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Abstract: Large-scale RNA sequencing and genome-wide profiling data revealed the identification of
a heterogeneous group of noncoding RNAs, known as long noncoding RNAs (lncRNAs). These lncR-
NAs play central roles in health and disease processes in diabetes and cancer. The critical association
between aberrant expression of lncRNAs in diabetes and diabetic kidney disease have been reported.
LncRNAs regulate diverse targets and can function as sponges for regulatory microRNAs, which in-
fluence disease phenotype in the kidneys. Importantly, lncRNAs and microRNAs may regulate
bidirectional or crosstalk mechanisms, which need to be further investigated. These studies offer the
novel possibility that lncRNAs may be used as potential therapeutic targets for diabetes and diabetic
kidney diseases. Here, we discuss the functions and mechanisms of actions of lncRNAs, and their
crosstalk interactions with microRNAs, which provide insight and promise as therapeutic targets,
emphasizing their role in the pathogenesis of diabetes and diabetic kidney disease

Keywords: long noncoding RNAs; microRNAs in kidney; kidney fibrosis; EMT; EndMT; diabetes
mellitus; diabetic kidney disease

1. Long Non-Coding RNA (lncRNA)

Long non-coding RNAs (LncRNAs) account for the major class of the noncoding
RNAs in the genome and are linear transcripts longer than 200 nucleotide sequences that
share similar characteristics with mRNAs [1]. Most LncRNAs are transcribed by RNA
polymerase II and have capping at the 5′ end and splicing and the polyadenylated tail at
the 3′ end. LncRNAs have defined promoter regions [1]. However, compared to mRNA,
lncRNAs do not have open reading frames (ORFs) and have lesser exons (lncRNAs contain
around 2.8 exons whereas mRNA contains 11 exons). LncRNAs can be transcribed as a
whole or partial natural antisense transcripts (NAT) to coding genes, or located between
genes or within introns [1]. Some lncRNAs originate from pseudogenes [2]. LncRNAs can
be divided into several subtypes according to their position (such as antisense, intergenic,
overlapping, intronic, bidirectional and recessed) and transcriptional direction in relation
to other genes [3,4].
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2. Synthesis Procedure and Location

Gene expression profiling and in situ hybridization studies have shown that the ex-
pression of lncRNAs can be tissue- and cell-specific, and may vary spatially, temporally or
in response to stimuli [5]. Many lncRNAs are located exclusively in the nucleus, how-
ever, some are cytoplasmic or are located in both nucleus and cytoplasm. LncRNAs are
critical regulators of gene expression and have functions in a wide range of cellular and
developmental processes [5]. LncRNAs function through both inhibition and activation
of genes [6].

LncRNAs are classified into four groups based on their location in the genome: (1) the
intergenic lncRNAs, (2) the sense or antisense lncRNAs, (3) the intronic lncRNAs and
(4) the processed transcripts; these lncRNAs reside in a gene-loci that has no ORF [6,7].

Based on their functions, lncRNAs have been characterized as signal, decoy, scaf-
fold, guide, enhancer RNAs and short peptides [8,9]. Signal lncRNA acts as a molecular
signal that regulates transcription processes [10]. Decoy lncRNAs act by reducing the
availability of key molecules that are involved in gene regulation. These lncRNAs alter the
transcription level by sequestering regulatory factors, and microRNAs, hence minimizing
their expression level [11]. The scaffold class of lncRNAs provides structural support for
complex proteins [12] and transcriptional activation or repression is conferred depending
on the types of regulatory proteins and RNAs that exist [13]. Guide lncRNAs interact with
ribonucleoproteins complex and influence the gene transcriptional level [14].

3. LNCs in Diabetic Kidney Disease

Available evidence has indicated the important roles of lncRNAs in the pathophys-
iology of diabetic kidney disease (DKD), and the crosstalk between lncRNAs and DKD
were reported in recent years [15–19]. Altered expression levels of lncRNAs play key
roles in the development of proteinuria and associated diabetic nephropathy (DN) [15,20].
LncRNAs are involved in the progression of kidney disease through regulation of many
important factors, such as pathologic processes in mesangial cells, podocytes, reactive ox-
idative species, epithelial-to-mesenchymal transition (EMT), endothelial-to-mesenchymal
transitions (EndMT) and actions on microRNAs [21–23].

Several lncRNAs participate in the regulation of renal disease (Table 1). For example,
plasmacytoma variant translocation (PVT1) participates in the development of DN by
regulating ECM accumulation. PVTI is the first non-coding RNA reported to be associated
with kidney disease, which is highly expressed in human renal mesangial cells under
high-glucose conditions and significantly promotes the expression of fibronectin protein,
type IV collagen, TGF-β1 and type I plasminogen activator inhibitor [20,24,25]. Metastasis-
associated lung adenocarcinoma transcript 1 (MALAT1) is aberrantly upregulated in early
DN [26–28]. MALAT1 initiates inflammation and oxidative stress; these pathogenic path-
ways regulate glucose-stimulated induction of the proinflammatory cytokines IL-6 and
TNF-α by activating serum amyloid antigen 3. These changes alter endothelial cell stability
in DN [20,29]. Gm4419 is located in chromosome 12 and is a regulator of the nuclear
factor kappa light-chain enhancer of activated B cells (NF-κB), which is a crucial inflam-
matory factor for DN [20,30]. Gm4419 interacts with p50 and induces the NF-κB/NLRP3
inflammasome signal transduction pathway in mesangial cells, which is associated with
inflammation, fibrosis and proliferation in high-glucose conditions [30]. NR_033515 is
significantly upregulated in serum of DN patients [31]. Overexpression of NR_033515
promotes mesangial cell proliferation and inhibits apoptosis [31]. NR_033515 has been
shown to upregulate the gene expression levels of proliferation-related genes, fibrosis-
associated genes and EMT markers by targeting miR-743b-5p [31]. Kidney-specific deletion
of Erbb4-IR has been shown to confer protective effects against DN complications [32].
Erbb4-IR inhibits the expression level of reno-protective miR-29b. Therefore, the level
of fibrosis was enhanced by Erbb4-IR i diabetic kidneys [32]. Antisense mitochondrial
noncoding RNA-2 (ASncmtRNA-2) is a mitochondrial lncRNA [33]. ASncmtRNA-2 is
upregulated in ageing and senescence in endothelial cells [33]. ASncmtRNA-2 induces
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oxidative stress and causes tubular injury through (i) accelerated lipid peroxidation and
protein crosslinking, (ii) damage to DNA and (iii) promoting inflammatory pathways,
such as NF-κB and transforming growth factor-β1 (TGFβ1) [33]. Lnc-MGC is regulated
by an ER stress-related transcription factor, CHOP (C/EBP homologous protein), and by
TGFβ1-dependent and independent mechanisms [34]. ER stress increases in patients
with progressive DN [34]. Nuclear enriched abundant transcript-1 (NEAT1) is highly
expressed in high-glucose conditions, and interacts with AKT/mTOR pathways [35,36].
NEAT1 inhibition leads to suppression in levels of TGFβ1, FN and COL4A1 in DN [36].
NEAT1 promotes high glucose-stimulated mesangial cell hypertrophy by targeting the miR-
222-3p/CDKN1B axis [37]. Similarly, lncRNA ERBB4-IR is involved in the development
of renal fibrosis in diabetes and its silencing in diabetic mice protects against albuminuria
and fibrogenic processes [32,38].

Conversely, the expression of CYP4B1-PS1-001, which upregulates the nucleolin pro-
tein level, is suppressed in high-glucose conditions [39,40]. CYP4B1-PS1-001 overexpres-
sion suppresses the levels of FN, COL4A1 and proliferation markers in diabetic mice [40].
Another example of a reno-protective lncRNA is the lncRNA ENSMUST00000147869,
which target ECM production in kidneys of diabetic mice [41]. ENSMUST00000147869
affects ECM synthesis and dramatically decreases the levels of fibronectin and collagen IV
in mesangial cells under high-glucose conditions [41], though the exact role of this lncRNA
is unknown. TUG1 functions as a repressor of miR-377. miR-377 directly targets the 3′UTR
of PGC-1α and fibrosis markers. Therefore, TUG1 upregulates the level of PGC-1α and
alleviates ECM production and downregulates the expression levels of proinflammatory
cytokines in high-glucose stimulated mesangial cells [42]. Myocardial infarction-associated
transcript (MIAT), also known as retinal noncoding RNA 2 (RNCR2), has been known
to associate with myocardial infarction [35]. MIAT regulates cell viability through stabi-
lizing nuclear factor erythroid 2-related factor 2 (NRF2) expression in renal tubules [20].
NRF2 pathologically and functionally protects the kidneys against diabetic damage [43].
Interestingly, expression of Nrf2 can be enhanced by MIAT overexpression in glucose-
treated renal tubular epithelial cell lines [44]. Cancer susceptibility candidate 2 (CASC2)
has critical functions in tumorigenesis [45]. Downregulated expression of CASC2 has been
observed in serum and kidney tissues in diabetic kidneys and is predictive of diabetic
complications [46]. Low-plasma levels of CASC2 are associated with higher risk of renal
failure in DN patients [47,48]. Another lncRNA, 1700020I14Rik, which is located in chro-
mosome 2 (Chr2: 119594296–119600744), functions as an endogenous RNA and regulates
the expression levels of microRNAs in diabetes [20,49]. Overexpression of 1700020I14Rik
suppresses the expression level of miR-34a-5p by Sirt1/HIF-1α signal pathway and acceler-
ates fibrosis in mesangial cells [49]. CYP4B1-PS1-001 is downregulated in early DN [40].
Its overexpression inhibits fibrosis of mesangial cells by interacting with nucleolin [40].
Gm15645 is downregulated in DN and high-glucose-stimulated, cultured podocytes [50].
The mechanism of Gm15645 is contrary to that of Gm5524, which affects podocyte cell death
and autophagy regulation in DN [50]. LINC01619 regulates miR-27a/FoxO1 (forkhead box
protein O1) and ER stress-associated podocyte cell injury in diabetes [51]. Downregulated
expression levels of LINC01619 are associated with proteinuria and declines in kidney
function in DN patients; hence, targeting LINC01619 is one of the potential therapeutic
options for treatment of DN [51]. Figure 1 demonstrates the lncRNAs involvement in
influencing EMT, EndMT and glomerular injury in diabetic nephropathy.
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Figure 1. Involvement of lncRNAs in the regulation of diverse cell types in kidneys. Green color indicates upregulated
expression levels whereas red color indicates downregulated expression levels during injury in cell types.

4. LncRNAs Involvement in the Regulation of EMT

EMT involves a series of processes by which epithelial cells lose their epithelial
characteristics and acquire properties of mesenchymal cells [52–57]. Figure 1 depicts the
involvement of lncRNAs in the regulation of EMT, EndMT and mesenchymal cells. Epithe-
lial cells are normally associated tightly with their neighbor cells. In contrast, mesenchymal
cells do not form intercellular adhesion complexes [58]. Mesenchymal cells are elongated
in shape and exhibit end-to-end polarity and focal adhesions, allowing for increased migra-
tory capacity [58]. The main function of fibroblasts, which are prototypical mesenchymal
cells that are found in several tissues, is to maintain structural integrity by secreting ex-
tracellular matrix (ECM). Fibroblast-specific protein 1 (FSP-1), alpha-smooth muscle actin
(SMA), vimentin, fibronectin and collagen I are the markers that characterize mesenchymal
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products in diabetic kidneys [58–60]. Inflammation results in the recruitment of multiple
types of cells that are involved in the induction of EMT processes. Elevated levels of
TGFβ1, platelet-derived growth factor (PDGF), epidermal growth factor (EGF) and fibrob-
last growth factor-2 (FGF-2) contribute to EMT processes [59–61]. MALAT1, NR_033515,
Erbb4-IR, GAS5 and CJ241444 are involved in tubular injury and contribute to EMT pro-
cesses whereas MIAT and LncRIAN have shown tubular protective activity and may have
regulate EMT processes in diabetic kidneys (Figure 1).

5. LncRNAs Involvement in the Regulation of EndMT

Endothelial cells form fibroblasts by undergoing a transition, referred as EndMT [57,
58,62–65]. EndMT is characterized by the loss of endothelial cell phenotypes, and gain
of mesenchymal proteins [58,62,64–67]. EndMT participates in fibrogenic processes in
kidneys and, in diabetic kidneys, can alter the physiology and function of other neigh-
boring cells [58,62,65,68]. Pathological stimuli such as inflammation, diabetes and ageing
influence EndMT events in the kidneys [69]. Endothelial SIRT3, the nuclear receptor gluco-
corticoid receptor (GR) and cell surface FGFR1 are critical regulators of TGFβ signaling
and EndMT in diabetic kidneys [70–73]. The kidneys of diabetic mice showed both pro-
gressive glomerular sclerosis and tubulointerstitial fibrosis, which was associated with
approximately 40% of all FSP-1-positive cells and 50% of αSMA-positive stromal cells
were CD31-positive [74]. Similarly, in the kidneys of COL4A3 knockout mice, 45% of all
αSMA-positive fibroblasts and 60% of all FSP-1-positive fibroblasts were CD31-positive,
suggesting that these fibroblasts are of endothelial origin and that EndMT might contribute
critically to the development and progression of renal fibrosis [74]. During the process of
EndMT, biochemical changes lead to the decreased expression of endothelial markers and
the gain of mesenchymal markers such as FSP-1, αSMA, smooth muscle 22-alpha (SM22α),
N-cadherin, fibronectin, vimentin, types I and III collagen, nestin, cluster of differentiation,
73 (CD73), matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-
9) [58,75,76]. MALAT1, Erbb4-IR and ASncmtRNA2 cause endothelial cell injury and may
involve EndMT-associated renal fibrosis (Figure 1). LncRNA H19 is associated with kidney
fibrosis by activating EndMT processes in diabetes (Figure 1).

6. LNCs Interaction with microRNA

The miRNA and lncRNA interaction is one of mechanisms for regulation of gene
expression [77]. This multilevel regulation is involved in almost all the physiological
and cellular processes at the transcriptional, post-transcriptional and post-translational
levels [77,78]. In some studies, it has been reported that miRNA triggers lncRNA decay [77].
On the contrary, lncRNAs generate miRNAs, act as miRNA sponges and miRNA decoys,
and compete with miRNA for binding at mRNAs [77].

LncRNA genes can harbor microRNAs and these microRNAs can be released by post-
transcriptional processing. For example, the lncRNA PVT1 serves as a host of miR-1207-5p
and has been implicated in DN [79]. microRNAs are often present in clusters, having been
localized to the PVT1 locus, and are upregulated by high-glucose and affect extracellular
matrix accumulation [80]. MiRNA clusters in lncRNAs can get very large as demonstrated
by a megacluster of more than 40 miRNAs harbored in lnc-MGC [34]. This cluster is
induced in diabetic glomeruli through endoplasmic reticulum stress signaling, which re-
sponds to high glucose and TGFβ-activation as well [34].

The interactions between microRNAs and lncRNAs are important to study the key
steps in DN progression. DN mice exhibit interactions between lncRNA CJ241444-miR-192
that induces TGFβ1/Smad3 signaling [81] and lncRNA Erbb4- IR-miR-129b activates colla-
gen genes and ECM genes and, hence, kidney injury [82]. These lncRNAs can act as miRNA
sponges [32,81]. Similarly, lncRNA PVT-1 participates in ECM accumulation via the actions
of its-derived miRNAs, miR-1207-5p and miR-1207-3p [25]. Under high-glucose conditions,
higher expression of both PVT-1 and its miRNAs cause an increase of TGFβ1/Smad3
signaling and ECM accumulation [25]. Similarly, miR-379 clusters that are regulated by ER
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stress in DN and lncMGC are also hosted in this same cluster [34]. LncMGC regulates the
expression of the miR-379 clusters, and the upregulation of the miR-379 clusters induces
ECM accumulation and renal hypertrophy [34]. Thus, antagonism of lncMGC expression
can be used as a potential therapeutic for DN to reduce the effects of the miR-379 cluster,
following ER stress [34]. Besides that, lncRNA NEAT1 antagonism is also a potential ther-
apy, since NEAT1 antagonism leads to the suppression of ECM deposition via the reduction
of ASK1, FN and TGFβ1 production [83]. This NEAT1-associated ECM suppression is due
to its interaction with miR-27b-3p, and its target, the TGFβ and Zeb1 [83]. Administration
of the antiapoptotic lncRNA, TUG-1, suppresses miR-377 expression and its target gene
PPARγ and thus prevents ECM accumulation in DN mice [42]. Therefore, treatment to
increase TUG-1 expression could be beneficial to treat the DN phenotype and restore kidney
structure, although further studies are needed to understand its potential [42]. These find-
ings will allow the development of an understanding of the interactions between lncRNAs
and their target miRNAs, that can be useful for therapeutic target selection to prevent ECM
deposition and for the management of DN progression. Figure 2 demonstrates LncRNAs
and microRNAs interactions in the regulation of diabetic nephropathy.

Figure 2. Interactions of LncRNAs and microRNAs. Arrow
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7. LNCs in the Regulations of Antifibrotic microRNAs Crosstalk

TGFβ suppresses antifibrotic miRNAs such as miR-29 clusters and miR-let-7 clus-
ters [84]. Suppression of such TGFβ1-regulated crosstalk of miRNAs was reported in type
I diabetic subjects who had higher rates of ESRD progression [85]. The data from our
laboratory reveal that clusters of the miR-29 family and the miR-let-7 family showed a
protective effect against endothelial-to-mesenchymal transition (EndMT) and demonstrate
bidirectional regulation under physiological conditions [86–89]. This bidirectional regula-
tion is essential for endothelial cell homeostasis and protects against EndMT in diabetic
kidneys [76]. Targeting EndMT is one of the potential therapeutic options for the treatment
of diabetic kidney fibrosis [56,58]. miR-29 clusters show negative, bidirectional regulation
with TGFβ receptors [76]. miRNAs regulate gene expression of each other directly or
indirectly. This crosstalk phenomenon is linked with maintenance of antifibrotic activity in
the kidney and its disruption results in accelerated renal fibrosis [76]. Interventions that
prevent the disruption of this crosstalk are beneficial in protecting against kidney dis-
eases [56,86]. DPP-4 inhibition shows suppression in TGFβ signaling-driven EndMT in
diabetic kidneys by elevating miR-29 clusters [67,88]. miR-29 clusters target the profibrotic
molecule DPP-4, and its inhibition elevates the miR-29 level; therefore, DPP-4 inhibitors
are potential leads for the treatment of diabetic nephropathy [88].

MiR-let-7 inhibits TGFβ receptor 1 [90], and TGFβ-smad3 signaling has been demon-
strated as an inhibitory pathway for miR-29 gene expression [84,88,91,92]; therefore,
as expected, miR-let-7 induces the expression of miR-29 in endothelial cells. An alter-
native mechanism of miR-29-linked-miR-let-7 expression was explained by the interferon-
gamma (IFNγ)-FGFR1 axis. miR-29 targets IFN-γ [93] and moreover, IFN-γ inhibits FGFR1.
FGFR1 plays crucial roles in the expression of miR-let-7 family clusters [90]. Downregula-
tion of miR-29 clusters causes a rise in IFN-γ levels, which subsequently discourage FGFR1
and FGFR1-associated expression of miR-let-7 clusters. This suppression of miR-let-7
expression causes activation of TGFβR1 protein expression. Triggering TGF-β/smad3
signaling in turn inhibits the expression of miR-29 family clusters [88].

AcSDKP is a key peptide that is partially synthesized in the distal tubular regions
from the enzymatic action of polyoligopeptidase on thymosinβ4 and is degraded by an-
giotensin converting enzyme. Hence, angiotensin converting enzyme inhibitors have been
shown to elevate the level of AcSDKP in the plasma of mice and diabetic subjects [86,89].
Several studies have been analyzed for renal protective abilities of AcSDKP and ACE
inhibitors can perform antifibrotic activities by partially elevating AcSDKP levels [70,89,94].
Most importantly AcSDKP is a key endogenous peptide that restores kidney structure and
suppresses renal fibrosis by counteracting DPP-4-associated EndMT through elevating mi-
croRNA crosstalk regulations between miR-29 and miR-let-7 [86]. Moreover, inhibition of
ACE elevates the level of AcSDKP and cause upregulation of antifibrotic microRNAs and
restores the antifibrotic cross-talk in cultured endothelial cells, while angiotensin receptor
blockers have minimal effects [76,86,89]. These events control crosstalk regulation between
miR-29s and miR-let-7s in fibrotic kidneys of diabetic mice [86]. AcSDKP maintains kid-
ney homeostasis partly by elevating the bidirectional regulation between miR-29s and
miR-let-7s [76,86].

Lnc-H19 expression is upregulated in TGFβ2-induced endothelial cells and in fi-
brotic kidneys of diabetic mice [22]. H19 suppression significantly reduces EndMT and
kidney fibrosis [22]. The upregulated H19 expression in diabetic kidneys is associated
with downregulated levels of miR-29a [22]. H19 and miR-29 association contributes to a
regulatory network involved in EndMT [22]. Similar H19 regulatory mechanisms have
previously been reported, such as the H19/miR675 pathway, which inhibits cell growth and
Igf1r expression [95]; H19/Let-7-mediated inhibition of HMGA2-mediated epithelial-to-
mesenchymal transition [96] and the H19/miR-675 axis inhibits prostate cancer metastasis
via TGFβ1 [97]. Xie et al. (2016) also found that H19 interaction with miR17 contributed
to a regulatory network involved in renal fibrosis [98]. H19 acts as a competitive endoge-
nous RNA. The regulatory network integrates the transcriptional and post-transcriptional
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regulatory network of EndMT and renal fibrosis [22]. Interestingly, inhibition of H19 only
altered miR-29a levels, not miR-29b or miR-29-c, and suppressed TGF-β/Smad signaling
in order to regulate EndMT and renal fibrosis in diabetes [22].

Figure 3 demonstrates the involvement of LncRNAs in the regulation of microRNAs
crosstalk and its implications in the mesenchymal activation in diabetic kidneys.

Figure 3. Crosstalk regulation between LncRNAs and antifibrotic microRNAs. Arrow
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8. LncRNA-miRNA-Based Treatment for DKD, Future directions and Perspectives

Many non-coding RNAs (miRNAs, lncRNAs and circRNAs) regulate the expression
of critical genes involved in DN phenotypes. These non-coding RNAs (nc RNAs) are
stable in biological fluids and can offer potential biomarkers in a diverse array of diseases.
Non-coding RNAs are involved in the disease processes of hypertrophy, ECM synthesis,
apoptosis and renal fibrosis. Moreover, some research has advanced to synthesize ncRNAs-
based treatments, with a few of these ncRNAs already in the clinical trial phase. Therefore,
these ncRNAs-based therapeutics would be an alternative approach for the treatment
of DN [99].

MiRNA-based therapeutics can be used as alternative therapy for treatment of sev-
eral diseases including diabetic nephropathy. The application of artificially synthesized
oligonucleotides to mimics (miRNA mimics) or knockdown microRNAs (antagomiRs) has
evolved [99,100]. In this series, locked nucleic acid (LNA) inhibitor was developed to sup-
press a specific miRNA expression or action [99,100]. Dramatically, LNA-miR-192 treatment
improves the DN phenotype, and thus can be utilized as a potential DN therapy [101].

Other work has showed that subcutaneous injection of anti-miR-21 suppressed the
fibrosis level in chronic kidney disease mice [102]. miR-29 family significantly improves
renal structure and fibrosis in DN mice [103], thus anti-miR-29-based therapy could be
potentially used as an alternative option for DN treatment. miRNA-based treatment is
gaining momentum over the last decade. However, the problem lies within the delivery
methods. miRNAs regulate several targets at the same time; thus, they may affect other path-
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ways. Therefore, research in miRNA-based therapies is now switching to focus on delivery
methods and efficacy and safety to target a specific route and tissue localization [104–106].

Moreover, the size of the therapeutic molecule should be small enough to cross the
endothelium to the organ or site of interest and should not be filtered out by the kidney [107].
Interestingly, this filtration problem is an advantage for miRNA-based treatment, since the
epithelial cells reabsorb the therapeutic agents from the ultrafiltrate, thus reducing the
loss [107,108]. Therefore, it is believed that miRNA-based treatments could be safely
used for DN subjects, although advanced work or large clinical trials are still needed.
Several miRNA-based treatments have advanced to clinical trials, though none for the
treatment of DN. Miravirsen (LNA based miR-122 inhibitor) already entered phase II
clinical trials to treat HCV infection in patients [109]. Many miRNA-based therapeutics are
currently in development for several other diseases; therefore, the use of miRNA-based
treatment for DN is a new hope. Another possible treatment option is lncRNAs-mediated
treatment for DN. It is comparatively favorable to targeting the lncRNA expression when
compared to miRNAs, because of its functional role in transcriptional control, tissue-specific
expression and disease-specific alterations. LncRNAs are mainly present in the nucleus;
synthetic antisense oligonucleotides (ASOs) are widely suggested to silence the lncRNA
expression in the nucleus by commencing RNase H-dependent degradation [110,111].
Design of ASOs is very important as it should bind to the LncRNA-specific site and target
a single lncRNA. Furthermore, the real challenge is to treat with ASO in vivo. Similar to
miRNA-based treatments, the problems lie within the delivery efficiency and efficacy.
Another problem related to lncRNAs based therapeutics is the heterogeneous nature
and unconserved intron sequence of lncRNAs [1,112]. Further studies are needed to
identify small molecules that induce the expression of renal protective non-coding RNAs.
There is a need to search for compounds that induce the expression of antifibrotic non-
coding RNAs in diabetic kidneys, such as flavonoids, chalcones, polyhydroquinolines,
propiophenone derivatives, deoxyandrographolides, 2-methoxy-estradiol and thiazolidin-
4-one derivatives; these synthetic or plant-based compounds have shown protective effects
in mouse models of diabetes mellitus [113–125], and could be further tested and used in
the management of DN. ncRNAs play crucial roles in the pathogenesis of type II DM and
diabetic complications; despite their limitations, tissue-specific microRNAs expression
should be further studied [56,126,127]. Physiological dysfunction, metabolic alterations, ER-
stress and inflammation are observed before later features such as proteinuria, which is a
major contributor to the development of DKD [20]. Proteinuria determines the cardio-renal
outcomes of patients with DKD [128–130]. Higher proteinuria leads to tubular damage
and is associated with renal inflammation and interstitial fibrosis in diabetes [129–131].
Minutolo et al. studied the crucial role of proteinuria in patients who have chronic diabetic
kidney disease (DM-CKD), and discussed new information on cardio-renal prognosis in
DM-CKD patients [128]. In the absence of proteinuria, DM-CKD patients did not have
increased cardio-renal risk when compared with non-diabetic CKD patients [128]. However,
in CKD patients with proteinuria, the risk of end-stage renal disease was mainly due to
the proteinuria level independent of diabetes [20,132]. The physiological and cellular
roles of altered sets of microRNAs and lncRNAs are relevant to study proteinuria and
associated DN. In addition, lncRNAs such as GAS5 and GM6135, which are upregulated
during renal inflammation, might be addressed by a Lnc-inhibitor [133,134]. Similarly,
research on circular RNAs and their role in the health and disease of diabetic kidneys
is gaining momentum as well. circRNA_15698, circLRP6, circACTR2, circHIPK3 and
circ_0000491 are associated with renal inflammation and fibrosis whereas circRNA_010383
is reno-protective [135–140]. Therefore, better understanding of the role of these regulatory
circular RNAs in the physiology of diverse kidney cell types is needed. Table 1 presents
the list of lncRNAs and circular RNAs, and their targets in kidney disease.

The role of lncRNAs should be analyzed in preclinical settings before utilizing their
therapeutic potential in the management of diabetic nephropathy. Hence, extensive re-
searches demonstrating the role of miRNAs and LncRNAs interaction are needed to
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validate the possibility of using these miRNAs/lncRNAs-based treatments in proteinuria
and associated DN.

9. Conclusions

miRNAs and lncRNAs interactions influence DKD progression by targeting genes
related to fibrogenesis, ER stress, inflammation, oxidative stress and metabolic dysfunc-
tion [8,49,110]. Identification of pathways regulating early-stage (physiological dysfunction,
metabolic alteration, ER-stress and inflammation) and late-stage (proteinuria) features are
of key importance in studies of DN pathogenesis. miRNAs and LncRNAs interactions
open a wide area for basic research and for the development of new therapeutic options
against diabetic complications including DKD.

Table 1. LncRNAs and circular RNAs in diabetes and diabetic kidney disease.

lncRNAs Expression Samples Targets Functions References

Plasmacytoma
variant translocation

(PVT1)
Up High-glucose stimulated

mesangial cells
Fibronectin, collagen IV,

TGF-β1, and PAI-1
DN, ECM

accumulation. [20,24,25]

Metastasis associated
lung adenocarcinoma

transcript 1
(MALAT-1)

Up

Endothelial cells,
STZ mice

Podocytes, HEK-293 cells
Renal tissues, proximal
tubular epithelial cells

Serum

IL-6, TNF-α, SAA3,
miR-29b

CTNNBIP1, SRSF1
miR-23c, ELAVL1,

NLRP3
miR-499a

renal fibrosis,
disrupts endothelial

cell stability
Podocytes cell

damage
Injuries in

tubular cells
DN phenotypes

[26–29]

Gm4419 Up High-glucose stimulated
mesangial cells NF-κB/NLRP3 Fibrosis, cell

proliferation [30]

GM5524 Up
Diabetic tissues,

High-glucose
stimulated podocytes

Bcl2 and Bax protein
LC3/ATG

autophagy pathway

DN, Podocytes
cells damage [50,51]

NR_033515 Up Serum, HEK293 T cells,
mesangial cells

PCNA, cyclin D1, P38,
ASK1, fibronectin,

and α-SMA, E-cadherin
and vimentin

and miR-743b-5p

DN phenotypes,
EMT and cell
proliferation

[31]

Erbb4-IR Up Renal tissue miR-29b, TGF-β/Smad3 Renal fibrosis [32,38]

Antisense
mitochondrial

noncoding RNA-2
(ASncmtRNA-2)

Up Endothelial cells

ROS, (i) inducing
lipid peroxidation,

protein crosslinking,
and the formation of

DNA adducts;
(ii) inducing direct

damage to cellular DNA;
and (iii) activating
multiple cellular

signaling pathways,
including NF-κB

and TGF-β1.

Damage to
endothelial cells,

Ageing, replicative
senescence
and fibrosis

[33]

Lnc-MGC Up
Renal tissues

Podocytes
Mesangial cells

Endoplasmic reticulum
(ER) stress-related
transcription factor,

CHOP (C/EBP
homologous protein),

TGF-β1.

ER stress,
renal fibrosis,

glomerular hypertro-
phy, and podocyte

cells injury
EMT and DN.

[34]

GAS5 Up Human tubular epithelial
cells

miR-27, P53, CASP3,
NF-κB, BNIP3

Tubular cell
apoptosis [133]

GM6135 Up Glucose-stimulated-
mesangial cells TLR4, miR-203 Renal inflammation

and fibrosis [134]

LnC-H19 Up
Diabetic mice

UUO mice
Endothelial cells

TGF-β/Smad3, miR-29a Renal inflammation
and fibrosis [22,96–99]
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Table 1. Cont.

lncRNAs Expression Samples Targets Functions References

CJ241444- miR-192 Up Renal cortex and
mesangial cells

TGF-β, Akt, Col1a2,
Col4A1, Smad, Ets1,

miR-192 Glomerular fibrosis [81]

NEAT1 Up Renal tissues

Akt, Mtor, collagen IV,
Fibronectin, TGF-β1.

Zeb1, miR-27b-3p,
Ask1, fibronectin

Glomerular fibrosis
Mesangial cell
proliferation

[36,37]

Circular noncoding
RNAs

circRNA_15698
Up Renal cortical cells

mesangial cells

collagen IV, collagen I,
Fibronectin, TGF-β1.

miR-185
Renal fibrosis [135]

circLRP6 Up Renal cells miR-205, HMGB1 DN progression [136]

circACTR2 Up Tubular cells
interleukin (IL)-1β,

collagen IV and
fibronectin

Pyroptosis, Fibrosis
in Renal

Tubular Cells
[137]

circHIPK3 Up
DN tissues,

Glucose-stimulated
mesangial cells

Cyclin D1, PCNA,
TGF-β1, Collagen I,

Fibronectin and miR-185
DN progression [138]

circ_0000491 Up Glucose-stimulated-
mesangial cells TGFβR1, miR-101b Glomerular fibrosis [139]

circRNA_010383 down Kidneys of db/db mice
mesangial cells Sponges for miR-135a DN [140]

Taurine up-regulated
1 (TUG1) down

Glucose-stimulated
mesangial cells, renal
cortex, mesangial cells

endogenous sponge of
miR-377, PGC-1α, PAI-1,
TGF-β1, FN, collagen IV

Mesangial cells
damage, podocyte

cell death
[42]

Myocardial
infarction-associated

transcript (MIAT)
down HK-2 cells

Nuclear factor erythroid
2-related factor 2 (Nrf2),

Acta2
tubular cells damage [20,35]

Cancer susceptibility
candidate 2 (CASC2) down serum and renal tissues JNK pathway renal failure,

podocyte cell death [45–48]

ENSMUST00000147869 down mesangial cells,
renal cortex

ECM synthesis,
fibronectin and Collagen

IV

Mesangial cells
damage [41]

1700020I14Rik down mesangial cells,
Renal tissues miR-34a-5p, Sirt1, HIF-1α renal fibrosis [49]

CYP4B1-PS1-001 down mesangial cells,
renal tissues

nucleolin (NCL),
ubiquitin

proteasome-dependent
pathway

mesangial cells
proliferation and

fibrosis
[39,40]

Gm15645 down
Kidneys of Db/db

mice and high-glucose-
stimulated podocytes

Bcl2/Bax and
LC3/ATG pathways

DN, podocyte
cell apoptosis [50]

LINC01619 down DN tissues, podocytes miR-27a, FoxO1, ROS,
CHOP, GRP78 DN [51]

LncRIAN down Renal biopsy,
podocyte cell

Acta2, Smad2,
Smad3, miR-150

Myofibroblasts
formation [81]
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Abbreviations

AcSDKP N-acetyl-seryl-lysyl-proline
ACE Angiotensin-converting enzyme
AKT protein kinase B
ASK1 Apoptosis signal-regulating kinase 1
ASncmtRNA Antisense mitochondrial noncoding RNA-2
ASO Antisense oligonucleotide
CASC2 Cancer susceptibility candidate 2
CD73 Cluster of differentiation 73
CD31 Cluster of differentiation 31
CDKN1B Cyclin Dependent Kinase Inhibitor 1B
CHOP C/EBP homologous protein
CKD Chronic kidney disease
COL4A1 Collagen Type IV Alpha 1 Chain
DPP-4 Dipeptidyl transferase-4
DKD Diabetic kidney disease
DM Diabetes mellitus
DN Diabetic nephropathy
ECM extracellular matrix
EGF Epidermal growth factor
EMT epithelial-to-mesenchymal transition
EndMT endothelial-to-mesenchymal transition
ER endoplasmic reticulum stress
ESRD End-stage renal disease
FSP-1 Fibroblast-specific protein-1
FGF-2 Fibroblasts specific growth factor-2
FN Fibronectin
FoxO1 Forkhead box protein O1
FGFR1 Fibroblast growth factor receptor 1
GR Glucocorticoid receptor
HIF1 α Hypoxia Inducible Factor 1 Subunit Alpha
IGF1R Insulin-like growth factor 1 receptor
IL-6 Interleukins-6
IFN-γ Interferon-gamma
LncRNA Long non-coding RNAs
LNA Locked nucleic acid
MALAT1 Metastasis-associated lung adenocarcinoma transcript 1
MiRNA MicroRNA
MIAT Myocardial infarction-associated transcript
MMP-2 Matrix metalloproteinase-2
MMP-9 Matrix metalloproteinase-9
mTOR Mammalian target of rapamycin
NAT Natural antisense transcript
ncRNA Non-coding RNAs
NEAT1 Nuclear enriched abundant Transcript-1
NF-κB Nuclear factor kappa light-chain enhancer of activated B cells
NRF2 nuclear factor erythroid 2-related factor 2
NLRP3 NOD-, LRR- and pyrin domain-containing protein 3
ORF Open reading frame
PGC-1α Peroxisome proliferator-activated receptor gamma coactivator 1-alpha
PPAR-γ Peroxisome proliferator-activated receptor gamma PPAR-γ
PVT1 Plasmacytoma variant translocation 1
RNCR2 Retinal non-coding RNA 2
SIRT1 Sirtuin 1
SIRT3 Sirtuin 3
SM22α Smooth muscle 22-alpha
αSMA Alpha smooth muscle actin
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TGFβ1 Transforming growth factor β1
TNF α Tumor necrosis factor α
TUG1 Taurine Up-Regulated 1
UTR Untranslated region
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