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Abstract: Genotype × environment interactions (GEIs) should play an important role in the selection
of suitable germplasm in breeding programmes. We here assessed GEI effects on pearl millet (Pennise-
tum glaucum L.) genotypes, selected to possess a high concentration of slowly digestible starch (SDS)
and resistant starch (RS) in their grains. Entries were grown in a randomized complete block design
with three replications at locations in Bawku-Ghana, Sadore-Niger, Bamako-Mali, Konni-Nigeria, and
Gampella-Burkina Faso across West Africa. Harvested grains from these locations were metabolomi-
cally profiled using flow injection ionization-high-resolution mass spectrometry (FIE-HRMS). A total
of 3144 mass features (m/z) (1560 negative ion mode and 1584 positive ion mode) were detected, of
which, 475 m/z were linked to metabolites be involved in starch, antioxidant and lipid biosynthe-
sis, and vitamin metabolism. Combined ANOVA revealed that the GEI was significantly evident
for 54 health-benefiting metabolites, many associated with sugar, especially galactose, metabolism.
Additive main effects and multiplicative interaction (AMMI) analysis examined genotype variation
and GEI effects, which, when combined with principal component analysis (PCA), found that m/z
171.14864 (positive ionisation, propenyl heptanoate) accounted for 89% of the GEI variation along
PC1. The AMMI-based stability parameter (ASTAB), modified AMMI stability value (MASV), and
modified AMMI stability index (MASI) were then applied to identify stable and high-performing
genotypes for all the health-benefiting metabolites. Similarly, the best-linear-unbiased-prediction
(BLUP)-based stability estimation was also performed using the harmonic mean of genotypic values
(HMGV), relative performance of genotypic values (RPGV), and harmonic mean of relative perfor-
mance of genotypic values (HMRPGV), to identify genotype rankings across multiple environments.
The multi-trait stability index (MTSI) was calculated and found that the genotypes G1 (ICMH-177111)
and G24 (ICMX-207137) were the most stable and were the best mean performers across 52 health-
benefiting metabolic traits. These findings demonstrate the potential of G × E assessments on the
delivery of health-benefiting metabolite-rich grains in future varieties and hybrids of pearl millet.

Keywords: pearl millet; slowly digestible starch; resistant starch; nutritional traits; genotype by
environment interaction; grain metabolites

1. Introduction

Pearl millet (Pennisetum glaucum L.) is an important staple cereal crop that is grown
on more than 26 million hectares to produce more than 29 tons of grains worldwide. It
is mostly grown in the arid and semi-arid tropical regions of Africa (17 million ha) and
Asia (10 million ha), where drought, heat, and low-fertility soils can lead to losses in crop
production [1–3]. Pearl millet is a climate-resilient and nutrient-rich cereal grain possessing
essential nutrients such as starch, antioxidants, folate, and essential amino acids, which can
enrich the diets of the populations living in emerging economies [4–6]. Pearl millet also has
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non-glutinous and non-acid forming properties and is easy to digest. Moreover, pearl millet
grains are rich in nutritionally important minerals such as iron, calcium, zinc, magnesium,
phosphorous, and potassium. Pearl millet grains are also a good source of dietary fibre
and several vitamins (β-carotene, niacin, vitamin B6, and folic acid). Millets are also rich in
polyphenols, tannins, and phytosterols and are a good source of antioxidants.

Recently, pearl millet entries possessing a high concentration of slowly digestible starch
(SDS), resistant starch (RS), antioxidants, and vitamins were identified by Yadav et al. [7]
in the world collection of pearl millet germplasm set known as the Pearl Millet Inbred
Germplasm Association Panel (PMiGAP). The current study was planned to gain an un-
derstanding of the metabolites available in these genotypes and how their concentrations
are affected by changes in environmental conditions. Multivariate statistical analysis of
metabolites can provide a comprehensive overview of the relationships between metabolite
components in pearl millet when grown under different environmental conditions. Cru-
cially, such a screening strategy could be used to identify superior and stable pearl millet
genotypes with enhanced nutritional components across environments.

In the present study, we investigated metabolite diversity in eleven pearl millet hybrids
known to possess high concentrations of SDS and RS in their grains. The study focused
on comparative analysis of health-benefiting metabolites in the harvested grains of these
entries after growing them at five different environmental locations across West Africa,
but under unified agronomical practices. Hybrids were chosen for their high RS and SDS
properties known to contribute to the low glycaemic index (GI) of pearl millet.

2. Materials and Methods
2.1. Experimental Material, Field Trials, and Data Collection

Eleven pearl millet genotypes were used in this study, viz. ICMX-207076, ICMX-207094,
ICMX-207136, ICMX-207137, ICMX-207171, ICMX-207181, ICMX-207183, ICMX-207190,
ICMH-177111, ICMA177002, and ICMA177003 (Supplementary Table S1). The field trials
were conducted with these genotypes at five locations, Bawku-Ghana, Sandore-Niger,
Bamako-Mali, Kano-Nigeria, and Gampella-Burkina Faso in West Africa. Geographic
co-ordinates (latitude, longitude, and altitude), type of soil, and weather data during the
cropping season (total rainfall, minimum and maximum temperature) for each location are
given in Supplementary Table S2. The experiment used 8 hybrids along with the parental
genotypes that were sown under field conditions in a randomized complete block design
(RCBD) with three replications during the 2018 rainy season. Each genotype was sown in
2-row plots of 3 m in length, with a 0.75 m distance between the rows and 0.20 m in-between
plants. Test plots were thinned at 12 days after seedling emergence (DAE) to one plant per
hill with a plant population of 30 per plot. A basal dose of fertilizer, 100 kg/ha (NPK), was
applied to the fields at the land preparation stage. Micro-dosing of the crop with urea at
2 g per hill was carried out at 30 DAE.

2.2. Metabolite Fingerprinting

Metabolite extraction was performed from frozen milled grain samples of eleven acces-
sions of pearl millet. Three biological replicates were used to minimize any measurement
errors. Pearl millet grains in an amount of 50 mg ± 1 mg were flash frozen in liquid N2 and
homogenized using a ball mill. The samples were placed on ice, and 1 mL of extraction
solution (chloro-form/methanol/water, 1:2.5:1, v/v/v) was added followed by incubation
at 4 ◦C for 15 min with constant stirring. The aqueous supernatants were collected after
centrifugation at 21,000× g for 5 min at 4 ◦C and returned to the ice. Then, 100 µL of the
extracted samples was analysed using flow infusion electrospray ionization high-resolution
mass spectrometry (FIE-HRMS). The four independent replicates were considered for each
sample, and metabolite fingerprinting was performed by FIE-HRMS using a Q Exactive
Plus Hybrid Quadrupole Orbitrap Mass Analyser with an Accela UHPLC system (Thermo
Fisher Scientific, Bremen, Germany). The sample was injected into the capillary column
in a randomized order, and the m/z (mass ion) values were recorded in both positive and
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negative ionization modes as described by Skalska et al. [8] and Yadav et al. [9]. The
peak area of each metabolite was analysed using the MetaboWorkflows R package version
0.9.5 (https://jasenfinch.github.io/metaboWorkflows, accessed on 18–25 March 2022) for
spectral processing, data pre-treatment, and quality control. Statistical analyses for metabo-
lites’ diversity were performed using MetaboAnalystR (http://www.metaboanalyst.ca,
accessed on 18–25 March 2022), as described in Yadav et al. [9]. Briefly, metabolite m/z
values were normalized as a percentage of total ion count, and values were transformed
to log10 and Pareto scaling. Significant metabolites were identified by cross-validated
p-values (adjusted using Bonferroni correction to reduce false positives), based on one-way
analysis of variance (ANOVA), setting the significance at p < 0.05. The functional pathway
of each untargeted metabolite was identified by applying the functional analysis module of
MetaboAnalyst 5.0 using the reference library: Oryza sativa. The selection of metabolites
contributing to health-benefiting traits was as described by Yadav et al. [9].

2.3. Statistical Analysis for Phenotypic Variance and Heritability

The phenotypic variance was analysed using a mixed linear model implemented in
the LME4 R-package that uses REML to estimate the variance components. ANOVAs
were performed on replicated data observed in different environments (five locations).
The analysis was performed for individual environment, as well as combined across
environments, in a random complete block design (RCBD). In combined analysis across
environments, the genotype interactions with the environments were considered as random
effects [10–12].

The broad-sense heritability was calculated for each health-benefiting metabolite in an

individual environment as: H2 =
σ2

g
σ2g+σ2

ε/ηRep , where σ2
g and σ2

ε are the genotype and

error variance components, respectively, and ηRep denotes for replicates. The combined

heritability analyses were calculated as: H2 =
σ2

g
σ2g+σ2ge/ηLoc+σ2

ε/(ηLoc × ηRep) in multiple

environment factors. Here, σ2
ge is the GEI variance component and ηLoc is the number of

environments [13,14].
The REML model was applied for observation of the best linear unbiased predictors

(BLUPs) for each genotype, thus influencing the effect of the adjacent rows [15].

2.4. Additive Main Effects and Multiplicative Interaction Model

The additive main effects and multiplicative interaction (AMMI) model was imple-
mented in the metan r package [15], which is the most advanced model for additive main
effects and multiplicative analysis. This involves fitting an additive model (ANOVA) for
general means, G and E means, and a multiplicative model (i.e., PCA) for the residuals of
an additive model or a genotype, environment, and their interactions [16]. Patterson and
Williams [17] implemented a model to observe the response variable for the ith genotype
in the jth environment (yij) calculated as: yij = µ+ αi + τ j + ∑

p
k = 1 λk aik tjk + ρij + εij,

where λk is the singular value for the kth interaction principal component axis (IPCA); aik
is the ith element of the kth eigenvector; tjk is the jth element of the kth eigenvector. A
residual ρij remains, if not all p IPCA are used, where p ≤min (g − 1; e − 1). An additive
main effects model along with a multiplicative model (i.e., PCA) explained the genotype
environment interaction effect of each genotype and partitioning of their interaction effects
in response to individual environments.

2.5. Genotype plus Genotype-by-Environment Model on Multi-Environment Factor

GGE modelling strategies are based on multi-environment trial data that include
GEI variation as a combination of the genotypic main effect and the GEI as a sum of the
multiplicative response (i.e., PCA). GGE biplots provide graphical depictions that allow the
evaluation of genotype performance in different environments. This allows the association
between specific environments and between genotypes to be explained. GGE biplots were
generated using Genstat (18th edition) [18] by selecting the convex hull around genotype

https://jasenfinch.github.io/metaboWorkflows
http://www.metaboanalyst.ca
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scores option to mark the convex hull around the genotype scores, the sectors to divide the
biplot into segments, the mega environment to draw an ellipse round those environments
that share the same sector, and linking the environment based on its scores with the origin.

2.6. Estimation of AMMI- and BLUP-Based Stability

Several AMMI-based stability methods were implemented in the Metan r package
by [15]. The AMMI-based stability parameter (ASTAB = ∑N′

n = 0 λn γ2
in) by Rao and Prab-

hakaran [19], Annicchiarico’s D parameter Da =
√

∑N′
n = 0 (λn γin )2 by Annicchiarico [20],

Zhang’s D parameter (Dz =
√

∑N′
n = 0 λ2

in) by Zhang et al. [21], the AMMI stability in-

dex (ASI =
√
[PC2

1 × θ2
1 ]+[PC2

2 × θ2
2 ]) by Jambhulkar et al. [22], the weighted average

of absolute scores (WAASi = ∑N
k = 1

∣∣∣IPCAik × θk/ ∑
p
k = 1 θk ) by Olivoto et al. [23], the

sums of the averages of the squared eigenvector values (EV = ∑N′
n = 1

γ2
in

N′ ) by Zobel [24],
the stability measure based on the fit AMMI model (FA = ∑N′

n = 1 λ2
nγ2

n) by Raju [25],

the modified AMMI stability index (MASI =
√

∑N′
n = 1(PC2

n×θ2
n) by Ajay et al. [26], and

Spearman’s rank correlations among all 13 stability values were derived.
The best-linear-unbiased-prediction (BLUP) based stability estimation method was

implemented in the Metan r package for the selection of stable genotypes with the best
performance in a mixed effects model structure. Colombari et al. [27] (2013) demonstrated
the use of three BLUP-based indexes for the selection of genotypes for performance and
stability. The first methods involve the prediction of the harmonic mean of genotypic values
(HMGVi = E

∑E
j = 1

1
Gv ij

), the second RPGV index (RPGVi = 1
E ∑E

j = 1 Gvij/µj ), and the

HMRPGV index (HMRPGVi = E
∑E

j = 1
1

Gvij/µj

). E represents the number of environments;

Gvij is the genotypic value (BLUP) for the ith genotype in the jth environment.

2.7. Multi-Trait Stability Analysis

The multi-trait stability index (MTSI) by Olivoto and Lúcio [15] was implemented
in the Metan r package to predict the stability and mean performance across all the traits
together. The MTSI was estimated using the WAASBY index based on the superiority
index based on the mixed effects model WAASBYi = (rGi×θY)+(rWi×θS)

θY+θS
described by

Olivoto et al. [23].

3. Results
3.1. Metabolite Profiling

Eleven pearl millet genotypes were selected based on high RS and SDS traits by
Yadav et al. [28]. The cultivars were grown in five locations in West Africa (Bawku-
Ghana, Sadore-Niger, Bamako-Mali, Konni-Nigeria, Gampella-Burkina Faso), and metabo-
lite content was evaluated using flow infusion electrospray high-resolution mass spec-
trometry (FIE-HRMS). A total of 3144 mass features (m/z) (1560 negative ion mode and
1584 positive ion mode) were assessed based on the presence in at least three repli-
cates of each genotype of pearl millet. Metabolites were tentatively identified, and path-
way enrichment factor analysis using the mummichog module of Metaboanalyst (https:
//shuzhao-li.github.io/mummichog.org, accessed on 18–25 March 2022) linked 475 mass
features to metabolites linked with human health benefits (Supplementary Table S3).

Out of the 475 metabolites, 97 metabolites (65 negative ion and 32 positive ion modes)
were targeted as being involved in “starch and sucrose”, “galactose”, and “fructose and
mannose” metabolism through pathway enrichment analysis. Similarly, 115 mass features
(63 negative ions and 52 positive ion mode) were associated with antioxidant biosynthe-
sis pathways (such as anthocyanins, carotenoids, glutathione, flavonoids, flavones, and
flavonols) and 131 metabolites (73 negative ions and 58 positive ion mode). Other important

https://shuzhao-li.github.io/mummichog.org
https://shuzhao-li.github.io/mummichog.org
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pathways were linked to vitamin metabolism (ascorbate, biotin, riboflavin (vitamin B2)),
pyridoxine (vitamin B6), folate (vitamin B9), lipid metabolism (“fatty acid degradation”,
“fatty acid biosynthesis”, biosynthesis of unsaturated fatty acids), nitrogen metabolism,
inositol phosphate, and zeatin biosynthesis (Supplementary Table S3). Two-way ANOVA
allowed the ranking of 25 metabolites that showed the most variation across the locations
(Figure 1A). Pathway enrichment and impact assessments indicated the importance of
galactose metabolism (p = 2.1874 × 10−4, FDR = 0.02078) (Figure 1B). These preliminary
assessments indicated the existence of G × E effects that required further assessment.
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Figure 1. (A) Heatmap visualization of the mean performance of the 25 health-benefiting metabolites
identified across five locations in pearl millet lines. Each value represents the normalized (median-
centred and log10-transformed) mean of three biological replicates, with red and blue colours denoting
relatively high and low intensities (Loc1-Bawku-Ghana, Loc2-Sadore-Niger, Loc3-Bamako-Mali, Loc4-
Konni-Nigeria, Loc5-Gampella-Burkina Faso). (B) Biochemical pathway enrichment assessments of
the metabolites shown in (A). The circle sizes and deeper colours indicate increasingly significantly
and biochemical important pathways.

3.2. ANOVA for Phenotypic Variance

The 475 metabolites were subjected to a combined ANOVA analysis for significance
at p < 0.05 for both factors (genotypes (G) and environments (E)) and GEI (genotype and
environment interaction) to define multi-factor responses in these genotypes in the five dif-
ferent environmental conditions. Combined analyses of variance across the environments
suggested that genotypic, environmental, and interactions were significant for 52 health-
benefiting metabolites (Supplementary Table S4). Of these, 13 metabolites (10 negative ions
and 3 positive ion mode) that were involved in starch and sucrose metabolism showed
significant (G), (E), and (GEI) differences. Similarly, 13 mass features (7 negative ions and
6 positive ion mode) associated with antioxidant biosynthesis pathways, 21 metabolites
(10 negative ions and 11 positive ion mode) with vitamin metabolism, and 7 metabolites
(3 negative ions and 4 positive ion mode) linked with lipid biosynthesis showed that
genotype, environment, and their interactions were highly significant at p < 0.001.
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The high broad-sense heritability observed for the 52 metabolites indicated that the
genotypic differences detected are primarily due to genetic effects. The current analy-
sis showed that m/z 164.04323 (negative ionization, tentatively identified as the vitamin
6 metabolite, 4-pyridoxolactone) was strongly heritable (>0.88) across five environments,
whereas broad-sense heritability for m/z 164.04323 was higher (>0.87) in an individual
environment (Sadore, Niger). However, when assessed on the basis of a pooled environ-
ment, a partitioning of the GEI component lowered the heritability for both traits across
environments (Supplementary Figure S1).

3.3. Additive Main Effects and Multiplicative Interaction Analysis

At the same time as the ANOVA based on an additive model, which illustrates the
effect of the source of variation, the AMMI model emphasizes the pattern of genotypes
(G) and/or environments (E) and their interactions. AMMI-based statistical analysis for
54 health-benefiting metabolites showed significant variation within the eleven genotypes
across the five environments (Supplementary Table S5). AMMI-based combined ANOVA re-
vealed that environment, genotype, and GEI showed significant variation at 0.1% (p < 0.001)
for 40 metabolites, whereas 9 metabolites showed non-significant genotype and environ-
ment interactions (Supplementary Table S5). The G × E, as well as GEI variations were
significant at p < 0.001 for most of the metabolites. AMMI-based analysis revealed that GEI
had major contributions from the first principal components (PCs), which ranged from
39.9 to 91.2% for health-benefiting metabolites. One m/z (positive ionisation, 171.14864,
tentatively identified as the fatty acid ester, propenyl heptanoate) showed the maximum
variance with the first PC (which explained 91.2% of the total GEI), while the second,
third, and fourth PCs contributed 7.2, 1.0, and 0.7%, respectively (Supplementary Table S5).
Genotype contributed 18.38% to the total variation of m/z p171.14864, whereas the envi-
ronment contributed major variations (33.07%), and GEI contributed 4.84%. Compared
to other mass features, PC1 for m/z 380.1561 (negative ionisation; tentatively identified as
cis-zeatin-9-N-glucoside) explained the least variance at only 39.9% of the total GEI, while
the second, third, and fourth PCs contributed 26.9, 18.4, and 14.9%, respectively. Genotypic
variance explained 13.70% for m/z 380.1561; however, the environment and GEI contributed
about 15.78 and 2.34%, respectively.

AMMI1 biplots were generated to explain the interactive correlation between geno-
types and environments for the 54 metabolites (Supplementary Figure S2a–e). The analyses
showed distinct patterns amongst genotypes interacting across the environments for m/z
171.04079 (negative ionisation), tentatively identified as luteone 7-glucoside, involved in
the antioxidant pathway, and m/z 539.13831 (negative ionisation), tentatively identified
as raffinose and involved in starch metabolism. Similar environmental effects for m/z
285.04037 (negative ionisation, tentatively identified as 7, 8, 3’, 4’-tetrahydroxyisoflavone)
were observed except with E2 (Sadore-Niger), which had a distinct effect on genotype adap-
tation (Figure 2). For m/z 285.04037, E2 (Sadore-Niger) and E4 (Konni-Nigeria) were the
furthest from the biplot origin, which indicated strong interaction influences for genotype
adaption. E1 (Bawku-Ghana), E3 (Bamako-Mali), and E5 (Gampella-Burkina Faso) were
closest to the biplot origin point and had shorter vectors, indicating weak interaction with
genotype adaptation. The AMMI2 biplot described the performance of the entries and their
adaptation to a specific environmental condition (Figure 2).

The AMMI2 biplot for the antioxidant metabolism metabolite (m/z 171.04079) showed
that the genotype G24 (ICMX-207137) showed the best performance in the E1 (Bawku-
Ghana) environment. Genotype G33 (ICMX-207183) had the highest levels, as this showed
good adaptation in E5 (Gampella-Burkina Faso). In contrast, genotypes, namely G15 (ICMX-
207076), G38 (ICMX-207190), and G1 (ICMH-177111), had higher m/z 285.04037 content,
but negative adaptability across the environments such as E2 (Sadore-Niger), E3 (Bamako-
Mali), and E4 (Konni-Nigeria). The AMMI2 biplot for the metabolite involved in starch
metabolism (m/z 539.13831, raffinose) and genotypes such as G1 (ICMH-177111), G18
(ICMX-207094), G31 (ICMX-207171), and G32 (ICMX-207183) exhibited good performance
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in E2 (Sadore-Niger) and E5 (Gampella-Burkina Faso). However, with genotypes, G23
(ICMX-207136) and G3 (ICMX-207207) had higher levels of m/z 539.13831, but had negative
adaptabilities across certain environments (E1-Bawku-Ghana, E3-Bamako-Mali, E4-Konni-
Nigeria). Similarly, for m/z 285.04037, genotypes such as G33 (ICMX-207183) had the highest
degree of performance with high-ranking adaptability in E2, but G38 (ICMX-207190) was
associated with negative adaptability in E3 (Bamako-Mali) and E5 (Gampella-Burkina Faso).
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Figure 2. Additive main effects and multiplicative interaction (AMMI) for metabolites linked to
antioxidant (n171.04079), starch (n539.13831), and vitamin metabolism (n285.04037) in 11 pearl millet
genotypes evaluated in five environments. AMMI-based biplot generated using AMMI1 biplot (trait
vs. Principal Component 1 (PC1)), AMMI2 biplot (PC1 vs. PC2), and AMMI2 biplot (PC1 vs. PC2)
with the polygon option.

3.4. Genotype plus Genotype-by-Environment Biplots

Genotype-by-environment (GGE) biplot analysis of multiple traits was used to com-
pare multiple genotypes in multiple environments (five environments) for the 54 health-
benefiting metabolites (Supplementary Figures S2 and S3). GGE-based biplots were gener-
ated to connect environment scores with the origin and found favourable environmental
effects for m/z 171.04079 and m/z 285.04037. However, contrastingly, unfavourable environ-
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mental effects were observed for the starch-metabolism-related (m/z 539.13831) metabolite
(Figure 3a). The GGE biplots also indicated that E2 (Sadore-Niger) and E3 (Bamako-Mali)
showed a positive correlation for m/z 285.04037 metabolite levels, but a negative correlation
with E1 (Bawku-Ghana) and E2 (Sadore-Niger).
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Figure 3. Genotype-by-genotype × environment (GGE) biplot (a) to identify the favourable environ-
ment for antioxidant-(n171.04079), starch-(n539.13831), and vitamin-(n285.04037) linked metabolites
and (b) polygon view biplot for identification of stable genotypes for antioxidant-(n171.04079),
starch-(n539.13831), and vitamin-(n285.04037) associated metabolites across the testing environments.

The GGE biplots also indicated the best-performing genotypes in each of those en-
vironments by highlighting the convex hull around genotype scores, sectors, and mega
environments that share the same sector (Supplementary Figure S4a,b). For example, the
first two interaction principal component axes (IPC) accounted for more than 88.51% of the
G + GE sum of squares for m/z 285.04037. The biplot showed four mega environments with
E3 (Bamako-Mali) and E5 (Gampella-Burkina Faso) sharing a common mega environment
and having a similar effect on m/z n285.04037. Similarly, the first two IPCs explained 75.28%
(genotype–environment interaction) for the starch metabolism (m/z 539.13831) and 95.27%
of the GEI for m/z 285.04037. The convex hull biplot exhibited two mega environments for
m/z 539.13831 in which E1 (Bawku-Ghana) and E3 (Bamako-Mali) share a common mega
environment and E2 (Sadore-Niger), E4 (Konni-Nigeria), and E5 (Gampella-Burkina Faso)
are assigned together to have effects on the starch metabolism (m/z 539.13831) metabolite
(Figure 3b). The convex hull biplot exhibited two mega environments for m/z 285.04037 in
which E1 (Bawku-Ghana), E3 (Bamako-Mali), E4 (Konni-Nigeria), and E3 (Bamako-Mali)
share a common mega environment and were different in E2 (Sadore-Niger).
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3.5. Estimation of AMMI-Based Stability Indices

The AMMI-based stability was performed to rank the genotypes for their performance
across the different environments. Various AMMI-based statistical models and parameters
were applied, namely ASI, ASV, ASTAB, AVAMGE, DA, DZ, EV, FA, MASI, MASV, SIPC,
and Za (Supplementary Table S6). The genotype G51 (ICMX-207192) was the most stable,
and G31 (ICMX-207171) ranked second, when using each AMMI-based stability assessment
except ASV and MASV for m/z 285.04037. For the starch-metabolism-related compound
(m/z 539.13831), G15 (ICMX-207076) was ranked 1st and G51 (ICMX-207192) 2nd for their
performance across the various environments. Similarly, the genotype G32 (ICMX-207181)
ranked 1st and G51 (ICMX-207192) 2nd and showed the highest stability for the vitamin-
metabolism-related metabolite m/z 593.15131 (Supplementary Table S6).

3.6. Estimation of Best-Linear-Unbiased-Prediction-Based Stability Indices

The BLUP-based analysis was performed with BLUP-based statistical models to estimate
highly stable genotypes across multiple environmental conditions (Supplementary Figure S5).
The ranking of the genotypes was as follows: G15 (ICMX-207076) 1st, G32 (ICMX-207181)
2nd, G1 (ICMH-177111) 3rd, and G18 (ICMX-207094) 4th as highly stable genotypes for
m/z 171.04079 according to HMGV, RPGV, and HMRPGV, but not the WASSB method.
Similarly, genotypes ranked as 1st G32 (ICMX-207181), 2nd G31 (ICMX-207171), 3rd G38
(ICMX-207190), and 4th G23 (ICMX-207136) were identified as highly stable genotypes for
starch metabolism m/z 539.13831 by HMGV, RPGV, and HMRPGV, but not the WAASB
method. For the vitamin-associated metabolite (m/z 593.15131), G32 (ICMX-207181) ranked
1st, G31 (ICMX-207171) 2nd, G38 (ICMX-207171) 3rd, and G23 (ICMX-207136) 4th using
HMGV, RPGV, and HMRPGV stability predictions (Supplementary Table S7).

3.7. Best-Performing and Highly Stable Entries

The MTSI was performed by the WAASBY index for genotype stability and mean
performance across the 54 health-benefiting metabolites. This suggested that the genotypes
G1 (ICMH-177111) and G24 (ICMX-207137) had the best stability and performance in the
five environments. The stability index score was lowest for G32 (ICMX-207181), showing
poor stability and mean performance in multiple environmental conditions (Figure 4).
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G32 = ICMX-207181, G33 = ICMX-207183, G38 = ICMX-207190, G51 = ICMX-207192).
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4. Discussion

Millets, particularly pearl millet, are important due to their critical role in human nutri-
tion. Substantial progress in nutritionally rich crop production has been achieved through
the exploitation of classical genetics and the selection of crop varieties with improved
health-benefiting traits. However, the increasing worldwide population and adverse cli-
matic conditions have driven the need to protect and augment health-benefiting traits in
micronutrient-rich grains such as pearl millet. Numerous studies have suggested that
capturing naturally occurring genetic variation could be important for nutritional val-
ues, especially when considering genetic interactions in improving desired attributes [29].
Thus, this study was conducted with the aim to identify the best-performing and most-
stable genotypes in multiple environments for various health-benefiting metabolites in
pearl millet.

Previously, we used metabolomic-based quantifications of health-benefiting nutri-
tional metabolites as phenotypic traits in conjunction with 76K SNP variants to conduct
metabolic genome-wide association analyses [9]. This found significant SNPs associated
with health-benefiting nutritional metabolites at the−log p-value≤ 4.0. The study revealed
738 probable candidate genes, which had significant roles in starch, antioxidant, vitamin,
and lipid metabolism. These genes encoded starch branching, α-amylase, β-amylase,
vitamin-K reductase, UDP-glucuronosyl, UDP-glucosyl transferase (UGTs), L-ascorbate
oxidase, and isoflavone 2’-monooxygenase. However, environmental impacts on the levels
of the associated metabolites were not considered in that study and therefore was the aim of
the current study. To address G × E and GEI effects, we quantified health-benefiting antiox-
idant, polyphenol, vitamin, and starch-associated, especially dietary starch, metabolites in
eleven pearl millet lines at five growing locations in West Africa using FIE-HRMS profiling.

The analysis of variance indicated the existence of homogenous error variance for all
the health-benefiting metabolites in each of the five environments. Further, the combined
ANOVA analysis showed that the mean sum of squares due to genotype, environment,
and G × E were significant for 54 health-benefiting metabolites features involved in starch,
antioxidant, lipid biosynthesis, and vitamin metabolism (Supplementary Table S2). Further,
GEI effects were determined using AMMI-based models to reveal if there were substan-
tial genotypic variations amongst the environments. Combined AMMI-based ANOVA
(Table S1) revealed that all components of variations—environment (location), genotype,
and GEI—were highly significant. Interestingly, the percent sum of squares linked to
environment (71.42%) was much greater than genotypes (16.04%) and GEI (2.11%) for m/z
285.04037. This signified that the environmental factor contributed sufficient variations,
which was explained by genotypes’ interaction with their respective environment. Fur-
ther, comparatively less variation in the genotype was found due to other factors such
as differences in rainfall and temperature, and this led to different patterns of genotypic
performances. The large proportion of total variation linked to the venvironment was also
reported by Adugna et al. [30], Molla et al. [31], Dagnachew et al. [32], Birhanu et al. [33],
Lakew et al. [34], and Seyoum et al. [35] in finger millet. Significant GEIs were also observed
by Tolessa et al. [36] in pea and Singamsetti et al. [37] in maize.

Several other statistical models, namely ASI, ASV, ASTAB, AVAMGE, DA, DZ, EV, FA,
MASI, MASV, SIPC, and Za, were also applied to understand the stability of genotypes.
For all the genotypes, most of the stability parameters showed consistent prediction for
genotypic ranking, except ZA and DA. Based on genotypic stability score estimates, G1
(ICMH-177111), G24 (ICMX-207137), G18 (ICMX-207094), and G38 (ICMX-207190) were
identified as top-ranking in terms of stability for most of the health-benefiting metabolites.
Such AMMI-based stability was also used by Anuradha et al. [29] in finger millet and
identified the top ten of 60 genotypes for yield parameters. Similarly, Cheloei et al. [38]
used similar approaches to report stability indices in rice genotypes.

BLUP-based stability methods such as HMGV, RPGV, and HMRPGV further represent
robust statistical approaches for predicting stability [13,29,39]. These methods identify
genotypic effects and allow the ranking of genotypes concerning their performance [40]. In
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our study, the BLUP-based models showed that the ranking of genotypes had similar trends
for all the genotypes with respect to each metabolite’s genotypic stability score estimates.
BLUP-based stability prediction displayed that the genotypes G15 (ICMX-207076), G33
(ICMX-207183), G38 (ICMX-207190), and G23 (ICMX-207136) has top ranks in BLUP-based
stability prediction for most of the health-benefiting metabolites. Similarly, the HMGV,
RPGV, and HMRPGV models were applied to predict the stable genotypes and ranking by
Rosado et al. [41] in macaw palm and Jatropha by Alves et al. [42].

The multi-trait stability index (MTSI) was calculated to identify the best-performing
genotypes across various environments for multiple traits. In this study, have found that
G1 (ICMH-177111) and G24 (ICMX-207137) are the most stable and best mean performers
across the 52 health-benefiting metabolite traits. Our study had similar conclusions to that
of Szareski et al. [43], which also reported the stability indices to predict the favourable
adaptation and stability for multiple traits in wheat genotypes.

5. Conclusions

By combining metabolomics tools, we extensively characterized the metabolite profiles
of eleven pearl millet hybrids by growing them in five distinct locations in West Africa.
Multivariate statistical models applied to the data dissected the genetic and environmental
effects on the accumulation of health-benefiting metabolites in these pearl millet entries. The
study identified the correlation of individual environmental diversity with the metabolite
diversity. The AMMI-based models used in the study identified better-adapted hybrids
for West African regions. This study for the first time characterized G × E interactions on
health-benefiting metabolites’ accumulation in pearl millet entries and identified hybrids
that exhibit stable preferences across locations. Such information is set to be very important
for breeders interested in breeding health-benefiting traits in pearl millet varieties.

Supplementary Materials: The following Supporting Information can be downloaded at: https://
www.mdpi.com/article/10.3390/cells11193109/s1, Figure S1: Heritability for 52 mass features (health-
benefiting metabolites) of pearl millet lines tested at five locations; Figure S2: Additive main effects
and multiplicative interaction (AMMI) for (a–e) 52 metabolites in 11 pearl millet genotypes evaluated
in five environments. A. Plotted using AMMI1 biplot (trait vs. Principal Component 1 (PC1)]. B.
AMMI2 biplot (PC1 vs. PC2); C. AMMI2 biplot (PC1 vs. PC2) with polygon option; Figure S3:
Genotype-by-genotype × environment (GGE) biplot to identify the favourable environment for all
the health-benefiting metabolites involved in antioxidant, starch, and vitamin metabolism. Metabolite
identity code mentioned in Figure S2; Figure S4: Genotype-by-genotype × environment (GGE)
polygon view biplot (a,b) for identification of stable genotypes for antioxidant, starch and vitamin
metabolism across the testing environments. Metabolite identity code mentioned in Figure S2;
Figure S5: Predicted genetic values (BLUPs) were estimated to guide the inferences based on multiple
environments; Table S1: Details of the 11 different accessions, which is part of the Pearl Millet
Inbred Germplasm Association Panel (PMiGAP) used in the trails at five different locations; Table S2:
Geographic coordinates and climatic data of the experimental sites in Africa; Table S3: Metabolite
pathway analyses to identify the health-benefiting metabolites (negative and positive ion mode) in
pearl millet lines using the mummichog algorithm; Table S4: Combined analysis of variance for
health-benefiting metabolites significant at p < 0.05 in pearl millet; Table S5: Additive-main-effects
and multiplicative-interaction (AMMI)-based ANOVA analysis for health-benefiting metabolites in
pearl millet genotypes in the five test environments; Table S6: AMMI-based stability estimates for
ranking the pearl millet genotypes evaluated at the five test locations; Table S7: BLUP-based stability
estimates for ranking the pearl millet genotypes evaluated at the five test locations.
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