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MicroRNAs (miRNAs) play vital roles in gene expression regulations. Identification of
essential miRNAs is of fundamental importance in understanding their cellular
functions. Experimental methods for identifying essential miRNAs are always costly and
time-consuming. Therefore, computational methods are considered as alternative
approaches. Currently, only a handful of studies are focused on predicting essential
miRNAs. In this work, we proposed to predict essential miRNAs using the XGBoost
framework with CART (Classification and Regression Trees) on various types of sequence-
based features. We named this method as XGEM (XGBoost for essential miRNAs). The
prediction performance of XGEM is promising. In comparison with other state-of-the-art
methods, XGEM performed the best, indicating its potential in identifying essential
miRNAs.
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INTRODUCTION

MicroRNAs (miRNAs) are functional non-coding RNAs of ~22 nt in length. miRNAs are
involved in regulating gene expressions (He and Hannon, 2004) in animals and plants. They
have diverse expression patterns and regulate many biological processes, including cell
proliferation (Cao et al., 2022), cell differentiation (Martin et al., 2016), cell apoptosis
(Zhang et al., 2019), fat metabolism (Nematbakhsh et al., 2021), and development of
animals and plants (Zhang et al., 2018). They are also related to many complex diseases
(Wojciechowska et al., 2017), including many types of tumors (Zhang et al., 2007; Lee and Dutta,
2009; Fridrichova and Zmetakova, 2019).

lin-4 (Lee et al., 1993) was the first miRNA to be discovered, followed by let-7 (Reinhart et al.,
2000). The regulatory roles of miRNAs have been widely studied (Bartel, 2004, 2018). Although
miRNAs are small in length, their cellular role is important. Knocking out or knocking down some
miRNA genes will result in lethal or infertile phenotypes (Bartel, 2018). These miRNAs genes are
thought to be essential for the organism to live or develop. With the progress of miRNA gene
annotations, many computational methods were developed to find miRNA genes in the genome
(Wang et al., 2019). However, this resulted in many annotated miRNA genes in the database with
little or no functional understanding (Bartel, 2018; Ru et al., 2019). As a basis toward the
understanding of gene cellular functions, a gene should be determined if it is essential or not
(Zeng et al., 2018; Campos et al., 2019).
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In the context of miRNA genes, there are two categories of
methods for identifying essential miRNAs: experimental methods
and computational predictions. The experimental methods
usually perform gene knockout or gene expression knockdown
experiments on animal or plant models. By observing the
phenotypes, the essentiality of the gene in question will be
determined (Larrimore and Rancati, 2019). For example,
Ahmed et al. (2017) reported that the miR-7a-2 is an essential
miRNA gene by knocking out the miR-7a-2 gene in the mouse
genome to observe the result that it caused infertility. Since the
experimental methods are inevitably time-consuming and labor-
intensive, computational predictions are always considered as
alternative approaches or, at least, beneficial supplements.
Computational prediction methods usually combine machine
learning algorithms with statistical features of genomic
sequences and structures to construct classifiers. Currently,
there is no genome-wide clear set of essential miRNA genes.
Therefore, constructing such machine learning-based predictors
for essential miRNA genes is still a challenging task. As far as we
know, only a handful of studies tried to predict essential miRNAs.

Ru et al. (2019) carried out a study in computationally
predicting essential miRNAs. They collected 85 essential
miRNAs from the literature (Bartel, 2018). By compensating
88 non-essential miRNAs from their own random selection,
they presented a benchmarking dataset for computationally
predicting essential miRNAs. They achieved a promising result
by applying a simple voting scheme in the ensemble of multiple
classifiers. Song et al. (2019) collected 77 essential miRNAs from
the same literature (Bartel, 2018). They proposed the miES
method based on the logistic regression algorithm. Yan et al.
(2020) developed a third method based on the same 77 essential
miRNAs, namely, PSEM, for the prediction of essential miRNAs
in the mouse genome.

In this study, we applied the XGBoost (extreme gradient
boosting) method (Chen and Guestrin, 2016) with
classification trees to construct our predictor on various
sequences and structural features. By optimizing features and
parameters, we achieved better prediction performances than
existing studies. We named our method as XGEM (XGBoost for
essential miRNAs). We provided genome-wide prediction results
in mice as a supplemental annotation to the mouse genome.

MATERIALS AND METHODS

Experimental Data
We considered the dataset from Ru’s work (Ru et al., 2019), which
contains 85 essential and 88 non-essential pre-miRNA sequences.
We also obtained the dataset of miES (Song et al., 2019) and
PESM (Yan et al., 2020) work, which contains 77 essential
miRNAs. To compose a working dataset, we randomly picked
up 77 non-essential miRNAs as negative samples for the miES
and PESM dataset. We noted the former dataset as Ru’s dataset
and the latter dataset as the miES-PESM dataset. Ru’s dataset was
used for training and testing the XGEMmethod, while the miES-
PESM dataset was used only for performance comparison.

Feature Extraction Methods
Five sequence feature extraction methods were incorporated in
our work. They are k-mer frequencies, sequence mismatch
features, subsequence features, PseDSSPC (pseudo-distance
structure status pair composition), and triplet compositions.
BioSeq-Analysis 2.0 (Liu et al., 2019) and repRNA (Liu et al.,
2016b) were used to generate these features. Although the
algorithms for generating these features have been elaborated
in various works of the literature (Chen et al., 2015, 2018; Liu
et al., 2016a, 2019; Zhang et al., 2021), we briefly described them
here for the convenience of readers.

Given an RNA sequence R with length l, it can be noted as
follows:

R � r1r2...rl, (1)
where ri (i = 1, 2, 3, . . . l) ∈ {A, C, G, U} is the i-th residue in R.

The k-mer frequencies are the appearance frequency of 4k

type’s k consecutive nucleotides. The sequence R is separated into
l–k + 1 k-mers, which are r1r2 . . . rk, r2r3 . . . rk+1, . . . , and rl-k+1rl-
k+2rl. We noted the k-mer frequency as a vector of 4k dimensions
(Wei et al., 2014), which can be noted as follows:

F1(k) � [f1,1 f1,2 / f1,4k ]T, (2)
where f1,i (i = 1, 2, . . . , 4k) is the frequency of the i-th type of
k-mer, and T is the transpose operator.

The mismatch feature is proposed by Leslie et al. as an
alternative method of k-mer frequencies (Leslie et al., 2004).
The method considers inaccurate matching and calculates the
number of occurrences of k consecutive nucleotides that differ by
at most m mismatches (m = 0, 1, . . . , k-1). We define the
mismatch feature vector as follows:

F2(k,m) � ⎛⎝∑m
j�0
c1,j ∑m

j�0
c2,j / ∑m

j�0
c4k,j ⎞⎠

T

, (3)

where ci,j (i = 1, 2, . . . , 4k and j = 0, 1, . . . , m) is the number of
occurrence of the ith type k-mer in sequence R with exactly j
mismatches.

The subsequence feature is a method that allows non-
continuous matching, which considers more matching
situations (Lodhi et al., 2002). The value of the feature vector
is determined by the number of occurrences of the subsequence
and a decay factor δ ∈ [0, 1]. The subsequence feature vector of
sequence R is defined as follows:

F3(k,m) � (∑
a1

δl(a1) ∑
a2

δl(a2) / ∑
a4k

δl(a4k ) )T

, (4)

where ai (i = 1, 2, . . . , 4k) is a subsequence in Rwith possibly non-
contiguous matching to the ith type of k-mer, and l (ai) a length
function can be defined as follows:

l(ai) � { 0 ai is a contiguous matching of the i − th type of k −mer
|ai| otherwise

. (5)

|.| is the operator to calculate the length of a string.
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Triplet feature is a combination of the primary sequence and
secondary structural information of RNA. It was proposed by Xue
et al.( 2005). By using the ViennaRNA package (Lorenz et al.,
2011), we can estimate the secondary structure of R as follows:

S � s1s2s3/sl, (6)
where si (i = 1, 2, .., l) ∈ { ’ (’, ’)’, ’.’ } denotes the secondary
structure status of the ith residue. The “ (‘ and ’)” represent the
residue in a pairing status, while "." represents the unpairing
status. By ignoring the difference between “ (‘ and ’)”, there are
eight possible structural statuses of a triplet. Combining the
structural status and the centered nucleotide of a triplet, 32
types of possible structural triplets can be obtained. Therefore,
a 32-dimensional vector can be constructed to describe the

appearance frequency of all structural triplets, which can be
noted as follows:

F4 � [f4,1 f4,2 / f4,32 ]T, (7)
where f4,i (i = 1, 2, . . . , 32) is the normalized frequency of the i-th
structural triplet.

PseDSSPC was proposed by Liu et al. (Liu et al., 2016a). It
represents the RNA sequence by considering both local and
global information of secondary structures. Let ti (i = 1, 2, . . .
, l) ∈ {A, C, G, U, A-U, U-A, G-C, C-G, G-U, and U-G} be the
structural status of the i-th residue, where A, C, G, and U
represent the four types of unpaired residues, while A-U, U-A,
G-C, C-G, G-U, and U-G represent the six paired status. For
every ti, its free energy e (ti) can be calculated. We first computed
the raw appearance frequency of each of the 10 structural status,
which can be noted as g5,1, g5,2, . . . g5,10. Given a parameter d, we
can calculate the appearance frequency of all structural status
pairs with a distance in the range [1, d]. These can be noted as
g5,11, g5,12, . . . , g5,110, g5,111, g5,112, . . . , g5,210, . . . , g5,10+(d-1)100+1,
g5,10+(d-1)100+2, . . . , g5,10+100d. After that, with a lag parameter λ,
correlation coefficients can be computed for the serial of free
energy values. The kth tier correlation coefficient can be defined as
follows:

g5,10+100d+k � 1
l − k

∑l−k
i�1

[e(ti) − e(ti+k)]2, (8)

where k = 1, 2, . . . , λ.
With all aforementioned definitions, we can construct

PseDSSPC features as follows:

F5 � [f5,1 f5,2 / f5,10+100d+λ ]T, (9)
where T is the transpose operator,

FIGURE 1 | Overall flowchart of our method.

FIGURE 2 | Prediction performances using five different types of
features with CART.
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f5,i �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g5,i

1 + d + w ∑10+100d+λ

k�10+100d+1
g5,k

1≤ i≤ 10 + 100d

wg5,i

1 + d + w ∑10+100d+λ

k�10+100d+1
g5,k

10 + 100d + 1≤ i≤ 10 + 100d + λ
, (10)

and w is a balancing parameter.

XGBoost With Classification Trees as Base Classifiers
We used CART (Classification and Regression Trees) with the
Gini index as the purity function (Grajski et al., 1986) to create
base classifiers in this work. Given a sample set D, the Gini
function is defined as follows:

G(D) � ∑k
i�1
pi(1 − pi) � 1 −∑k

i�1
p2
i , (11)

where k is the number of classes in the set, and pi is the proportion
of the ith class.

Considering an attribute α, the set D is divided into several
subsets according to different values of α. The purity at this
branching node is defined as follows:

I(D, α) � ∑v
j�1

∣∣∣∣Dj

∣∣∣∣
|D| G(Dj), (12)

where v is the number of subsets,Dj is the j-th subset, and |.| is the
cardinal operator of a set.

FIGURE 3 | Parameter effects on CART with different types of features. Parameters of features are scanned (A). k-mer features (B); mismatch features (C);
subsequence features (D); PseDSSPC features. In (A) and (B), the vertical axis is the accuracy in leave-one-out cross-validation. In (C,D), the heat color represents the
accuracy in leave-one-out cross-validation. The optimized parameter is k = 5 for the k-mer features, k = 2 andm = 1 for the mismatch features, k = 2 and δ = 0.9 for the
subsequence features, and d = 5, λ = 5, and w = 0.5 for the PseDSSPC features.
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FIGURE 4 | Parameter effects on CART with different types of features. Parameters of CART are scanned. The accuracy, F1-score, and AUROC are presented in
each panel. (A), (B), and (C) are scanning CART parameters S, D, andM on k-mer features, respectively, and (D), (E), and (F) are scanning CART parameters S, D, and
M on mismatch features, respectively; (G), (H), and (I) are scanning CART parameters S, D, andM on subsequence features, respectively; (J), (K), and (L) are scanning
CART parameters S, D, and M on PseDSSPC features, respectively; (M), (N), and (O) are scanning CART parameters S, D, and M on the triplet features,
respectively. The best parameter for k-mer features is S = ‘best’, D = 8, and M = 490. The best parameter for mismatch features is S = ‘best’, D = 4, and M = 13. The
best parameter for subsequence features is S = ‘best’, D = 3, and M = 14. The best parameter for PseDSSPC features is S = ‘best’, D = 3, and M = 460. The best
parameter for the triplet features is S = ‘best’, D = 4, and M = 30.
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XGBoost (Chen and Guestrin, 2016) was used to create
ensembles for boosting performances of classification trees.

Performance Measures
Four statistics, including accuracy (Acc), precision (Pre), recall
(Rec), and F1-score (F), are used to quantitively describe the
performance of our method. They are defined as follows:

Acc � TN + TP

FN + FP + TN + TP
, (13)

Pre � TP

TP + FP
, (14)

Rec � TP

TP + FN
, (15)

F � 2Pre · Rec
Pre + Rec

, (16)

where TP, TN, FP, and FN are the number of true positives, true
negatives, false positives, and false negatives, respectively. We also
used the area under the receiver operating characteristic
(AUROC) curve to measure the performance of our model.

Parameter Calibration
We used a grid search strategy with leave-one-out cross-
validation to find the optimal parameters. For k-mer features,
we scanned k = 1, 2, 3, 4, 5, and 6. For mismatch features, we
scanned k = 1, 2, 3, 4, 5, and 6 andm ∈ [0, k-1] with a step of 1. For
subsequence features, we scanned k = 2, 3, and 4, and δ ∈ [0.1, 0.9]
with a step of 0.1. In PseDSSPC, we scanned d ∈ [1,10] with a step
of 1, λ ∈ [1, 20] with a step of 1 andw ∈ [0.1, 0.9] with a step of 0.1.

Different combinations of parameter values in CART and
XGBoost are explored. We adjusted three parameters in the
CART algorithm, including the randomness of branching (S),
the maximum depth (D), and the maximum number of features
(M). We scanned S ∈ [“best”, “random”], D ∈ [3,10] with a step of
1 andM ∈ [3, n] with a step of 1, where n is the number of sample
features. We adjusted S, D, and M in order; when the former
parameters are being scanned, the latter ones are set as default
values. The best value of the former is applied to the latter
parameter adjustment. We adjusted four parameters in
XGBoost, including the number of trees (T), the learning rate
(R), the maximum depth of trees (D), and the regularization
parameter (λ). We scanned T ∈ [50, 500] with a step of 10, R ∈
[0.1, 0.5] with a step of 0.02,D ∈ [3, 10] with a step of 1, and λ ∈ [0,
2] with a step of 0.1. Similar strategies to the CART parameter
optimization were applied.

System Implementation
The CART and XGBoost algorithms are implemented using
Python with the scikit-learn package. The whole flowchart of
this work is illustrated in Figure 1.

RESULTS AND DISCUSSIONS

Performance Analysis by CART
We combined each of the five feature extraction methods with
CART. We optimized the parameters of each kind of features.
The best performances of each type of features can be found in
Figure 2. The evaluation was performed on Ru’s dataset. Leave-
one-out cross-validation protocol was applied on each type of
features. The entire record of the parameter optimization process
can be found in Supplementary Tables S1–S5.

From Figure 2, the subsequence features seem to have the best
performances among the five. It has the highest or second to the
highest value in terms of all performance measures. On the
contrary, the performances of k-mer features and triplet
features seem not as high as the others. The k-mer features
have lowest performance values in terms of recall and the
AUROC. The triplet features have the lowest performance
values in terms of accuracy, precision, and F1-score. However,
the precision value of k-mer and the recall value of triplet features
are still competitive, which make them still worth a further
boosting analysis. It should be noted that the PseDSSPC
features, which by design would preserve most of the sequence
information, did not give outstanding performances. This may be
the result of the CART classifier, which cannot sufficiently utilize
the information in this form.

With the optimal features, we analyzed the effect of different
parameters in two steps. The first step is to analyze the effect of
parameters in features, the latter one for the parameters in CART.
When we performed the first step analysis, the parameters in the
second step were fixed as their optimal values and vice versa.
Figure 3 recorded the effects of parameters on all type of features.
On all four types of features, which have at least one parameter
each, the prediction accuracy peaks at some combinations of
parameters, while it valleys with other combinations. Therefore,
the parameters of features affect the performances. Figure 4
recorded the effects of CART parameters on all types of
features. The peaks of the parameter D are the most
significant. Although the parameter M causes the most
fluctuation on performances, it is generally a random
oscillation without easily observable patterns. Due to limited

TABLE 1 | Performance of the five strong classifiers.

Models Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUROCa (%)

k-mer 82.7 80.9 84.7 82.8 86.4
Mismatch 96.0 94.3 97.6 96.0 96.4
Subsequence 93.1 94.1 94.1 94.1 97.3
PseDSSPC 90.8 91.6 89.4 90.4 94.8
Triplet 80.9 80.9 80.0 80.4 85.3

aAUROC is the area under a receiver operating characteristic curve.
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FIGURE 5 | Parameter effects on XGBoost with different types of features. Parameters of XGBoost are scanned. The accuracy, F1-score, and AUROC are
presented in each panel. The number of trees (T), the learning rate (R), the maximum depth of trees (D), and the regularization parameter (λ) are scanned on each type of
sequence features. (A), (B), (C), and (D) are scanning parameters on k-mer features. The best parameter values are T = 60, R = 0.18, D = 6, and λ = 1. (E), (F), (G), and
(H) are scanning parameters on mismatch features. The best parameter values are T = 80, R = 0.22, D = 4, and λ = 0. (I), (J), (K), and (L) are scanning parameters
on subsequence features. The best parameter values are T = 50, R = 0.12, D = 6, and λ = 0.3. (M), (N), (O), and (P) are scanning parameters on Pse-DSSPC features.
The best parameter values are T = 60, R = 0.24, D = 5, and λ = 0.9. (Q) (R), (S), and (T) are scanning parameters on triplet features. The best parameter values are T =
500, R = 0.18, D = 5, and λ = 1.
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figure panel spaces, we only present a subset of performance
measures in the figures. As we have mentioned, a comprehensive
and quantitative record can be found in Supplementary Tables
S1–S5.

Boosting CART Performances Using
XGBoost
We applied XGBoost on the CART classifiers with each of the five
types of features. The parameters of XGBoost are optimized to get
the best AUROC. Leave-one-out cross-validations were
performed on Ru’s dataset. The prediction performances of
the best boosted classifiers are listed in Table 1.

According to Table 1, the subsequence features achieved
97.3% AUROC after boosted by XGBoost, which is the highest
AUROC among all five models. However, its performances in
terms of other measures are not as high as the mismatch features.
The mismatch features achieved the best values in accuracy,
precision, recall, and F1-score. Therefore, the mismatch
features and the subsequence features with XGBoost are better
choices than the other three for predicting essential miRNAs.

Similar to the analysis on non-boosted CART classifiers, we
performed an analysis to see the results with different XGBoost
parameter values. Figure 5 gives the details of all results when the
parameters are adjusted. Due to limited space in the figure panels,
we only presented three performance measures. Full records can
be found in Supplementary Table S6 . All curves in Figure 5
show that the AUROC is just slightly affected by the parameters
of XGBoost. The accuracy and F1-score ride the same tides when
parameters are turned. Because of the theoretical relationship
between F1-score and the accuracy, this observation indicated
that the classifier is boosted in a balanced manner by XGBoost.
This is an expected behavior of a good boosting framework on an
informative and balanced training dataset.

Independent Dataset Test
We selected mismatch features with XGBoost and subsequence
features with XGBoost as the optimal models. We tested the
feasibility of the two models in predicting potential essential

miRNAs. We collected 16 mouse pre-miRNAs from various
works of the literature, which had no overlap with our training
dataset, as an independent testing dataset (Supplementary Table S7).
Among them, eight were essential, and the others were non-essential.
On this testing dataset, themismatch features with XGBoost achieved
90.6% AUROC. The subsequence features with XGBoost achieved
81.2% AUROC. Therefore, we believe that the mismatch features
with XGBoost is the one best choice for predicting essential miRNAs.
We named this method XGEM (XGBoost for essential miRNAs).

Genome-wide Prediction
We downloaded all 1,234 mouse pre-miRNA sequences from the
miRbase (Kozomara et al., 2019). The 85 essential miRNAs and
88 non-essential miRNAs in the training dataset were removed.
The 16 sequences in the testing dataset were also removed, leaving
1,045 sequences with unknown essentiality. XGEMwas applied to
create predictions for all of them. The results are recorded in
Supplementary Table S8. It can provide guidance for the study of
miRNA biological function experiments. It should be noticed that
XGEMwas trained on balanced datasets. However, the real world
is highly imbalanced. Therefore, false positives are inevitable in
the prediction results. But this does not diminish the value of the
results as the prediction shrinks the range of potential essential
miRNAs to a much smaller scale, which is exactly the purpose of
computational predictions.

Comparison With State-of-the-Art Methods
We compared XGEM to all existing state-of-the-art methods,
including Ru’s work (Ru et al., 2019), miES (Song et al., 2019), and
PESM (Yan et al., 2020).

The comparisons with miES and PESM were performed on the
miES-PESM dataset. A 50-time repetition of 5-fold cross-validation
was performed by all three methods on the same dataset. The
repetition was used to eliminate inevitable randomness in the
process of 5-fold cross-validation. The average performance
values of the 50-time repetition were compared. The comparison
with Ru’s work was performed on Ru’s dataset. Leave-one-out
cross-validation was performed by both methods on the same
dataset. The comparison details are depicted in Figure 6. XGEM

FIGURE 6 |Comparison of different methods onmouse pre-miRNA datasets. The accuracy, F1-score, and AUROC are compared. (A) A comparison between the
XGEM, miES, and PESM method on the miES-PESM dataset; (B) A comparison between XGEM and Ru’s work on Ru’s dataset.
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performed the best in both comparisons. Although the benefits of
XGEM is not large enough for us to claim that XGEM is definitely a
better choice in predicting essential miRNAs, it is enough to state
that XGEM is a better or at least comparable method to all state-of-
the-art methods.

CONCLUSION

Determining essentiality of non-coding genes is an important and
fruitful research area, particularly for computational biology. In
this article, we developed XGEM, which is a computational tool
for predicting essential miRNAs. We evaluated the performance
of XGEM in the mouse genome, with comparison to other state-
of-the-art methods. The results indicated that XGEM has a
potential to identify essential miRNAs. This is useful in
understanding the biological functions of miRNA genes. We
plan to establish a web server for hosting the implementation
of XGEM. Due to the availability of limited resources currently,
we will do this as a future work. In addition, the technology for
developing XGEM can be extended to identify other types of
essential non-coding genes, particularly those non-coding small
RNA genes.
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