SE

(Intercept) a -3.738 0.390

Host(Zebra fish) -3.633 0.571

Dose 6.372−8 2.805−8

Treatment(Co-infection) 3.337−2 0.505

Treatment(Single infection, low) -2.861−1 0.496

Host(Zebra fish):Dose 8.272−8 3.197−8

Dose:Treatment(Co-infection) -2.832−8 3.353−8

Dose:Treatment(Single infection, low) -6.542−8 3.186−8

a Intercept includes the effects of the host (rainbow trout) and the treatment (single infection, high).

doi:10.1371/journal.pone.0139378.t003
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laboratory conditions; it is a small-sized species that thrives in warm temperatures (as does the
pathogen) and does not require constant water flow [33]. Additionally, zebra fish are available
year-round.

Our results suggest that an increase in dose can lead to more severe disease and poorer host
survival in host-generalist opportunistic pathogens, but the host survival may be dependent on
the original ability of each bacterial strain to cause disease in a strain-specific manner. For the
same reason, different pathogen strains may not necessarily have additive effects on disease vir-
ulence. Based on our results, it seems that the interactions between the dose and the pathogen
strains are important drivers of infection in different host species, and warrant for more studies
for evolution of virulence and pathogen host range. Furthermore, from an applied perspective,
using zebra fish as an infection model can provide valuable information on the virulence of F.
columnare, as the zebra fish shares the temperature optimum of the pathogen and tolerates the
experimental conditions well.
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