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Abstract: Retinal neurodegeneration is predominantly reported as the apoptosis or impaired function
of the photoreceptors. Retinal degeneration is a major causative factor of irreversible vision loss
leading to blindness. In recent years, retinal degenerative diseases have been investigated and many
genes and genetic defects have been elucidated by many of the causative factors. An enormous
amount of research has been performed to determine the pathogenesis of retinal degenerative
conditions and to formulate the treatment modalities that are the critical requirements in this current
scenario. Encouraging results have been obtained using gene therapy. We provide a narrative review
of the various studies performed to date on the role of inflammation in human retinal degenerative
diseases such as age-related macular degeneration, inherited retinal dystrophies, retinitis pigmentosa,
Stargardt macular dystrophy, and Leber congenital amaurosis. In addition, we have highlighted
the pivotal role of various inflammatory mechanisms in the progress of retinal degeneration. This
review also offers an assessment of various therapeutic approaches, including gene-therapies and
stem-cell-based therapies, for degenerative retinal diseases.
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1. Introduction

Vision is of critical importance to an individual’s growth and survival. Visual dis-
ability negatively impacts productivity, as it reduces independence and mobility [1,2].
Inflammation is the protective response of the immune system to a harmful stimulus and
this stimulus could be in the form of toxic metabolites/chemicals, pathogens, damaged
cells, physical, traumatic, ischemic, or other challenges [3]. Exposure of these stimuli
to pathogen-associated molecular patterns (PAMPs) such as toll-like receptors (TLRs),
NOD-like receptors (NLRs), RIG-I-like receptors (RLRs), and damage-associated molecular
patterns (DAMPs) upregulates the expression of pro-inflammatory genes and downregu-
lates anti-inflammatory gene expression [4]. Inflammation comprises a cascade of molecular
repercussions and cellular activity, which are framed to reinforce a tissue to transform
a simple wound or a complex surgical wound, or even to cure severe burn injuries. An
unresolved inflammatory cascade will attain an incurable state, which worsens gradually
over time, progressing to organ deterioration and diseases [5].

Degenerative retinal diseases are reported as heterogeneous and multiple etiological
groups of disorders that hamper the vision of human beings, resulting in compromised qual-
ity of life [6]. Retinitis pigmentosa (RP) [7], age-related macular degeneration (AMD) [8],
diabetic retinopathy (DR) [9], Stargardt macular dystrophy (STGD) [10], and Leber congen-
ital amaurosis (LCA) [11] are some examples of degenerative retinal diseases. Although
the etiology of the mentioned diseases varies, the hallmark characteristic feature of these
degenerative retinal diseases is the progressive death of highly differentiated cells within
the neurosensory retina, called the retinal pigment epithelium (RPE), or in the photore-
ceptor cells in the human eye [2,12]. The impairment of the integrity of the retina slowly
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progresses and finally disintegrates the lining of the retinal cells or causes the death of
the specialized light-sensing retinal cells known as photoreceptors that provide visual
input to the brain [13]. This cycle worsens over time, resulting in visual deterioration and
subsequently blindness or complete vision loss [14].

Inflammatory events are the most likely causes of progressive retinal degenerative
conditions [15]. In retinal degenerative diseases, microglia/macrophage are activated,
and the activation of these cells leads to the release of cytokines and chemokines for the
progressive apoptosis of the photoreceptors suffering from these conditions [16]. Vari-
ous studies have shown the critical role of macrophages in retinal disease progression.
Macrophages change the profile of chemokines and cytokines after accumulation in subreti-
nal space and cause photoreceptor cell death [17]. In this inflammatory cascade, a pivotal
role is played by the interleukin-1 (IL-1) family, which comprises of both pro-inflammatory
and anti-inflammatory components, especially in retinal degenerative conditions. The
proposed roles of IL-1 family members on retinal degeneration are presented in Figure 1.
IL-33 is released from the nucleus of endothelial cells, Müller cells, fibroblast or epithelial
cells and binds with the heterodimer receptor ST2L/IL-1R accessory protein (IL-1RAcp).
The IL-33-ST2L signaling via MyD88-NF-κB-MAPK activation induces the expression of
inflammatory cytokines and chemokines [18].
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Figure 1. IL-1 family members and their role in retinal degeneration. Activated mi-
croglia/macrophages secrete IL-1β, which further induce the release of chemokines and cytokines
from Müller and RPE cells, promoting microglia/macrophage recruitment to the inflamed retina. The
expression of IL-1Ra, which is a competitive antagonist for IL-1R, is dysregulated in degenerated
retina. IL-33 regulates cytokine expression in dry AMD. IL-18, IL-37 and IL-38 have both pro- and
anti-angiogenic effects and regulate retinal neovascularization. Adapted from Wooff et al. [19].

In the present review, we discuss all the genetic and non-genetic causative factors
that lead to the progression of retinal degeneration. Additionally, we study the role of
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inflammation in each retinal disease condition and its corresponding therapeutic strategic
approaches based on anti-inflammatory functions.

2. Factors Contributing to Inflammation in Retinal Degenerative Diseases

Based on the broad nature of the immune response of retinal degeneration, potential
genetic and non-genetic factors play a progressive role in the induction and execution
phases of the disease.

2.1. Genetic Factors

The influence of genetic factors on retinal disorders is well documented [20]. Genetic
factors involve not only pro-inflammatory genes but also anti-inflammatory genes with
neuroprotective functions. In the cascade of its initiation to the development of the disease
phenotype, several pro-inflammatory genes become activated and are promptly counterbal-
anced by anti-inflammatory responses [21]. The imbalance in these inflammatory responses
results in the progression of degenerative retinal diseases. The expression of genetic factors
is regulated both at transcriptional and translational levels to ensure the induction immune
response to avoid tissue degeneration [22]. Researchers have witnessed a timely shift in the
association of genetic factors with apoptosis to necroptosis and/or pyroptosis for degen-
erating photoreceptors [23]. The caspase3 activation and apoptosis of photoreceptors are
observed in RP mice models such as rds, rd1, and rd10 [24–27]. The increased expression
of RIP1K/RIP3K molecules is linked with necroptosis in P23H-1 rhodopsin rats [23]. The
high levels of NLRP3 inflammasome components (NLRP3, active caspase 1, and IL-1β) are
associated with increased pyroptosis in murine and canine models of RP [23,28,29].

Substantial evidence in the literature suggests the activation of NLRP3 inflamma-
some in retinal degeneration through a significant augmentation in the inflammasome
components, including NLRP3, ASC, and CASP1 [30–32]. The caspase-1-dependent pro-
inflammatory cytokines, such as IL-1β and IL-18 are also activated in retinal degenerative
conditions [33]. The pro-cytokines IL-1β and IL-18 are important regulators of the innate
immune system that may cause tissue damage and even cell death. Notably, microglia and
infiltrating macrophages are considered the source of the inflammasome activation in de-
generating visual cells [19]. Increased expression of IL-1β and IL-18 is found in age-related
macular degeneration (AMD) [34], diabetic retinopathy [35], retinitis pigmentosa [36], and
glaucoma [37]. IL33/ST2 signaling plays a role in various ocular diseases such as dry eye
disease, uveitis, vitreoretinal diseases, and allergic eye disorders [38]. Enhanced retinal cell
degeneration and retinal detachment were observed in IL33−/− mice [39].

Several damage-associated molecular patterns (DAMPs) activate inflammasome com-
ponents in microglia during the dysregulated retinal homeostasis that drives disease pro-
gression. In addition, the outer retinal layers are invaded by activated IBA1+
microglia/macrophages in diseased conditions. Moreover, the dynamic toll-like receptor
4 (TLR4)—a signaling pathway involved in the activation of NLRP3 inflammasome—
is also associated with the pathogenesis of degenerative retinal disorders [31]. The in-
creased expression of MYD88, IRAK4, and TRAF6 is also observed in retinal degenerative
disorders [22].

Inflammation in degenerative retinal disorders has been strongly supported by molecu-
lar genetic studies. Although inconclusive, genes encoding complement factor H (CFH) [40],
complement component 2 (C2), factor B (FB) [41], and apolipoprotein E (APOE) have been
documented as being associated with AMD. Increased risk of AMD has been especially
prevalent among the carriers of the APOE ε2 allele, while APOE ε4 has been known to
protect against this condition [42]. Moreover, C2/CFB genes, C3, C9, CFH, and CFI variants
in the genes of the complement system are responsible for the progression of AMD [43–45].

Epigenetic factors also play a prominent role in the regulation of pro-inflammatory
gene promoters (NF-κB and AP-1) involved in retinal diseases. The genes encoding for
histone deacetylases (HDACs) and histone acetyltransferases (HATs) are associated with
the increased influx of activated microglia in the site of tissue damage, and thus, create
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a chronic inflammatory cycle, the hallmark of the mentioned disorders [46,47]. Further,
microRNA is known to play a biased and remarkable role in driving the M1 phenotype in
the mixed microglia/macrophage population in retinal diseases, for example, upregulation
of miR-155 [48,49]. Future studies are needed to identify key genes and signaling pathways
to understand the pathogenesis of retinal disorders.

2.2. Non-Genetic Factors

The heterogeneous and/or genetically complex retinal diseases are triggered by an
array of environmental risk factors. Among various environmental factors, age [50], sun-
light exposure, smoking, body mass index (BMI), diabetes, alcohol consumption, and
other lifestyle-related factors such as physical activity are associated with retinal disor-
ders [51,52]. Epidemiological studies have reported that the prevalence of retinal disorders
was 52.37% in subjects aged 60 years and above. Besides age, most of the nongenetic factors
are modifiable. Lifestyle and behavioral habits play a significant role in the development
of disease [53]. For instance, regular physical exercise has a protective role in various
diseases. In the Beaver Dam Eye Study, diabetes was found to be associated with refractive
errors [54], and diabetes can be controlled by a healthy diet and exercise. In several other
cohort studies, it was observed that constant physical activity may be considered effective
for AMD prevention [55].

Further, smoking has been documented to reduce macular pigment concentration by
approximately 50% [56] due to the formation of arachidonic acid, which is a precursor of
inflammatory mediators like prostaglandins and leukotrienes [57]. The high concentration
of hydroquinone known to be present in cigarette tar has also been documented to cause
lesions in the eye in murine models [58]. Education, ethnicity, hypertension, hyperthy-
roidism, Alzheimer’s, and Parkinson’s disease are the other non-genetic factors responsible
for retinal diseases, especially AMD [53]. Oxidative stress is a problem during aging and
diabetes. Oxidative stress is responsible for the accumulation of ROS that induces lipid
peroxidation and glycoxidation, which increases the levels of advanced glycation end
products (AGEs) along with advanced lipoxidation end products (ALEs) [59,60]. AGEs
and ALEs play a critical role in the chronic inflammatory process and cause alteration in
cell signaling, which further causes cell damage and death via NF-κB and MAPK signaling
pathways [59,60].

Little is known about the role of non-genetic factors in retinal disorders, as these retinal
problems may remain asymptomatic until their advanced stages. Thus, it is difficult to
explain the underlying non-genetic risk factor of degenerative retinal disorders, however it
can be considered as a correlating risk factor.

3. Role of Inflammation in Age-Related Macular Degeneration

Age-related macular degeneration is one of the most studied retinal degenerative
disorders. Abbreviated as AMD, it is defined as a slow and steady progressive chronic
death of cells such as retinal pigment epithelium (RPE), photoreceptors, Bruch’s membrane,
and the choroidal neovascularization in the macula, leading to drusen formation, hypo-,
and/or hyperpigmentation [61]. The etiology of AMD remained unclear for more than
a century. The identified risk factors include age, smoking of tobacco, fatty food intake,
irregular diet, obesity, reactive oxygen intermediates, ethnicity, and heredity [53].

AMD is categorized into two groups based on the time of onset. In the case of early
AMD, observable symptoms are inconspicuous and are characterized by the presence
of drusen formations at the sub-retinal pigment epithelium [62]. Cases of late AMD are
associated with severe loss of vision and have traditionally been classified into “wet”
and “dry” forms [62,63]. Among these two forms, “dry” AMD is most common and is
characterized by a drusen appearance, i.e., the accumulation of waste products in the retina,
that may grow. This may stop the flow of nutrients and thereby cause the death of retinal
cells in the macula, causing blurred vision. On the other hand, “wet” AMD, also known as
neovascular AMD, is a rapid process of serious vision loss that occurs due to the growth
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of tiny blood vessels in the retina, which often break or leak. The end-stage of dry AMD,
also called geographic atrophy, occurs less frequently than neovascular AMD. This causes
degeneration of the macula, due to which the RPE no longer supports the functions of
photoreceptors [64].

In most cases of AMD, the larger the area covered by the drusen in early AMD, the
greater the chance of developing late-stage AMD [65]. Drusen often remains undetected
in early AMD owing to the lesser amount of the area covered initially, as drusen having a
diameter of fewer than 25 µm cannot be detected under standard ophthalmoscopy [66].

The innate immune system mediated by mononuclear phagocytes is a major factor in
the development of advanced AMD [67]. Retinal microglial cells have been theorized to
play a major role in maintaining normal retinal physiology [68,69]. AMD is prominently
characterized by the accumulation of microglial cells within the subretinal space [70,71],
with greater concentrations around reticular pseudo drusen, a common lesion associated
with AMD. This accumulation leads to a range of negative effects on the retinal pigment
epithelium and the photoreceptors. The migration of microglial cells and other mononuclear
phagocytes from the peripheral circulation plays a major role in retinal degeneration [72].
However, the mechanism of their migration remains under investigation. The release
of chemotaxis-mediating chemokines, such as chemokine ligand 2 (Ccl2) has been put
forward as a major component in this pathway [73,74], although it is unlikely that this is
the sole factor behind microglial migration. CFH is another factor that plays a role in the
greater turnover of microglial cells in the subretinal space [75]. Chemokines bind to the
CX3CR1chemokine receptors present on the surfaces of the inflammatory cells, including
macrophages, microglia, T-cells, and astrocytes. CX3CR1 facilitates the recruitment of WBCs
into the inflamed tissues in the retina and thus the inflammatory cells are subsequently
activated [76].

The toll-like receptor (TLR4) upregulates interleukin-1β (IL-1β), tissue necrosis factor,
and interleukin-6 (IL-6), through the nuclear factor kappa beta (NF-κB) pathway [77,78].
Reports have shown that D299G TLR4 is a variant that leads to a decline in the elimination
of microbial organisms, and low-grade inflammatory changes are behind the pathological
changes observed in AMD [79].

An IL8 -251A/T polymorphism has been previously reported in many inflammatory
diseases and cancers. A similar association was found between AMD and the homozygous
IL8 –251AA genotype [80]. Cytokines, such as IL-6, TNFα, and IL-8, and CRP are responsi-
ble for the progression of AMD [81,82]. Seddon et al. [83] reported the correlation between
CRP, IL-6, and the disease progression to advanced AMD. The authors observed only a
17% progression rate of AMD in subjects with CRP levels of less than 0.5 mg/L, whereas a
significant increase to 38–40% was found in subjects with a CRP range of 0.5–9.9 mg/L. A
significantly higher AMD progression rate of 58% was associated with CRP levels greater
than 10 mg/L, signifying that CRP levels directly correspond with the AMD progression.
Furthermore, the authors also correlated IL-6 levels with AMD progression. They observed
no significant changes in the progression rate of AMD with an IL-6 range of <2–5.9 pg/mL,
however they did note a significantly increased risk for progression of AMD was found
to be associated with IL-6 levels of 6.0 pg/mL or higher. Levels of IL-1α, IL-1β, IL-4, IL-5,
IL-10, IL-13, and IL-17 were seen to be markedly elevated in the blood serum samples of
subjects who had been diagnosed with advanced stage AMD when compared with those
of healthy volunteers [84]. Pro-inflammatory cytokine IL-33 plays a role in both innate
and adaptive immune response by activating inflammatory signaling pathways including
NF-κB and MAPK signaling to induce the production of pro-inflammatory (such as IL-1β,
TNFα, IL-4, IL-6, and CCL2) or anti-inflammatory (like IL-10) cytokines. Further studies
proved that RP epithelium cells induce IL-33 signaling and cellular recruitment of microglia
and macrophages are controlled by Müller cells into the retina, leading to the destruction
of photoreceptors and RPE [19,85].
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4. Role of Inflammation in Inherited Retinal Dystrophies

Inherited retinal dystrophies (IRD) is an umbrella term used for a host of retinal dis-
eases associated with photoreceptor dysfunction and loss, leading to progressive loss of
vision. The most common forms of IRDs include retinitis pigmentosa (RP), Leber congen-
ital amaurosis, Stargardt macular dystrophy, macular degeneration, choroideremia, and
Usher’s syndrome [23]. There is much difficulty when attempting to identify the underly-
ing genetic mechanism behind the phenotypes of inherited retinal degeneration, as they are
generated through various pathways. The P2X7R upregulation has been shown to enhance
inflammasome activation, which leads to the release of proinflammatory cytokines and reti-
nal degenerative diseases [86]. Mutation in Glyoxalase 1 (GLO1) leads to the accumulation
of advanced glycation end products (AGE) and retinal degeneration [86]. The accumulation
of misfolded proteins increases reactive oxygen species (ROS) generation, enhancing un-
folded protein response (UPR) pathways, such as PERK (PKR-like endoplasmic reticulum
kinase) and IRE1 (inositol-requiring enzyme 1) pathways in photoreceptor cells resulting
in retinal degeneration [86]. An increase in CERKL mutation leads to increased apoptosis
and retinitis pigmentosa [86]. Oxidative stress in retinal pigmental epithelial cells alters the
expression of micro-RNAs (miRNAs) and long non-coding RNAs (lncRNAs), which induce
biochemical pathways involved in RP pathogenesis [86]. Excessive activation of MUTYH
leads to the formation of single strand breaks of DNA, causing disturbed homeostasis and
cell death [86]. More than 300 genes have been identified so far that can lead to any of the
IRDs mentioned above [23]. IRD is a genetic disease and presents high heterogeneity, which
results in hard to find a specific mutation. The most frequent of these IRDs is retinitis pig-
mentosa (RP) with a prevalence of 1 in 3500 individuals [87]. Based on the photoreceptors
affected, IRDs can be classified into rod- and cone-dominated dystrophies, and dystrophies
encompassing both rods and cones [88]. In the case of rod-dominated dystrophies like
RP, night-blindness and gradual loss of peripheral vision are observed, which eventually
lead to tunnel vision. Cone-dominated macular dystrophies are characterized by central
vision impairment, loss of details, abnormality in color vision, and delay in light to dark
adaptation. In IRDs that affect both rods and cones, there is concurrent loss of central and
peripheral vision [54].

The involvement of inflammation across different types of IRDs is difficult to general-
ize, as there is a wide range of inflammatory responses involved in each condition. The role
of inflammation in the case of RP, Stargardt macular dystrophy, and Leber congenital amau-
rosis is discussed in detail in the following sections. The impact of inflammatory responses
in the case of IRDs is often due to chronic excessive reaction of the cells and cellular prod-
ucts involved, leading to cell degeneration and apoptosis in the retina [89–93]. Activated
microglial cells and macrophages of the immune system secrete cytokines, chemokines,
and pro-inflammatory mediators such as TNFα in response to harmful stimuli, tissue dis-
ruption, or the presence of free radicals. TNFα regulates various signaling pathways of cell
death and survival, which are represented in Figure 2 [23]. The most common cell-signaling
pathways that are activated under such circumstances are Janus kinase/signal transducer
and activator transcription (JAK-STAT), NF-κB, and the mitogen-activated protein kinase
(MAPK) pathways, which then lead to the generation and release of pro-inflammatory
interleukins such as IL-1β, IL-6, IL-8, and IL-12 [94–96].
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8 association depends on complexes containing unubiquitinated RIPK1 as a scaffold. Activated 
caspase 8 further induces caspase 3 and apoptosis. TNFα signaling also regulates necroptosis when 
caspase 8 is not active. RIPK1 recruits RIPK3 to form the necrosome complex. RIPK3 phosphorylates 
the pseudokinase kinase-like domain of mixed-lineage kinase domain-like (MLKL), leading to its 
oligomerization. Thus, MLKL recruitment to the plasma membrane induces necroptosis by trigger-
ing Ca+ and Na2+ influx into the cell. RIPK3 also promotes the NLRP3 inflammasome formation and 
interleukin (IL)-1β activity. TNFα or oxidative stress activates parthanatos through the overactiva-
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Figure 2. A schematic diagram to show the role of tumor necrosis factor alpha (TNFα)-signaling in
inherited retinal dystrophies. TNFα binds to its receptor TNFR1, which leads to the recruitment of
death-domain containing adaptor protein (TRADD). TRADD further recruits TNF receptor-associated
factor 2 (TRAF2) and receptor-interacting protein kinase 1 (RIPK1) to form complex 1, which is
needed for NF-κB activation. Complex 1 dissociates from TNFR1 and associates with Fas-associated
protein with death domain (FADD) and pro-caspase 8 to form complex 2. The FADD/caspase
8 association depends on complexes containing unubiquitinated RIPK1 as a scaffold. Activated
caspase 8 further induces caspase 3 and apoptosis. TNFα signaling also regulates necroptosis when
caspase 8 is not active. RIPK1 recruits RIPK3 to form the necrosome complex. RIPK3 phosphorylates
the pseudokinase kinase-like domain of mixed-lineage kinase domain-like (MLKL), leading to its
oligomerization. Thus, MLKL recruitment to the plasma membrane induces necroptosis by triggering
Ca+ and Na2+ influx into the cell. RIPK3 also promotes the NLRP3 inflammasome formation and
interleukin (IL)-1β activity. TNFα or oxidative stress activates parthanatos through the overactivation
of poly [ADP-ribose] polymerase 1 (PARP1). Overactivation of PARP1 leads to decrease in cellular
ATP and NAD+ storage, and ultimately to bioenergetic collapse and cell death. Adapted from
Olivares-González et al. [23].
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5. Role of Inflammation in Retinitis Pigmentosa

Retinitis pigmentosa (RP) is an inherited retinal degenerative disease and it often
leads to vision loss, as no effective treatment strategies are available [97]. RP is the most
common inherited disease of the retina, and it affects 1 in 4000 individuals globally [98].
Research studies indicate that around 69 genes undergo genetic mutations in RP disease
that are normally involved in the functioning and maintenance of photoreceptor rod cells
[https://sph.uth.edu/retnet/sum-dis.htm (accessed on 30 November 2021)]. Most genes
responsible for Retinitis pigmentosa are the same. However, for individual genes, there is a
slight difference in the proportion of mutation among different ethnicities. In the Chinese
cohort, CYP4V2, RHO, USH2A, RPGR, CRB1, RP2, and CHM are the top seven genes in
which a proportion of two out of three mutations occur [99].

There are also some rare RP cases owing to mutations in mitochondrial DNA [100]
or due to digenic and diallelic inheritance of RDS and ROM1 genes [101]. Uniparental
isodisomy (two identical chromosomes generated from parental homolog in any individual)
and incomplete penetrance have also been reported in RP cases [102]. In 1990, Rhodopsin was
identified as the first gene involved in RP [103]. In addition, RP is caused by gene mutations
expressed in the photoreceptor supporting tissue, such as retinal pigment epithelium
(RPE). Rod cell apoptosis is followed by ROS generation, which leads to rod and cone cell
degeneration in RP [104]. Oxidative stress also affects the expression of microRNA GLO1,
CERK-L, MUTHYH, and P2X7R, which cause the release of pro-inflammatory cytokines
and ROS production in RP [86,105–107]. The molecular mechanisms of oxidative stress in
RP are presented in Figure 3.

An oxidative imbalance is found in the eyes of RP patients, which is consistent with
findings in various animal models [108–110]. Cytokines and chemokines regulate innate
and adaptive immune responses, and elevated levels of various pro-inflammatory inter-
leukins (IL1β, IL-2, IL-4, IL-6, IL-8), interferon (IFN)-γ, monocyte chemotactic protein 1,
and anti-inflammatory interleukins such as IL-10 in the vitreous humor of patients with RP
suggest that these molecules mediate or regulate the immune response in RP. Moreover,
increased levels of MCP1 in cells responsible for the activation of microglia and monocyte
recruitment, memory cells, and dendritic cells to the site of injury have been detected in
both the aqueous and vitreous humors of RP patients [111].

Okita et al. [112] observed increased serum levels of IL-8 and RANTES in patients with
retinitis pigmentosa, and they observed a negative correlation between IL-8 expression
and central visual function. Inflammatory cytokines (e.g., TNFα, IL-1β, and IL-17) and
environmental stresses (e.g., hypoxia and oxidative stress) promote IL-8 expression [113].
In conclusion, activated peripheral inflammatory responses and increased serum IL-8 levels
are responsible for central vision in patients with RP.

https://sph.uth.edu/retnet/sum-dis.htm
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Figure 3. Oxidative stress-induced molecular mechanisms of retinal degeneration in retinitis pig-
mentosa. Upregulation of P2X7R leads to inflammasome activation, the release of proinflamma-
tory cytokines, and retinal degenerative diseases. Glyoxalase 1 (GLO1) regulates ROS generation
and advanced glycation end products (AGE), and mutation in GLO-1 leads to accumulation of
AGEs and retinal degeneration. Accumulation of misfolded proteins causes an increase in ROS,
enhancing unfolded protein response (UPR), PERK (PKR-like endoplasmic reticulum kinase), and
IRE1 (inositol-requiring enzyme 1) pathways in photoreceptor cells leading to retinal degeneration.
Ceramide-kinase-like (CERKL) gene induces the phosphorylation of ceramide and protects the cell
from oxidative stress-induced apoptosis. An increase in CERKL mutation leads to increased apoptosis
and RP. Altered expression of micro-RNAs (miRNAs) and long non-coding RNAs (lncRNAs) by
oxidative stress in retinal pigmental epithelial cells induces biochemical pathways involved in RP
pathogenesis. MUTYH (mutY DNA glycosylase) is responsible for the maintenance of genomic
integrity, and excessive activation of MUTYH leads to the formation of single-strand breaks of DNA,
causing disturbed homeostasis and cell death. Adapted from Gallenga et al. [86].

6. Role of Inflammation in Stargardt Macular Dystrophy (STGD)

Stargardt disease is identified as the most predominant variety of inherited macular
dystrophy in children and adults with a rate of occurrence of 1 in 8000–10,000. Autosomal
recessive mutations in the ATP-binding cassette transporter gene A4 (ABCA4) results in
STGD [114,115]. STGD is presented with a heterogeneous phenotype that comprises of
clinical and genetic aspects. Genetic modifiers and a few environmental factors predom-
inantly influence the phenotype of STGD [116,117]. The major contribution of microglia
in STGD was characterized by Kohno et al. in an Abca4/Rdh8 double knockout mouse
model [118]. The available studies are not sufficient to conclude so decisively, however it is
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evident that TLR4 signaling activates microglia, which further secrete IL-1 family members
and eventually regulate STGD pathogenesis. The involvement of chemokine CCL3 is also
shown in the progression of retinal degeneration [119–121].

7. Role of Inflammation in Leber Congenital Amaurosis

Leber congenital amaurosis (LCA) presents a spectrum of hereditary retinal disorders
and is a severe congenital/early-onset retinal dystrophy (EORD). Globally, LCA affects
around 1 in 8000 children [122]. LCA is reported based on symptoms of severe visual
damage at birth or within a few months of the infant’s life and is often presented with
roving eye movements or nystagmus. Additionally, LCA is characterized by poor pupillary
light sensory responses and oculodigital signs [123]. LCA associated genes along with their
functions are mentioned in Table 1 [124].

Table 1. Leber congenital amaurosis associated genes and their function.

Gene Function

GUCY2D Phototransduction
CRB1 and CRX photoreceptor morphogenesis

RDH12 and RPE65 retinoid cycle
CEP290 ciliary transport processes

Researchers are trying to develop an adeno-associated virus (AAV) vector for retinal
degenerative diseases treatment. AAV viruses are DNA viruses and can be recognized by
the toll-like receptor 9 (TLR-9) [125]. TLR9 activation in RPE cells by CpG-DNA induces the
release of pro-inflammatory chemokine (IL-8), which results in the initiation of an inflam-
matory cascade, where peroxynitrite (ONOO-) induces the upregulation of transcription
factors NF-κB and AP1 [126,127]. Preventing this TLR9-initiated inflammatory cascade is
crucial for retinal degeneration and for designing retinal gene therapy [125].

8. Therapeutic Approaches to Treat Retinal Inflammation

Retinal degenerative diseases present major etiological factors of untreatable blindness
worldwide, and efficacious therapeutic options for these conditions are needed. There
are many therapeutic approaches for the treatment of neurodegenerative diseases such
as stem cell therapy, gene replacement therapy, retinal prostheses, optogenetics, and neu-
roprotective approaches. Although various therapies are under clinical trials, the use of
retinal prostheses has recently received approval [128]. Retinal prostheses help to restore
vision in patients suffering from AMD or IRD by the artificial replacement of degenerative
photoreceptor cells [128]. Gene replacement therapy, also known as gene addition or gene
augmentation, is a method of treating retinal degenerative diseases (IRD). RPE65-LCA is
the best example for gene therapy, where an AAV2 vector was used to transfer a normal
and healthy RPE65 gene in the retina of LCA patients [129–131]. Optogenetic therapy is
another therapeutic approach, where “optogenes” are delivered to the target-specific cell
types in the retina to enable the cells to become light-sensitive [132,133]. Besides this, neuro-
protective methods are also helpful in the treatment of vision loss by increasing the release
of neuroprotective molecules and preventing photoreceptor degeneration. Moreover, the
advantage of this method is that it does not depend on any specific mutation [134,135].
Optogenetic and neuroprotective therapies are valuable in the treatment of vision loss in
RP patients, wherein 50% of the mutations remain unknown [128]. Based on the causality
of the disease, AMD treatment strategies can be described through the schematic diagram
depicted in Figure 4 [136]. The anti-inflammatory and cell-based therapies are discussed in
detail in the present manuscript.
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Figure 4. Schematic diagram of therapeutic rationale for non-vascular and neovascular AMD. Age-
related macular degeneration is a complex disease affected by various factors, such as genetic factors,
aging, inflammatory effects, and oxidative stress. Several risk factors such as unhealthy diet, smoking,
alcohol consumption, and obesity are related to oxidative stress. Topical or intravitreal use of
non-steroidal anti-inflammatory drugs has shown a preventive effect on AMD. Anti-inflammatory
agents/immunosuppressants along with anti-VEGF therapies are currently in use for neovascular
AMD treatment. Rapamycin is in clinical trials for Dry AMD.

8.1. Anti-Inflammatory Therapies

Microglia become activated during neuroinflammation, which is a common feature
of retinal degenerative diseases, and produce a myriad of inflammatory cytokines or
chemokines in response to stimuli [137]. The treatment of retinal diseases with anti-
inflammatory agents is a good approach. Various anti-inflammatory agents used in retina
degeneration treatment are listed in Table 2 [136,138–143]. Curcumin, or quercetin, is a
natural compound with antioxidant and anti-inflammatory properties that has shown
positive effects against retinal cell injury [144].

The trans-membrane protein sigma 1 receptor (Sig1R) is a novel target for retinal
diseases [145]. Sig1R was initially reported as an opioid receptor, and multiple studies have
been conducted in isolated retinal cells, such as microglia, Müller glial cells, astrocytes,
and retinal ganglionic cells, and the intact retina [146]. Researchers have provided in vivo
evidence of the potent neuroprotective effects of Sig1R against loss of ganglion cells as
well as loss of photoreceptor cells [146]. There is evidence from the studies performed
over the past two decades that the Sig1R molecule plays a pivotal role in patients with
neurodegenerative diseases.

IL-1Ra, otherwise called interleukin-1 receptor antagonist, is a well-known anti-
inflammatory competitive receptor antagonist [147]. IL-1Ra prevents the activation of
IL-1R by inhibiting the binding to its agonists such as IL-1α and IL-1β, preventing inflam-
matory activities. Furthermore, mature dendritic cell activation has also been suppressed
in mouse cultured RPE cells, by IL-1Ra [145]. Various animal studies have shown the
anti-inflammatory role of IL-1Ra, and this might be useful for AMD treatment.

Corticosteroids are shown to have anti-inflammatory properties and are effective
against inflammation [148]. The drugs presently used in the treatment of retinal degenera-
tive diseases are listed in Table 1. Many studies have shown that Norgestrel, a synthetic
form of the progesterone hormone, can be used for the treatment of retinal degeneration.
Norgestrel can inhibit apoptosis and inflammation through the regulation of progesterone
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receptor membrane component 1 [149]. Another target for the treatment of retinal degen-
eration diseases is the use of endocannabinoid system receptor agonists (CB1 and CB2),
which have a neuroprotective role and anti-inflammatory properties in neurogenerative
diseases [150].

Table 2. Currently available treatments for retinal degenerative diseases.

Category Examples Properties Applications Disease Reference

Corticosteroids Dexamethasone Triamcinolone
acetonide (TA)

anti-inflammatory,
anti-angiogenic,

anti-fibrotic,
anti-permeability

Used to treat ocular disorders such as
macular oedema and angiogenesis AMD [136]

Nonsteroidal
anti-inflammatory
drugs (NSAIDs)

Bromfenac, Nepafenac
Diclofenac Aspirin (low dose)

anti-inflammatory,
analgesic, antipyretic

Inhibit inflammation Relieve
postoperative pain Control countering

allergic conjunctivitis and keratitis,
inhibit miosis during cataract surgery

Reduce cystoid macular oedema

AMD [138]

Immuno-suppressants Methotrexate Rapamycin anti-inflammatory
High doses to treat malignancies Low

doses to treat RA without affecting
humoral or cellular immunity

AMD [139,140]

Antibiotics Tetracyclines anti-inflammatory
properties

Reduce reactive oxygen species
Inhibit caspase activation Reduce cell

damage and prevent cell death
Prevent complement activation,

Inhibit matrix metalloproteinases that
breakdown the barrier between the
RPE and Bruch’s membrane Inhibit
cytokine production by regulating

microglia and T-cell activation

AMD [141,142]

Anti-TNFα agents infliximab, adalimumab, or
etanercept pro-inflammatory

Reduce photoreceptor cell death.
Improves the survival of retinal cells
in case of glaucoma, and choroidal

neovascularization

RP [29,143]

8.2. Cell-Based Therapies

The subretinal space in the retina is immune-privileged and is used for the delivery of
cells for treatment. There are two cell-based therapies, one is stem cell-based therapy, and
the other is non-stem cell-based therapy. Stem cell-based therapy involves the transfer of
new RPE cells to the subretinal space to improve or maintain the health of the damaged
light-sensitive cells. The non-stem cell method involves the implantation of the absent or
deficient cells, which can produce protective factors [151].

Microglial cells are involved in the maintenance of retinal structure and function.
However, microglial activation is acknowledged as a hallmark of inflammation as they are
the resident innate immune cells [93]. These activated cells release neurotoxic pro-cytokines,
such as TNFα, IL-1β, and IL-6, and secrete matrix metalloproteinase-9 (MMP-9) [152,153].
The activated form of microglial cells can be observed in AMD, RP, or DR. Therapeutically,
microglia inhibitory approaches such as minocycline, resveratrol, or tamoxifen can be
considered for the suppression of photoreceptor cell death and pro-cytokine release.

Gene modification to increase the body’s capacity to produce antioxidants is another
approach to neutralizing oxidative stress. Usui et al. observed that transgenic over-
expression of superoxide dismutase 1 (SOD1) and glutathione peroxidase 4 (GPx4), which
catalyze O2 and H2O2, delay the degeneration of cone in rd1 mice [154]. The adeno-
associated virus (AAV) vector-mediated delivery of NRF2, a transcription factor that boosts
antioxidant gene expression upon oxidative stimulation, is effective for cone survival in
rd1, rd10, and rhodopsin−/− mice [155]. The efficacy of antioxidants in animal models
with distinct genetic mutations suggests that oxidative stress is a common pathological
manifestation of the degenerative retina in RP [156,157].

Many viral vectors (such as adenovirus and lentivirus-based) and nonviral gene
transfer methods (nanoparticles and liposomes) have been evaluated for in vivo gene
therapy approaches. AAV vector-based therapy is considered the most promising approach
for gene therapy in the eye due to its efficiency and stability for gene transfer [158,159].
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Luxturna (voretigene neparvovec-rzyl) is a successful example of AAV vector-based gene
therapy treatment for RPE65-LCA [125].

9. Conclusions and Future Directions

Currently, no definite cure has been discovered for retinal degenerative diseases that
lead to the persistent deterioration of vision and ultimately blindness. To find a suitable
solution to prevent or target these diseases, many clinical trials are being conducted all
over the globe.

While many of these treatment modalities target choroidal perfusion, oxidative stress,
and RPE degeneration inflammatory pathways, we could not identify many significant
positive results available about the role of inflammation or therapeutic achievements
against Leber congenital amaurosis. There is quite a long history of treatment modalities
for AMD variants. However, transplanted hESC-derived RPE cells show that AREDS
formulation helps in curbing the disease-progression risk of AMD drastically, by about
30%. The safety criteria, such as medium-term and long-term safety, and graft survival in
the host environment, are to be explored further in detail.

More clinical studies are required to assess the long-term safety and efficiency of these
therapeutic approaches, especially those involving the current hESC-or iPSC-based RPE
transplantation strategy. A thorough understanding of the trials and their progression
from clinical observation to the laboratory is needed. Future studies from the bench-side
to the bedside need to be designed and carried out to better understand the etiological
mechanism of these diseases, and to engineer suitable therapies for patients.
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AAV Adeno-associated virus
AMD Age related macular degeneration
AP1 Activator protein 1
APOE Apolipoprotein E
AREDS Age related eye disease study
ASC Apoptosis-associated speck-like protein containing a CARD
BMI Body mass index
C2/CFB Complement component 2 and factor B gene
C3 Complement component 3
C9 Complement component 9
CASP1 Caspase 1
Ccl2 Chemokine ligand 2
CFB Complement factor B
CFH Complement factor H
CFI Complement factor I
CRB1 Crumbs cell polarity complex component 1
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CRP C-reactive protein
CX3CR1 C-X3-C motif chemokine receptor 1
CYP4V2 Cytochrome P450 family 4 subfamily V member 2
DAMPs Damage-associated molecular patterns
DNA Deoxyribonucleic acid
DR Diabetic retinopathy
EORD Early-onset retinal dystrophy
GPx4 Glutathione peroxidase 4
H2O2 Hydrogen peroxide
HATs Histone acetyltransferases
HDACs Histone deacetylases
hESC Human embryonic stem cell
IBA1 Ionized calcium binding adaptor molecule 1
IFNγ Interferon γ
IL-1 Interleukin-1
IL-1β Interleukin-1 beta
IL-6 Interleukin-6
IL-18 Interleukin-18
IL-33 Interleukin-33
iPSC Induced pluripotent stem cell
IRD Inherited retinal dystrophies
JAK-STAT Janus kinase/signal transducer and activator transcription
LCA Leber congenital amanurosis
MAPK Mitogen-activated protein kinase
MCP-1 Monocyte chemotactic protein 1
MMP-9 Matrix metalloproteinase 9
MYD88 Myeloid differentiation factor-88
NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells
NLRP3 NOD-, LRR- and pyrin domain-containing protein 3
NLRs Nucleotide-binding and oligomerization domain (NOD) like receptors
NRF2 Nuclear factor erythroid-derived 2-like 2
NSAIDs Nonsteroidal anti-inflammatory drugs
PAMPs Pathogen associated molecular patterns
RDS Retinal degeneration, slow
RANTES Regulated activation normal T-cell expressed and secreted
RHO Rhodopsin
RLRs Retinoic acid-inducible gene I (RIG-I)-like receptors
ROM1 Retinal outer segment membrane protein 1
ROS Reactive oxygen species
RP Retinitis pigmentosa
RPE Retinal pigment epithelium
RPGR Retinitis pigmentosa GTPase regulator
Sig1R Sigma 1 receptor
SOD1 Superoxide dismutase type 1
ST2 soluble interleukin 1 receptor-like 1
STGD Stargardt macular dystrophy
TLR4 Toll-like receptor 4
TNFα Tumor necrosis factor alpha
TRAF6 TNF receptor associated factor 6
USH2A Usherin
WBC White blood cells
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