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Abstract
The COVID-19 pandemic has resulted in more than 524 million cases and 6 million 
deaths worldwide. Various drug interventions targeting multiple stages of COVID-
19 pathogenesis can significantly reduce infection-related mortality. The current 
within-host mathematical modeling study addresses the optimal drug regimen and 
efficacy of combination therapies in the treatment of COVID-19. The drugs/inter-
ventions considered include Arbidol, Remdesivir, Interferon (INF) and Lopinavir/
Ritonavir. It is concluded that these drugs, when administered singly or in combina-
tion, reduce the number of infected cells and viral load. Four scenarios dealing with 
the administration of a single drug, two drugs, three drugs and all four are discussed. 
In all these scenarios, the optimal drug regimen is proposed based on two methods. 
In the first method, these medical interventions are modeled as control interventions 
and a corresponding objective function and optimal control problem are formulated. 
In this framework, the optimal drug regimen is derived. Later, using the comparative 
effectiveness method, the optimal drug regimen is derived based on the basic repro-
duction number and viral load. The average number of infected cells and viral load 
decreased the most when all four drugs were used together. On the other hand, the 
average number of susceptible cells decreased the most when Arbidol was adminis-
tered alone. The basic reproduction number and viral load decreased the most when 
all four interventions were used together, confirming the previously obtained finding 
of the optimal control problem. The results of this study can help physicians make 
decisions about the treatment of the life-threatening COVID-19 infection.
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1 Introduction

COVID-19 is a contagious respiratory and vascular disease that has resulted in 
more than 498 million cases and 6 million deaths worldwide as of February 2022 
(https:// covid 19. who. int/). It is caused by the severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) (https:// www. who. int/ health- topics/ coron avirus# 
tab= tab_1).

Mathematical modeling of infectious diseases has become a highly researched 
area today. Mathematical epidemiology has contributed to a better understanding 
of the dynamic behavior of infectious diseases, their impact, and possible future 
predictions of their spread. Various compartmental models for understanding the 
dynamic behavior of COVID-19 can be found in Samui et  al. (2020), Ndaïrou 
et al. (2020), Zeb et al. (2019), Leontitsis et al. (2021), Wang et al. (2020), Dasht-
bali and Mirzaie (2021), Zhao et  al. (2020), Chen et  al. (2020), Biswas et  al. 
(2020), Sarkar et al. (2020), Chhetri et al. (2021). In Chhetri et al. (2021) a basic 
within-host model is developed to determine the crucial inflammatory mediators 
and the role of combined drug therapy in the treatment of COVID-19. A SAIU 
(Susceptible-Asymptomatic-Symptomatic Infectious-Unreported Symptomatic 
Infectious) compartmental mathematical model that explains the transmission 
dynamics of COVID-19 is developed in Samui et al. (2020). Some of the control 
policies, such as treatment, quarantine, isolation and screening, are also studied 
to control the spread of infectious diseases (Djidjou-Demasse et al. 2020; Libotte 
et al. 2020; Aronna et al. 2020). Some of the important mathematical modeling 
studies that deal with transmission and spread of COVID-19 at the population 
level can be found in Chen et al. (2020), Kucharski et al. (2020), Lin et al. (2019), 
Yang and Wang (2020). In the recent work (Hernandez-Vargas and Velasco-Her-
nandez 2020), an in-host modeling study deals with the qualitative characteris-
tics and estimation of standard parameters of corona viral infections. In papers 
such as Kirschner and Webb (1997), Yang et al. (2020), within-host mathematical 
models have been used to simulate combination chemotherapy with reverse tran-
scriptase inhibitors and protease inhibitors in HIV infection. These studies have 
shown that survival is proportional to the amount of CD4+ cells. Today, the com-
bination of these interventions is the mainstay of treatment for HIV infection, and 
survival outcomes depend on CD4+ cell counts.

A detailed within-host study involving crucial inflammatory mediators and the 
host immune response has been developed and discussed at length by the authors 
in Chhetri et al. (2021). The work in Chhetri et al. (2021) dealt with the natural 
history and course of infection of COVID-19. The authors also briefly discussed 
about the optimality and effectiveness of combined therapy involving one or more 
antiviral and one or more immuno-modulating drugs when administered together.

The present work is an extension of the previous work (Chhetri et  al. 2021), 
and deals with optimal drug regimen and the efficacy of combined therapy in 
treatment of the COVID-19. The drug interventions considered include Arbidol, 
Remdesivir, Interferon and Lopinavir/Ritonavir. Four scenarios involving admin-
istration of a single drug, two drugs, three drugs and all four drugs have been 

https://covid19.who.int/
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
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discussed. In all these scenarios the optimal drug regimen is proposed based on 
two methods. The first method is the optimal control problem setting, and the sec-
ond method is a comparative effectiveness study.

2  Initial Model

The following within-host model is developed based on the pathogenesis of the 
COVID-19 disease. The details about the formulation of the model are discussed 
in Chhetri et al. (2021) (Tables 1 and 2).

Table 1  Variables/Parameters and their biological meaning

Variables/parameters Biological meaning Units

S Susceptible type II pneumocytes Cells per ml
I Infected type II pneumocytes Cells per ml
� Natural birth rate of type II pneumocytes Cells ml−1 day−1

V Viral load RNA copies per ml
� Rate at which healthy pneumocytes are infected (RNA copies/ml)−1 Day−1

� Burst rate of virus particles Day−1

� Natural death rate of type II pneumocytes Day−1

�1 Natural death rate of virus Day−1

d1, d2, d3, d4, d5, d6 Rates at which infected type II pneumocytes are 
removed because of the release of cytokines, 
chemokines IL-6,

TNF-� , CCL5, CXCL8 , CXCL10, respectively Day−1

b1, b2, b3, b4, b5, b6 Rates at which viral load is removed because of the 
release of cytokines, chemokines IL-6, TNF-� , 
CCL5, CXCL8 , CXCL10, respectively

Day−1

Table 2  Biological meaning of control variables

Control variables Biological meaning

�1A,�2A,�3A Rates at which susceptible cells, infected cells and viral load respectively are reduced 
due to the treatment with Arbidol

�2Rem,�3Rem Rates at which infected cells and the viral load respectively are reduced due to the 
treatment with Remdesivir

�2INF ,�3INF Rates at which infected cells and the viral load respectively are reduced due to the 
treatment with Interferon

�2Lop∕Rit,�3Lop∕Rit Rates at which infected cells and the viral load respectively are reduced due to the 
treatment with Lopinavir/Ritonavir
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2.1  Well‑Posedness of the Model

The existence, positivity and the boundedness of the solutions of the proposed 
model (2.1)–(2.3) need to be proved to ensure that the model has a mathematical and 
biological meaning.

The positivity and boundedness of the solution of the system (2.1)–(2.3) is dis-
cussed by the authors in details in Chhetri et al. (2021).

The biologically feasible region of the system (2.1)–(2.3) as discussed in Chhetri 
et al. (2021) is defined by the set Ω,

2.1.1  Existence and Uniqueness of Solution

In similar lines to Sowole et al. (2019), in this section we discuss the existence and 
uniqueness of a solution of the system (2.1)–(2.3).

For the general first order ODE of the form

with f : R x Rn
→ Rn sufficiently many times differentiable, one would have interest 

in knowing the answers to the following questions: 

 (i) Under which conditions does a solution exist for (2.4)?
 (ii) Under which conditions does a unique solution exist for (2.4)?

We use the following theorem discussed in Sowole et  al. (2019) to establish the 
existence and uniqueness of a solution for our SIV model (2.1)–(2.3).

Theorem 2.1 Let D denote the domain:

(2.1)
dS

dt
= � − �SV − �S,

(2.2)
dI

dt
= �SV −

(
d1 + d2 + d3 + d4 + d5 + d6

)
I − �I,

(2.3)
dV

dt
= �I −

(
b1 + b2 + b3 + b4 + b5 + b6

)
V − �1V .

Ω =

{(
S(t), I(t),V(t)

)
∈ ℝ

3
+
∶ S(t) + I(t) + V(t) ≤ �

�
, t ≥ 0

}
.

(2.4)ẋ = f (t, x), x(t0) = x0,

|t − t0| ≤ a, ||x − x0|| ≤ b, x = (x1, x2, ..., xn), x0 = (x10, .., xn0),
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and suppose that f(t, x) satisfies the Lipschitz condition:

whenever the pairs (t, x1) and (t, x2) belong to the domain D, where k is a positive 
constant. Then, there exists a constant 𝛿 > 0 such that a unique (exactly one) con-
tinuous vector solution x(t) exists for the system (2.4) in the interval |t − t0| ≤ �.

It is important to note that condition (2.5) is satisfied by the requirement that:

be continuous and bounded in the domain D.

Theorem  2.2 Existence of Solution Let D be the domain defined above such that 
(2.5) holds. Then, there exists a unique solution of the system (2.1)–(2.3), which is 
bounded in the domain D.

Proof Let

where

We will show that

is continuous and bounded in the domain D.
From Eq. (2.6) we have

Similarly, from Eq. (2.7) we have

(2.5)||f (t, x2) − f (t, x1)|| ≤ k||x2 − x1||

�fi

�xj
, i, j = 1, 2, .., n,

(2.6)f1 = � − �S(t)V(t) − �S(t),

(2.7)f2 = �S(t)V(t) − (p + �)I(t),

(2.8)f3 = �I(t) − (q + �1)V(t),

p = d1 + d2 + d3 + d4 + d5 + d6,

q = b1 + b2 + b3 + b4 + b5 + b6.

�fi

�xj
, i, j = 1, 2, .., n,

𝜕f1

𝜕S
= − 𝛽V − 𝜇,

||||
𝜕f1

𝜕S

||||
= | − 𝛽V − 𝜇| < ∞,

𝜕f1

𝜕I
= 0,

||||
𝜕f1

𝜕I

||||
< ∞,

𝜕f1

𝜕V
= − 𝛽S,

||||
𝜕f1

𝜕V

||||
= | − 𝛽S| < ∞.
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Finally, from (2.8) we have

Hence we have shown that all the partial derivatives are continuous and bounded. 
Therefore, Lipschitz condition (2.5) is satisfied. Hence, by Theorem 2.1 there exists 
a unique solution of system (2.1)–(2.3) in the region D.   ◻

The existence of equilibrium points of the system (2.1)–(2.3) and their stability is 
discussed in details in Chhetri et al. (2021). The system is shown to undergo a for-
ward (transcritical) bifurcation at R0 = 1.

The following are the major objectives of the present study.

Objectives of the study

1. To investigate the role of pharmaceutical interventions such as Arbidol, Rem-
desivir, Interferon and Lopinavir/Ritonavir by incorporating them as controls at 
specific compartments in the model (2.1)–(2.3) depending on their functionality.

2. To study and compare the dynamics of susceptible and infected cells and the viral 
load with and without these control interventions, by studying them as optimal 
control problems.

3. To propose the optimal drug regimen in four scenarios involving administration 
of a single drug, two drugs, three drugs and all four drugs based on the average 
susceptible and infected cell counts, the average viral load, and the basic repro-
duction number.

4. To propose the optimal drug regimen using a comparative effectiveness study.

𝜕f2

𝜕S
= 𝛽V ,

||||
𝜕f2

𝜕S

||||
= |𝛽V| < ∞,

𝜕f2

𝜕I
= − 𝜇 − p,

||||
𝜕f2

𝜕I

||||
= | − (𝜇 + p)| < ∞,

𝜕f2

𝜕V
=𝛽S,

||||
𝜕f2

𝜕V

||||
= |𝛽S| < ∞.

𝜕f3

𝜕S
= 0,

||||
𝜕f3

𝜕S

||||
< ∞,

𝜕f3

𝜕I
= 𝛼,

||||
𝜕f3

𝜕I

||||
= |𝛼| < ∞,

𝜕f3

𝜕V
= − (𝜇1 + q),

||||
𝜕f3

𝜕V

||||
= | − (𝜇1 + q)| < ∞.
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3  Optimal Control Studies

3.1  Optimal Control Problem Formulation

Drugs such as Remdesivir inhibit RNA-dependent RNA polymerase, and drugs 
Lopinavir/Ritonavir inhibit the viral protease by reducing viral replication (Tu et al. 
2020). Interferons are broad spectrum antivirals, exhibiting both direct inhibitory 
effect on viral replication and supporting an immune response to clear virus infec-
tion (Wang and Fish 2019). On the other hand drugs such as Arbidol not only inhibit 
the viral replication but also block the virus replication by inhibiting the fusion of 
lipid membranes with host cells (Yang et al. 2020).

Motivated by the above clinical findings in similar lines to the control problem 
in Chhetri et al. (2021), we consider a control problem with the drug interventions 
Arbidol, Remdesivir, Lopinavir/Ritonavir and Interferon as controls. The dynamic 
model based on the pathogenesis described above with control variables is described 
by the following system of nonlinear differential equations:

For simplicity, we define U1,U2,U3 and U4 as follows,

With this notation, the set of all admissible controls is given by

Here, all the control variables are measurable and bounded functions, and T is the 
final time of the applied control interventions. The upper bounds of control vari-
ables are based on the resource limitation and the limit to which these drugs would 
be prescribed to the patients. Our main objective of this study is to investigate such 

(3.1)
dS

dt
= � − �SV − �1A(t)S − �S,

(3.2)

dI

dt
= �SV −

(
d1 + d2 + d3 + d4 + d5 + d6

)
I

−

(
�2Rem(t) + �2INF(t) + �2A(t) + �2Lop∕Rit(t)

)
I − �I,

(3.3)

dV

dt
=

(
� − (�3Rem(t) + �3INF(t) + �3A(t) + �3Lop∕Rit(t))

)
I,

−

(
b1 + b2 + b3 + b4 + b5 + b6

)
V�1V .

U1 = (�1A,�2A, �3A), U2 = (�2Rem,�3Rem),

U3 = (�2INF,�3INF), U4 = (�2Lop∕Rit,�3Lop∕Rit).

U = {(U1(t),U2(t),U3(t),U4(t)) ∶ U1(t) ∈ [0,U1max],

U2(t) ∈ [0,U2max],U3(t) ∈ [0,U3max],

U4(t) ∈ [0,U4max], t ∈ [0, T]}.
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optimal control functions that maximizes the benefits of each of the drug interven-
tions and minimize the cumulative count of infected cells and viral load.

Based on the above, we consider the following objective function that we wish to 
maximize.

subject to the system

with initial conditions S(0) > 0 , I(0) ≥ 0 and V(0) ≥ 0.
The antiviral drugs and immunomodulators when administered can have multiple 

effects, this justifies the quadratic terms in the definition of the objective function 
(Joshi 2002). Also, when the objective function is defined as a linear combination 
of the quadratic terms of control variables the complexity of the problem reduces. 
Some of the studies in which an objective function is considered as a linear combi-
nation of the quadratic terms of control variables can be found in Madubueze et al. 
(2020), Kamyad et al. (2014). Higher orders of control variables in objective func-
tions sometimes may lead to complications (Lee et al. 2010; Khatua et al. 2020).

The integrand of the cost functional (3.4), given by

(3.4)

J(U1,U2,U3,U4) = ∫
T

0

[
A1

(
�2

1A
(t) + �2

2A
(t) + �2

3A
(t)

)
+ A2

(
�2

2Rem
(t) + �2

3Rem
(t)

)

+ A3

(
�2

2INF
(t) + �2

3INF
(t)

)

+ A4

(
�2

2Lop∕Rit
(t) + �2

3Lop∕Rit
(t)

)
− I(t) − V(t)

]
dt.

(3.5)
dS

dt
= � − �SV − �1A(t)S − �S,

(3.6)

dI

dt
= �SV −

(
d1 + d2 + d3 + d4 + d5 + d6

)
I

−

(
�2Rem(t) + �2INF(t) + �2A(t) + �2Lop∕Rit(t)

)
I − �I,

(3.7)

dV

dt
=

(
� − (�3Rem(t) + �3INF(t) + �3A(t) + �3Lop∕Rit(t))

)
I

−

(
b1 + b2 + b3 + b4 + b5 + b6

)
V�1V .
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is called the Lagrangian of the running cost.
Here the cost functional (3.4) represents the benefits of each of the interventions 

and the number of infected cells and viral load throughout the observation period. 
Our goal is to maximize the benefits of each of the interventions and minimize the 
infected cell and virus population. The coefficients Ai , for i = 1, 2, 3, 4, are the posi-
tive weight constants related to the benefits of each of the drug interventions.

The admissible solution set for the optimal control problem (3.4)–(3.7) is given 
by

All the control variables considered here are measurable and bounded functions. 
The upper limits of the control variables depends on the resource constraint.

4  Existence of Optimal Controls

Before trying to find an optimal control solutions, the first fundamental question is 
to know whether an optimal solution even exists. An existence theorem certifies that 
the problem has a solution before attempting to compute an optimal control. In order 
to prove the existence of optimal control functions that maximize the objective func-
tion within a finite time span [0, T], we will show that the conditions stated in Theo-
rem 4.1 of Fleming and Rishel (2012) is satisfied.

Theorem 4.1 There exists a 9-tuple of optimal controls

in the set of admissible controls U such that the cost functional J(U1,U2,U3,U4) is 
maximized corresponding to the optimal control problem (3.4)–(3.7).

Proof In order to show the existence of optimal control functions, we will show that 
the following conditions are satisfied : 

L(U1,U2,U3,U4, I,V) = A1

(
�2
1A
(t) + �2

2A
(t) + �2

3A
(t)

)

+ A2

(
�2
2Rem

(t) + �2
3Rem

(t)

)

+ A3

(
�2
2INF

(t) + �2
3INF

(t)

)

+ A4

(
�2
2Lop∕Rit

(t) + �2
3Lop∕Rit

(t)

)
− I(t) − V(t)

Ω =
{
(S, I,V ,U1,U2,U3,U4) | S, I and V satisfy (3.5) − (3.7), ∀ Ui ∈ U

}
.

(
�∗
1A
(t),�∗

2A
(t),�∗

3A
(t),�∗

2Rem
(t),�∗

3Rem
(t),�∗

2INF
(t),�∗

3INF
(t),

�∗
2Lop∕Rit

(t),�∗
3Lop∕Rit

(t)

)
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1. The solution set for the system (3.5)–(3.7) along with bounded controls must be 
non-empty, i.e., Ω ≠ �.

2. Control set U is closed and convex, and the system should be expressed linearly 
in terms of the control variables with coefficients that are functions of time and 
state variables.

3. The integrand of the objective function is concave on U.
4. There exists constants c1 > 0, c2 > 0, c3 > 0 and s > 1 such that the integrand of 

the objective functional satisfies 

Now we will show that each of the conditions are satisfied: 

1. From the positivity and boundedness of the solutions of the system (3.5)–(3.7) 
established in Chhetri et al. (2021), all solutions remain positive and bounded 
for each control variable in U. Also, the right hand side of the system (3.5)–(3.7) 
satisfies a Lipschitz condition with respect to state variables. Hence, using the 
positivity and boundedness condition and the existence of a solution from the 
Picard-Lindelof Theorem (Makarov and Spitters 2013), we have satisfied condi-
tion 1.

2. U is closed and convex by definition. Also, the system (3.5)–(3.7) is clearly linear 
with respect to the controls, such that the coefficients are only state variables or 
functions dependent on time. Hence condition 2 is satisfied.

3. We know that a differentiable function is concave if and only if its deriva-
tive is non-increasing (decreasing). From the definition, we see that 
L(U1,U2,U3,U4, I,V) has a non-increasing slope. Therefore, L is concave on U.

4. From the definition of the Lagrangian we see that,

where c1 = max{A1,A2,A3,A4} and c2 and c3 are lower bounds on I(t) and V(t).
Hence there exist optimal controls that maximize the cost functional (3.4).

L(U1,U2,U3,U4, I,V) ≤ c1

[(
�2

1A
(t) + �2

2A
(t) + �2

3A
(t)

)
+

(
�2

2Rem
(t) + �2

3Rem
(t)

)

+

(
�2

2INF
(t) + �2

3INF
(t)

)
+

(
�2

2Lop∕Rit
(t) + �2

3Lop∕Rit
(t)

)] s

2

− c2 − c3.

L(U1,U2,U3,U4, I,V) ≤ c1

[(
�2
1A
(t) + �2

2A
(t) + �2

3A
(t)

)

+

(
�2
2Rem

(t) + �2
3Rem

(t)

)

+

(
�2
2INF

(t) + �2
3INF

(t)

)

+

(
�2
2Lop∕Rit

(t) + �2
3Lop∕Rit

(t)

)]

− c2 − c3,
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The proof of the existence theorem done here is in similar lines to the proof done 
in Joshi (2002).   ◻

5  Characteriztion of Optimal Controls

We now obtain the necessary conditions for optimal control functions using the Pontry-
agin’s Maximum Principle (Liberzon 2011), and also obtain the characteristics of the 
optimal controls.

The Hamiltonian for this problem is given by

here � = ( �1,�2,�3 ) is called the co-state vector or the adjoint vector and 
�1(T) = 0, �2(T) = 0, �3(T) = 0.

Now the canonical equations that relate the state variables to the co-state variables 
are given by

Substituting the Hamiltonian value gives the canonical system

where x = d1 + d2 + d3 + d4 + d5 + d6 and y = b1 + b2 + b3 + b4 + b5 + b6 , along 
with the transversality conditions �1(T) = 0, �2(T) = 0, �3(T) = 0 . Now, to obtain 
the optimal controls, we use the Hamiltonian minimization condition �H

�u
= 0 , for 

each u ∈ U at u∗.

H(S, I,V ,�1A,�2A,�3A,�2Rem,�3Rem,�2INF,�3INF,�2Lop∕Rit,�3Lop∕Rit, �)

= L(I,V ,�1A,�2A,�3A,�2Rem,�3Rem,�2INF,�3INF,�2Lop∕Rit,�3Lop∕Rit)

+ �1
dS

dt

+ �2
dI

dt
+ �3

dV

dt
.

(5.1)

d�1

dt
= −

�H

�S
,

d�2

dt
= −

�H

�I
,

d�3

dt
= −

�H

�V
.

(5.2)

d�1

dt
= �1(�V + � + �1A) − �2�V ,

d�2

dt
= 1 + �2

(
x + (�2A + �2Rem + �2INF + �2Lop∕Rit + �)

)

− �3

(
� − (�3A + �3Rem + �3INF + �3Lop∕Rit)

)
,

d�3

dt
= 1 + �1�S − �2�S + �3(y + �1).
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Differentiating the Hamiltonian and solving the equations, we obtain the optimal 
controls as

6  Optimal Drug Regimen

In this section we perform numerical simulations to understand the efficacy of sin-
gle and multiple drug interventions and propose the optimal drug regimen in these 
scenarios. This is done by studying the effect of the corresponding controls on the 
dynamics of the system (3.5)–(3.7).

The efficacy of various combinations of controls considered are: 

1. Single drug/intervention administration.
2. Two drugs/interventions administration.
3. Three drugs/interventions administration.
4. All the four drugs/interventions administration.

For our simulations, we have taken the total number of days as T = 30 . All the 
parameter values used for simulation are taken from Chhetri et  al. (2021) and are 
listed below. Some of these parameter values are estimated minimizing the root 
mean square difference between the model predictive output and the experimental 

�∗
1A

=min

{
max

{
�1S

2A1

, 0

}
,�1Amax

}
,

�∗
2A

=min

{
max

{
�2I

2A1

, 0

}
,�2Amax

}
,

�∗
3A

=min

{
max

{
�3I

2A1

, 0

}
,�3Amax

}
,

�∗
2Rem

=min

{
max

{
�2I

2A2

, 0

}
,�2Remmax

}
,

�∗
3Rem

=min

{
max

{
�3I

2A2

, 0

}
,�3Remmax

}
,

�∗
2INF

=min

{
max

{
�2I

2A3

, 0

}
,�2INFmax

}
,

�∗
3INF

=min

{
max

{
�3I

2A3

, 0

}
,�3INFmax

}
,

�∗
2Lop∕Rit

=min

{
max

{
�2I

2A4

, 0

}
,�2Lop∕Ritmax

}
,

�∗
3Lop∕Rit

=min

{
max

{
�3I

2A4

, 0

}
,�3Lop∕Ritmax

}
.
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data and some are taken from the existing literature. The details and the motivation 
for the same can be found in Chhetri et al. (2021).

We first solve the state system numerically using the fourth order Runge-
Kutta method in MATLAB. We take the initial values of state variables to be 
S(0) = 3.5 × 105, I(0) = 0,V(0) = 5 , and the initial values of the control parameters 
as zeros. Since the incubation period of SARS-COV-2 is approximately 4-5 days 
(Chhetri et al. 2021), initially we allow the system to grow for 5 days without con-
sidering any controls. The population of susceptible cells, infected cells and viral 
load after 5 days were calculated to be 3.4971 × 105, 176, 25 respectively. Consider-
ing these as initial values we simulate the system with controls and explore the roles 
of individual drugs and combination therapy in reducing the infected cells and viral 
load.

To simulate the system with controls, we use the method Forward-Backward 
Sweep, starting with the initial values of the controls at zero and solving the state 
system forward in time. We then solve the adjoint state system backwards in time 
due to the transversality constraints, using the optimal state variables and the initial 
values of the optimal controls, which are zero.

The values of the adjoint state variables are now used to update the values of the 
optimal controls, and this process is run again with these updated control variables. 
We continue this process until the convergence criterion is satisfied (Liberzon 2011).

In survival analysis, the hazard ratio (HR) plays a crucial role in determining the 
rate at which the people treated by drugs may suffer a certain complication per unit 
time as compared to a population treated without drugs. The larger the hazard ratio, 
the more harmful the drugs to be administered. We use this concept in assigning 
weights to our objective function in our model. In the following Table 3 we enlist 
the the hazard ratios for the four drugs considered in this work.

From Table 3 we see that the hazard ratio of Remdesivir is 44.5 percent more 
than that of Arbidol, therefore we take the value of the weight constant associated 
with Remdesivir (A2) to be 44.5 percent less than that of Arbidol. The hazard ratio 
of INF is 12 percent more than that of Remdesivir, therefore the value of weight 
associated with INF(A3) will be chosen 12 percent less than that of Remdesivir. 
Similarly the value of weight constant A4 will be obtained.

Based on the above we choose A1 = 500, A2 = 277.5, A3 = 244.2, A4 = 228.9375, 
where the value of A1 was fixed at 500 as baseline. Since our objective is to maxi-
mize the benefits of each of the interventions and to minimize the infected cell and 
virus population, we have taken a higher value of the coefficient associated with the 

Table 3  Hazard Ratios (HR) for 
drugs considered

No. Drug HR Source

1 Arbidol 0.183 Liu et al. (2020)
2 Remdesivir 0.33 Grein et al. (2020)
3 Interferon 0.375 Davoudi-Mon-

fared et al. 
(2020)

4 Lopinavir/Ritonavir 0.4 Li et al. (2020)
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drug intervention with least hazard ratio. A1 is chosen high compared to the other 
coefficients because it has the least hazard ratio.

6.1  Without Any Drugs/Interventions

In this section we simulate the behavior of susceptible and infected cells and viral 
load in the absence of drug intervention over a time period of 30 days. As can be 
seen from Fig. 1 the susceptible cells reduce and the infected cells increase exponen-
tially due to the increase in viral load over a period of time.

6.2  Single Drug/Intervention

In this section we study the dynamics of susceptible and infected cells and viral 
load when each of the four drugs is administered individually. Figures 2, 3 and 4 
depict the susceptible and infected population and viral load. We recall here that the 
symbols U1,U2,U3 , and U4 denote the administration of drugs Arbidol, Remdesivir, 
Inteferon, and Lopinavir/Ritonavir respectively.

In Table 4 the average values of the susceptible cells and infected cells and the 
viral load with respect to each of these drug interventions when administered indi-
vidually are listed. Here the average is taken over the time period of 30 days. From 
this Table 4 it can be seen that the drug Lopinavir/Ritonavir ( U4 = U∗

4
 ) reduces the 

infected cells and viral load the best compared to other drugs when administered 

Fig. 1  Figure depicting the S(t), I(t), V(t) populations without control interventions over time. The expo-
nential growth of the infected cells and viral load can be observed
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individually, followed by drug INF ( U3 = U∗
3
 ). On the other hand drug Arbidol 

( U1 = U∗
1
 ) does the best job in reducing the susceptible cells.

Table 4  Table depicting the average values of the susceptible cells, infected cells and the viral load with 
respect to each of the drug interventions administered individually at a time

Drug combinations Avg susceptible cells Avg Infected cells Avg Viral load

U1 = 0,U2 = 0,U3 = 0,U4 = U∗
4

3.4740× 105 1.3308× 103 28.45
U1 = 0,U2 = 0,U3 = U∗

3
,U4 = 0 3.4739 × 105 1.3412× 103 28.84

U1 = 0,U2 = U∗
2
,U3 = 0,U4 = 0 3.4738 × 105 1.3553× 103 29.37

U1 = U∗
1
,U2 = 0,U3 = 0,U4 = 0 3.4717 × 105 1.4941× 103 35.07

U1 = 0,U2 = 0,U3 = 0,U4 = 0 3.4717 × 105 1.5565 × 103 37.11

Fig. 2  Figure depicting S(t) under each of the single optimal controls U∗
1
,U∗

2
,U∗

3
,U∗

4

Fig. 3  Figure depicting I(t) under each of the single optimal controls U∗
1
,U∗

2
,U∗

3
,U∗

4
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6.3  Two Drugs/Interventions

In this section we study the dynamics of susceptible and infected cells and the 
viral load when two control interventions are administered at a time. Figures 5, 6 
and 7 depict the susceptible, infected population and viral load.

In Table  5 the average values of the susceptible cells and infected cells and 
the viral load with respect to two control interventions administered at a time are 
listed. From this Table 5 it can be seen that the combination of INF and Lopina-
vir/Ritonavir ( U3 = U∗

3
,U4 = U∗

4
 ) reduces the infected cells and viral load the best 

compared to other combinations of two drugs when administered, followed by 
drug combination Remdesivir and INF ( U2 = U∗

2
,U3 = U∗

3
 ). On the other hand, 

the drug combination of Arbidol and Remdesivir (U1 = U1
∗
,U2 = U2

∗) does the 
best job in reducing the susceptible cells.

Fig. 4  Figure depicting V(t) under each of the single optimal controls U∗
1
,U∗

2
,U∗

3
,U∗

4

Table 5  Table depicting the average values of the susceptible cells and infected cells and the viral load 
with respect to two control interventions administered at a time

Drug combinations Avg susceptible cells Avg infected cells Avg viral load

U1 = 0,U2 = 0,U3 = U∗
3
,U4 = U∗

4
3.4756 × 105 1.1689 × 103 22.47

U1 = 0,U2 = U∗
2
,U3 = U∗

3
,U4 = 0 3.4755 × 105 1.1798 × 103 22.87

U1 = 0,U2 = U∗
2
,U3 = 0,U4 = U∗

4
3.4754 × 105 1.1883 × 103 23.18

U1 = U∗
1
,U2 = 0,U3 = U∗

3
,U4 = 0 3.4745 × 105 1.2074 × 103 23.88

U1 = U∗
1
,U2 = 0,U3 = 0,U4 = U∗

4
3.4744 × 105 1.2160 × 103 24.19

U1 = U∗
1
,U2 = U∗

2
,U3 = 0,U4 = 0 3.4743 × 105 1.2277 × 103 24.63

U1 = 0,U2 = 0,U3 = 0,U4 = 0 3.4717 × 105 1.5565 × 103 37.11
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Fig. 5  Figure depicting S(t) under each combination of two different controls taken from U∗
1
,U∗

2
,U∗

3
,U∗

4

Fig. 6  Figure depicting I(t) under each combination of two different controls taken from U∗
1
,U∗

2
,U∗

3
,U∗

4

Fig. 7  Figure depicting V(t) under each combination of two different controls taken from U∗
1
,U∗

2
,U∗

3
,U∗

4
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6.4  Three Drugs/Interventions

In this section we study the dynamics of susceptible and infected cells and viral load 
when three control interventions are administered at a time. Figures 8, 9 and 10 depict 
the susceptible and infected population and viral load.

In Table 6 the average values of the susceptible cells and infected cells and the viral 
load with respect to three control interventions administered at a time are listed. From 
this Table 6 it can be seen that the combination of Arbidol, INF and Lopinavir/Rito-
navir ( U1 = U∗

1
,U3 = U∗

3
,U4 = U∗

4
 ) reduces the infected cells and viral load the best 

compared to other combinations of drugs when administered, followed by drug com-
bination Arbidol, Remdesivir and Lopinavir/Ritonavir ( U1 = U∗

1
,U2 = U∗

2
,U4 = U∗

4
 ). 

On the other hand, surprisingly the average number of the susceptible cells are less 
in the no control intervention case compared to any other case having three control 
interventions.

Table 6  Table depicting the average values of the susceptible cells and infected cells and the viral load 
with respect to three control interventions administered at a time

Drug combinations Avg susceptible cells Avg infected cells Avg viral load

U1 = U∗
1
,U2 = 0,U3 = U∗

3
,U4 = U∗

4
3.4761 × 105 1.0711 × 103 18.98

U1 = U∗
1
,U2 = U∗

2
,U3 = 0,U4 = U∗

4
3.4760 × 105 1.08 × 103 19.30

U1 = U∗
1
,U2 = U∗

2
,U3 = U∗

3
,U4 = 0 3.4759 × 105 1.0875 × 103 19.56

U1 = 0,U2 = U∗
2
,U3 = U∗

3
,U4 = U∗

4
3.475× 105 1.1876 × 103 23.03

U1 = 0,U2 = 0,U3 = 0,U4 = 0 3.4717 × 105 1.5565 × 103 37.11

Fig. 8  Figure depicting S(t) under each combination of three different controls taken from U∗
1
,U∗

2
,U∗

3
,U∗

4
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6.5  Four Drugs/Interventions

In this section we study the dynamics of susceptible and infected cells and viral 
load when all the four control interventions are administered at a time. Figures 11, 
12, 13 and 14 depict the susceptible and infected population and viral load.

In Table 7 the average values of the susceptible cells and infected cells and the 
viral load with respect to all four control interventions administered at a time are 
listed. From this Table 7 it can be seen that the combination of all four drug inter-
ventions reduces the infected cells and viral load compared to the no intervention 
case. As in the three drug control intervention case here also the average number 
of the susceptible cells are less in the no control case compared to all the four 
control case. Comparing the infected cells and viral load for all the possible com-
binations of controls as described we observe that implementation of all the four 

Fig. 9  Figure depicting I(t) under each combination of three different controls taken from U∗
1
,U∗

2
,U∗

3
,U∗

4

Fig. 10  Figure depicting V(t) under each combination of three different controls taken from 
U

∗
1
,U∗

2
,U∗

3
,U∗

4
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drugs together at a time gives the best result in terms of minimizing the infection 
and the viral load.

In Fig. 14 we increase the time period to 100 days and plot the infected cell popula-
tion and viral load under combination of all four controls U∗

1
,U∗

2
,U∗

3
,U∗

4
 . With all four 

controls together we see that the infected cell count and the viral load is less compared 
to the different combinations discussed above for the entire time period considered. The 

Table 7  Table depicting the average values of the susceptible cells and infected cells and the viral load 
with respect to four control interventions administered at a time

Drug combinations Avg susceptible cells Avg infected cells Avg viral load

U1 = U∗
1
,U2 = U∗

2
,U3 = U∗

3
,U4 = U∗

4
3.4911 × 105 1.00 × 103 16.60

U1 = 0,U2 = 0,U3 = 0,U4 = 0 3.4717 × 105 1.5565 × 103 37.11

Fig. 11  Figure depicting S(t) under combination of all four controls U∗
1
,U∗

2
,U∗

3
,U∗

4

Fig. 12  Figure depicting I(t) under combination of all four controls U∗
1
,U∗

2
,U∗

3
,U∗

4
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infected cell population is found to increase for the initial period and is found to remain 
almost constant after 30 days whereas the viral load is found to decrease and remain at 
very low level after a certain period of time causing no new infections and thereby pro-
ducing no new infected cells. This proves that combined drug therapy can be effective 
in keeping the viral load low.

7  Comparative Effectiveness Study

In this section we perform the comparative effectiveness study for the system

(7.1)
dS

dt
= � − �SV − �S,

(7.2)
dI

dt
= �SV −

(
d1 + d2 + d3 + d4 + d5 + d6

)
I − �I,

Fig. 13  Figure depicting V(t) under combination of all four controls U∗
1
,U∗

2
,U∗

3
,U∗

4

Fig. 14  Figure depicting I(t) and V(t) under combination of all four controls U∗
1
,U∗

2
,U∗

3
,U∗

4
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The basic reproductive number for the system (7.1)–(7.3) as obtained in Kirschner 
and Webb (1997) is given by

The disease-free equilibrium for the system can be seen to be

and the endemic equilibrium to be

Broadly we consider two kinds of interventions for this comparative effectiveness 
study. 

1. Drugs that inhibit viral replication: Each of the four interventions Arbidol, Rem-
desivir, Interferon, Lopinavir/Ritonavir does this job. So we now choose � to 
be �(1 − �1)(1 − �2)(1 − �3)(1 − �4) , where, �1, �2, �3, �4 are chosen based on the 
efficacy of the drugs Arbidol, Remdesivir, Interferon and Lopinavir/Ritonavir, 
respectively.

2. Drugs that block virus binding to susceptible cells : Arbidol does this job. So we 
now choose � to be �(1 − �) , where � is the efficacy of the drug Arbidol in block-
ing virus binding to susceptible cells.

R0 plays a crucial role in understanding the spread of infection in the individual, and V  
determines the infectivity of the virus in an individual. Taking the two kinds of inter-
ventions into consideration, we now have a modified basic reproductive number RE 
and a modified virus count VE of the endemic equilibrium as follows:

(7.3)
dV

dt
= �I −

(
b1 + b2 + b3 + b4 + b5 + b6

)
V − �1V .

(7.4)

R0 =
���

�(b1 + b2 + b3 + b4 + b5 + b6 + �1)(d1 + d2 + d3 + d4 + d5 + d6 + �)
.

(7.5)E0 =
(
S0, I0,V0

)
=

(
�

�
, 0, 0

)
,

S =

(
b1 + b2 + b3 + b4 + b5 + b6 + �1

)(
d1 + d2 + d3 + d4 + d5 + d6 + �

)

��
,

I =
��� − �

(
b1 + b2 + b3 + b4 + b5 + b6 + �1

)(
d1 + d2 + d3 + d4 + d5 + d6 + �

)

��
(
d1 + d2 + d3 + d4 + d5 + d6 + �

) ,

V =
��� − �

(
b1 + b2 + b3 + b4 + b5 + b6 + �1

)(
d1 + d2 + d3 + d4 + d5 + d6 + �

)

�
(
b1 + b2 + b3 + b4 + b5 + b6 + �1

)(
d1 + d2 + d3 + d4 + d5 + d6 + �

) .
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The efficacy of these interventions are taken based on hazard ratios. We first fix the 
value of �1 to be 0.7. From Table 3 we see that the hazard ratio of Remdesivir is 
44.5% more than that of Arbidol therefore, we take the value of �2 to be 44.5 % less 
than that of the efficacy of Arbidol (i.e. �1 ). The hazard ratio of INF is 12 % more 
than that of Remdesivir, therefore the value of �3 is chosen 12 % less than that of 
Remdesivir and similarly the value of �4 is chosen 6 % less than that of �3 . Based 
on these the values of �1 , �2 , �3 , and �4 are taken to be 0.7, 0.38, 0.334, and 0.313 
respectively. The efficacy of the drug Arbidol blocking virus binding to susceptible 
cells is taken to be 0.3. For comparative effectiveness study the parameter values are 
taken from Table 8 with � = 0.01.

We now do the comparative effectiveness study of these interventions by cal-
culating the percentage reduction of R0 and V  for single and multiple combina-
tion of these interventions. Percentage reduction of R0 and V  are given by:

percentage reduction of R0 =

[
R0−REj

R0

]
× 100,

percentage reduction of V =

[
V−VEj

V

]
× 100,

where j stands for �1, �2, �3, �4, � or combinations thereof.
Since we have 4 drugs, we consider 16 ( = 24 ) different combinations of these 

drugs.
In the Table 9 the comparative effectiveness is calculated and measured on a 

scale from 1 to 16, with 1 denoting the lowest comparative effectiveness while 16 
denoting the highest comparative effectiveness. The conclusions from this study 
are the following. 

1. When single drug/intervention is administered, Arbidol outperforms other drugs/
interventions w.r.t reducing both R0 and V  (refer rows 2 to 5 in Table 9).

2. When two drugs/interventions are administered, the Remdesivir and Arbidol 
combination performs better than any combination of two drugs/interventions in 
reducing R0 and V  (refer rows 6 to 11 in Table 9).

RE =
�(1 − �1)(1 − �2)(1 − �3)(1 − �4)�(1 − �)�

�(b1 + b2 + b3 + b4 + b5 + b6 + �1)(d1 + d2 + d3 + d4 + d5 + d6 + �)
,

VE =
�(1 − �1)(1 − �2)(1 − �3)(1 − �4)�(

b1 + b2 + b3 + b4 + b5 + b6 + �1

)(
d1 + d2 + d3 + d4 + d5 + d6 + �

)

−
�

�(1 − �)
.

Table 8  Parameter values

� � � �1 � d1 d2 d3 d4 d5 d6 b1 b2 b3 b4 b5 b6

10 0.05 0.01 1.1 0.5 0.027 0.22 0.1 0.428 0.01 0.01 0.1 0.1 0.08 0.11 0.1 0.07
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3. When three drugs/interventions are administered, the Remdesivir, Interferon and 
Arbidol combination performs better than any combination of three drugs/inter-
ventions in reducing R0 and V  (compare rows 12 to 15 in Table 9).

4. The best reduction in R0 and V  is seen (compare row 16 in Table 9) when all the 
four drugs/interventions are applied in combination.

8  Discussions and Conclusions

In this work we have considered four drug interventions, namely Arbidol, Remde-
sivir, Interferon and Lopinavir/Ritonavir, and studied their efficacy for treatment of 
COVID-19 when applied individually or in combination. This study is done in two 
ways.

   The first study modeled these interventions as control interventions and studied 
the optimal control problem. In this approach we derived an optimal control over a 
period of 30 days for the dynamics of susceptible and infected cells and virus load 
in the human body suffering of a COVID-19 infection. The second part of the study 
focused on the comparative effectiveness of the drugs in reducing the value of R0 
and the viral load.

Conclusions from the optimal control studies and comparative effectiveness stud-
ies suggest the following. 

1. All the drugs when administered individually or in combination reduce the 
infected cells and viral load significantly.

Table 9  Comparative 
Effectiveness Study

No. Intervention %age change Rank %age change Rank
in R0 in V

1 Nil 0 1 0 1
2 �1� 73 9 74.61 8
3 �2 38 4 40.16 4
4 �3 33.4 3 35.3 3
5 �4 31.3 2 33.08 2
6 �2�1� 83.26 12 86.66 12
7 �3�1� 82.02 11 85.20 11
8 �4�1� 81.45 10 84.53 10
9 �2�3 58.71 7 62.05 7
10 �2�4 57.41 6 60.67 6
11 �3�4 54.25 5 57.33 5
12 �2�4�1� 88.50 14 92.81 14
13 �2�3�1� 88.85 15 93.22 15
14 �3�4�1� 87.65 13 91.81 13
15 �2�3�4 71.63 8 75.7 9
16 �1�2�3�4� 92.34 16 97.32 16
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2. The average infected cell count and viral load decrease the most when all four 
interventions were applied together.

3. The average susceptible cell count decrease the most when Arbidol alone was 
administered.

4. The highest reduction in basic reproduction number and viral count is obtained 
when all four drugs/interventions are applied in combination.

The use of a combination of interventions was already in use for other viral dis-
eases such as HIV (Kirschner and Webb 1997; Mbuagbaw et al. 2016; Yang et al. 
2020; Montaner et al. 2001). In the works (Kirschner and Webb 1997; Yang et al. 
2020) the combination of reverse transcriptase inhibitor and protease inhibitor were 
tried with sustained levels of CD4+. Currently, the combined chemotherapy named 
Highly Active Anti-Retroviral Therapy (HAART) is the most recommended chemo-
therapy for HIV infection (Thompson et al. 2012). Some of the studies on COVID-
19 where the effectiveness of the control strategies are studied can be found in Nana-
Kyere et al. (2022), Chaharborj et al. (2021), Madubueze et al. (2020). These studies 
are optimal control studies at the between-host or population level. To the best of 
our knowledge there are no optimal control studies at cellular level that discusses 
the effectiveness of specific antiviral drugs and immunomodulators. In Chhetri et al. 
(2021), we have developed a within-host model and discussed a general optimal 
control. The present work is an extension of our work (Chhetri et  al. 2021) with 
specific control strategies at within-host level. The choice of the values of weight 
constants associated with control variables can play a very important role in deter-
mining the way in which the control acts. In this study we have chosen these values 
based on hazard ratio. The values of the weight constants are chosen high if the 
control associated with it is has low hazard ratio. Since the primary objective of 
this study is to study the role and effectiveness of combined drug therapy we do not 
explore the roles of different values of the weight constants.

In conclusion we state that the optimal strategy involves application of all four 
drugs simultaneously, resulting in the best possible minimization of the infection 
and the viral load. Due to this combined therapy there could possibly be side effects 
on organs such as liver and heart. The authors wish to address these issues in their 
future works. But here we wish to reinstate the fact that COVID-19 infection related 
cases can be reduced the best with a combined therapy. Even with side effects this 
strategy can be tried as implemented in other infections such as HIV, as survival of 
the patient is prime concern.
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