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Entropy theory originated from the second law of thermodynamics, and its extension to
information theory became a versatile tool for modeling complex systems and associated problems.
Entropy has found applications in a wide range of problems in earth, environmental, and geographical
sciences. This special issue focuses on the applications of entropy theory in environmental and
water engineering.

Entropy is considered as a measure of uncertainty or the amount of information gained through
measurements of a random variable. Baran et al. [1] defined entropy as an invariant measure function
and extended the assessment of uncertainty. They stated that entropy did not mean an absolute
measure of information, but as a measure of the variation of information, which intends to help solve
information-related problems in hydrologic monitoring.

Based on the review of entropy modeling in water engineering by Singh [2], applications
of entropy theory can be classified into three groups: (1) statistical or empirical, (2) physical,
and (3) mixed. The first group focuses on probability determination and requires entropy maximization,
including frequency analysis, parameter estimation, network evaluation and design, spatial and inverse
spatial analysis, flow forecasting, and complexity analysis, and clustering. The second group involves
deriving physical relations either in time or in space, such as rainfall-runoff modeling, infiltration, soil
moisture, velocity distribution, and flow duration curve, among others. For instance, Zhang et al. [3]
showed how the entropy parameter derived from the entropy-based flow duration curve is linked to
the drainage area, impacted by reservoir operation, and possibly climate change. The third group is a
mixture of the above two and includes applications such as the reliability of water distribution systems.
Numerous examples of these can be found in the review article on the Tsallis entropy, by Singh et al. [4].

Applications in the first category are common in hydrology, and many studies in this special
issue belong to this category. Using the principle of maximum entropy (POME), the four-parameter
exponential gamma distribution, generalized gamma distribution, and generalized beta distribution
were derived for flood frequency analysis in [5–7]. Chen et al. [8] showed that entropy-based generalized
distributions can further be used for the analysis of extreme rainfall with Bayesian technique.

Entropy 2018, 20, 598; doi:10.3390/e20080598 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-0308-1550
https://orcid.org/0000-0003-0523-890X
http://www.mdpi.com/1099-4300/20/8/598?type=check_update&version=1
http://dx.doi.org/10.3390/e20080598
http://www.mdpi.com/journal/entropy


Entropy 2018, 20, 598 2 of 4

Keum et al. [9] reviewed applications of entropy in water monitoring network design,
including precipitation, streamflow and water level, water quality, soil moisture, and groundwater
network. The network designed by Yeh et al. [10] showed how to optimize the rainfall network with
both radar and entropy. Santonastaso et al. [11] introduced flow entropy as a measure of network
redundancy and a proxy of reliability in optimal network design procedures, which can identify the
tradeoff between network cost and robustness. Besides water distribution networks, entropy was
used to develop an integrated optimization model for the spatial optimization of agricultural land use
based on crop suitability, spatial distribution of population density, and agricultural land use data [12].
Similar to optimization, entropy was also used to determine weights of evaluating indicators in a fuzzy
system [13,14] and can be applied in combined forecasting of rainfall [15].

Applications in this special issue have used several different entropy formulations, such as the
Shannon, Tsallis, Rényi, Burg, Kolmogorov, Kapur, configurational, and relative entropies, which can
be derived in time, space or frequency domain. The sample entropy was used to investigate streamflow
and water level complexity of the Poyang Lake over multiple time-scales [16]. The connection entropy
was applied to establish a water resources vulnerability framework [17]. The generalized space
q-entropy was employed for spatial scaling and complexity properties of Amazonian radar rainfall
fields [18]. The Kolmogorov complexity and the Shannon entropy were combined to evaluate the
randomness of turbulence [19]. Cheng et al. [20] employed several entropy measures, such as intensity
entropy, apportionment entropy, and marginal entropy to investigate spatial and temporal precipitation
variability. Defined in frequency or spectral power domain, entropy can be used for spectral analysis.
In this way, entropy can be used in time series analysis and forecasting and, hence, for characterizing
stochastic and periodic patterns [21].

Mutual information is a measure of mutual dependence between two variables and can be
determined from marginal and joint entropies. It is an efficient tool to investigate linear or
non-linear interactions, such as the relationship between vegetation pattern and hydro-meteorological
elements [22], the relationship between annual streamflow, extreme precipitation and ENSO
(El Niño–Southern Oscillation) [23], and the relationship between soil water content and its influencing
factors [24].

More recently, entropy-based concepts have been coupled with other theories, including copula,
wavelets, and ensemble filter, to study various issues associated with environmental and water
resources systems. Guo et al. [25] developed a coupled maximum entropy-copula method for
hydrologic risk analysis through deriving bivariate return periods, risk, reliability, and bivariate design
events, which shows that the maximum entropy theory is beneficial for improving the performance of
copulas. As a result, the distribution derived by the maximum entropy-copula model outperforms the
conventional distributions for the probabilistic modeling of floods and extreme precipitation events.
Foroozand et al. [26] combined entropy with ensemble filter method to evaluate model performance,
which can mitigate the computational cost of the bootstrap aggregating method. The entropy concept
was linked to the notion of elasticity to assess catchment resilience, which determined the changes in
mean annual runoff [27].

Other than the above probabilistic entropy, the classical thermodynamic entropy concept was
also visited in the special issue, by Koutsoyiannis [28], in the entropy production. Entropy production
was explored within stochastics in logarithmic time, related to model identification and empirical
fitting, which was applied to an extraordinarily long time series of turbulent velocity and showed how
a parsimonious stochastic model can be identified and fitted.

The above contributions to this special issue show the enormous scope and potential of entropy
theory in advancing research in the field of environmental and water engineering, including establishing
and explaining physical connections between theory and reality.
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