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Abstract: Bacterial natural products possess potent bioactivities and high structural diversity and are
typically encoded in biosynthetic gene clusters. Traditional natural product discovery approaches
rely on UV- and bioassay-guided fractionation and are limited in terms of dereplication. Recent ad-
vances in mass spectrometry, sequencing and bioinformatics have led to large-scale accumulation of
genomic and mass spectral data that is increasingly used for signature-based or correlation-based
mass spectrometry genome mining approaches that enable rapid linking of metabolomic and ge-
nomic information to accelerate and rationalize natural product discovery. In this mini-review,
these approaches are presented, and discovery examples provided. Finally, future opportunities and
challenges for paired omics-based natural products discovery workflows are discussed.
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1. Introduction

Due to their impressive structural diversity and their wide range of bioactivities,
natural products (NP) have been, and are still extensively used by humankind as important
sources for drugs [1]. NP structures are generated by the concerted action of biosynthetic
enzymes. These are encoded in genes which are, in bacteria, usually grouped to biosyn-
thetic gene clusters (BGCs). This circumstance has facilitated bioinformatics analyses and
predictions about the number and classes of natural products that can be synthesized by a
bacterial strain [2]. This procedure is termed “genome mining”, a rapidly growing field that
has advanced NP research in the last 15 years [3,4]. Sets of closely related BGCs with similar
gene content can be grouped into gene cluster families (GCF), that encode the production
of identical or highly similar molecules. The recent advances in DNA sequencing have
led to a massive accumulation of sequence data in the databases which, in turn, fueled the
development of large-scale BGC and GCF analysis pipelines and databases such as BiG-
SCAPE [5], BiG-SLICE [6] and BiG-FAM [7] by Medema and colleagues. These frameworks
enable the systematic estimation and comparison of NP biosynthetic potential in increasing
numbers of bacterial strains.

Biosynthetic machineries usually do not only lead to one single natural product,
but may produce a suite of structurally related metabolites through relaxed substrate
specificities, causing enzymatic processing of structurally different precursors and interme-
diates. Mass spectrometry (MS)-based workflows offer opportunities to chart the metabolic
diversity that is present in a complex sample, e.g., a crude bacterial extract. The metabolic
diversity in complex NP mixtures can be regarded as a collection of “molecular families”,
a term for structurally related compounds with related MS fragmentation (MS/MS) spec-
tra [8]. As an outstanding example, the public community data repository and analysis
platform GNPS [9,10], developed by Dorrestein, Bandeira and colleagues, offers opportuni-
ties for the detailed analysis and visualization of natural product MS/MS fragmentation
data by molecular networking. The GNPS environment has also integrated several useful
annotation, classification and dereplication tools [11–17] that, if used altogether, aid in
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obtaining the maximum amount of information from an MS/MS spectrum or dataset
of interest.

One of the most important goals in natural product discovery and the basis for any
state-of-the-art biosynthetic study is the direct linkage of a metabolite to its BGC. The clas-
sical and most reliable way to establish such a link is either the heterologous expression
or the activation of a cryptic BGC, with subsequent detection and characterization of the
target compounds in the heterologous or engineered host, or the deletion of the BGC or
key biosynthetic genes thereof in the NP producer to abolish production of the natural
product of interest. However, although significant advances have been made in these
areas [18,19], these approaches are still relatively laborious and time consuming because
only a single biosynthetic pathway can be targeted in one experimental workflow, that
typically requires several, sometimes cumbersome cloning and transformation procedures.
In contrast, MS-guided genome mining techniques that have been developed, enable the
parallel establishment of multiple compound-BGC linkages and dereplication in a much
more time-effective workflow. The acquisition and in-depth analysis of paired datasets
comprising MS/MS data of culture extracts and genome sequences of their producers is
thus of promise to accelerate and improve any bacterial NP discovery program.

Concepts and successful examples of linking chemical and biosynthetic space have
lately been reviewed by Duncan and coworkers [20]. Another detailed application-oriented
review by van der Hooft, Medema and colleagues mainly focused on the key technolo-
gies that enable making these linkages [21]. This minireview particularly intends to
highlight concepts to directly link mass spectral information and BGCs by (i) signature-
based approaches (peptidogenomics and glycogenomics), as well as (ii) correlation-based
approaches (pattern-based genome mining, metabologenomics) and provides discovery
examples. Finally, latest developments and future promises and challenges in linking
biosynthetic and metabolomic data of natural products are presented and discussed.

2. Concepts and Examples for Linking Genomic and Metabolomic Data
2.1. Experiment-Guided Genome Mining: Peptidogenomics and Glycogenomics

These two MS-guided genome mining approaches were developed and pioneered by
Kersten, Dorrestein and Moore [22,23]. Both workflows are dependent on the presence
of specific signatures, i.e., mass shifts or fragmentation ions, in an MS/MS spectrum
from bacterial compound mixtures. These distinctive signatures may be linked to a BGC
predicted to encode the biosynthetic machinery to produce NPs with structural motifs to
yield these MS/MS fragments. This procedure is particularly applicable for peptides and
glycosylated molecules (Figure 1).

In peptidogenomics, the mass shifts relate to the fragmentation of peptides into their
constituents, i.e., proteinogenic or modified, non-proteinogenic amino acids, a process
that allows for automation [22,24]. A number of subsequent amino acid MS/MS mass
shifts constitutes a “sequence tag”, which is instrumental in the search for the respective
BGC in the producers’ genome (Figure 1A). For ribosomally synthesized and modified
peptide natural products (RiPP), the sequence tag is part of a small, encoded protein,
usually clustered with genes encoding posttranslationally modifying enzymes, that is
queried in the producers’ genome e.g., by six-frame translations. Nonribosomal peptides
(NRP) are synthesized by multimodular assembly line megaenzymes. Here, a detected
sequence tag relates to a BGC encoding a sequence of modules with predictable adenylation
domain specificities. In glycogenomics, diagnostic mass shifts or fragments are caused by
the fragmentation of bonds to sugars or, preferably, modified deoxysugars, both frequently
observed features of bioactive natural products [23]. The biosynthesis of deoxysugars is
typically encoded by subclusters of modifying biosynthetic genes and glycosyltransferases,
clustered with genes encoding core NP biosynthetic machineries (e.g., polyketide synthases)
and can be matched with the detected MS/MS deoxysugar fragment(s) (Figure 1B).

In a landmark study in 2011, the concept of peptidogenomics was introduced to the
NP community and systematically used to uncover and characterize a series of novel RiPPs
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from well investigated Streptomyces strains such as S. lividans, S. coelicolor and S. griseus.
Additionally, five novel analogs of the nonribosomal lipopeptide stendomycin were charac-
terized from S. hygroscopicus and connected to their BGC (Figure 1A) [22]. In a subsequent
study, Streptomyces roseosporus natural products were mapped with a combination of molec-
ular networking and peptidogenomics which led to the discovery of the stenothricin
BGC [25]. Another peptidogenomic study on S. roseosporus based on imaging MS revealed
that the potent antibiotic peptide arylomycin was of nonribosomal origin [26]. Bromoalte-
rochromides were discovered and connected to their BGC in two marine Pseudoalteromonas
bacteria from a large scale nano-DESI MS/MS dataset of Bacillus and Pseudoalteromonas
strains [8]. From the plant pathogen Ralstonia solanacearum, the bioactive lipopeptide
ralsolamycin was also identified using the peptidogenomic approach [27].

The peptidogenomic concept was automated by Pevzner, Mohimani and colleagues,
leading to the development of automated peptidogenomics tools specifically designed for
RiPPs (RiPP-Quest) [28], NRPs (NRP-Quest) [29] and both (Pep2Path) [30]. Application of
RiPP-Quest enabled the discovery of informatipeptin (Figure 1C), a new class III lan-
thipeptide from Streptomyces viridochromogenes. Recently, the development of MetaMiner,
an advancement of the RiPP-Quest tool, designed for the query of larger datasets e.g.,
from metagenomes, and its application to several datasets in the GNPS database led to the
discovery and annotation of seven previously unknown RiPPs [31].

The development of the glycogenomic approach and its proof-of-principle application
to a set of marine actinomycete crude extracts enabled discovery and MS-guided isola-
tion of arenimycin B (Figure 1D), a type II polyketide comprising the two characteristic
deoxysugar moieties forosamine and O-methyl rhamnose from the marine actinomycete
Salinispora arenicola CNB527 [23]. The derivative arenimycin A, containing only O-methyl
rhamnose, had previously been isolated from another S. arenicola strain [32] by classical, UV-
guided purification. However, analysis of the biosynthetic potential of CNB527 suggested
that a candidate BGC for arenimycin biosynthetic machinery could be capable of adding
another sugar moiety to the molecule. After its characterization, it was thus concluded
that arenimycin B is actually the end product of the biosynthetic pathway, and was notably
found to be more bioactive than the previously isolated arenimycin A, showing a twofold
or greater increase in activity against clinically relevant, multidrug-resistant strains of
Staphylococcus aureus [23]. Another glycogenomic example with marine origin is the discov-
ery of five rosamicin derivatives from the marine actinomycete Salinispora pacifica CNS237
(Figure 1B) [33]. This group of antibiotically active, glycosylated polyketides, among them
three unprecedented analogs, was discovered by their characteristic desosamine fragment
from a large MS/MS dataset that was used to prioritize marine actinomycete strains by
molecular networking [34]. After their dereplication and subsequent structure elucidation,
it was later revealed that these compounds are actually the end product of their polyketide
synthase (PKS) assembly line pathway that is, however, also responsible for the production
of salinipyrone and pacificanone, linear polyketides that had previously been isolated by
a classical approach [35]. Unexpectedly, both appeared to be shunt products of the PKS,
as proven by mutagenesis experiments in the rosamicin assembly line [33]. Analogously to
peptidogenomics, glycogenomics also holds potential for automation, although this has
not yet been implemented.

2.2. Correlation-Based Approaches on Larger Paired Datasets: Pattern-Based Genome
Mining, Metabologenomics

Another possibility to link genomic with metabolomic information is the application of
correlation-based approaches. Here metabolite patterns, obtained from larger MS datasets
of sequenced bacteria, are compared and correlated with their BGC or GCF patterns,
derived from comparative analyses of a set of genomes (Figure 2). Notably, these corre-
lations are independent of the chemical class of the detected metabolites. Talented NP
producers such as actinomycetes harbor a multitude of BGCs, whereas taxonomically
closely related strains characteristically possess overlapping patterns of encoded BGCs.
This means that homologous BGCs are frequently encoded in more than one or several
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related strains, while other BGCs are unique for particular strains. An illustrative model
for this phenomenon is the marine actinomycete genus Salinispora [36].

Figure 1. Concepts and discovery examples for experiment-guided genome mining. (A) Peptidogenomics: Streptomyces
hygroscopicus MS/MS data yielded a sequence tag with eight amino acids, two of them dehydrated threonines (Dhb). The se-
quence tag matched with a sequence of adenylation domain predictions of an orphan nonribosomal peptide synthetase BGC,
facilitating the targeted isolation and characterization of stendomycin lipopeptides [22]. The second threonine dehydration
appeared only during MS/MS fragmentation as elimination product of the ester bond. (B) Glycogenomics: Matching of
MS/MS spectra of Salinispora pacifica CNS237 with a type I polyketide synthase BGC encoding deoxysugar biosynthesis
genes revealed several rosamicin derivatives and enabled their targeted isolation and further characterization. The previ-
ously isolated linear polyketides salinipyrone and pacificanone appear to be shunt products of the rosamicin PKS, revealed
by mutagenesis experiments. Building blocks synthesized by the same module(s) are color-coded accordingly [33]. (C)
Further natural products from different classes discovered by the peptidogenomic [28] and (D) glycogenomic approach [23].
For more details regarding these concepts, please refer to references [22,23].

Salinispora species and strains are very closely related on 16S-RNA level, but can be
discriminated by the presence of species- or strain-specific patterns of encoded NP BGCs
(compare Figure 2A, left). In a remarkable genome mining study led by Ziemert and Jensen,
75 Salinispora strains were analyzed and compared regarding their PKS and NRPS pathway
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variety and evolution [37]. This comprehensive analysis was later extended to 119 strains
and to other pathway types such as terpenes and RiPPs [38].

In a pioneering study from the Jensen and Moore labs, the metabolomes of 35 Salinis-
pora strains were visualized with GNPS molecular networking and then compared with the
NRPS/PKS BGC patterns of the respective strains to establish compound-BGC links [39].
These correlative analyses enabled the linkage of an orphan BGC to the polyketide areni-
colide and the targeted isolation, structure elucidation and biological characterization of
the cytotoxic, echinomycin-like nonribosomal depsipeptide retimycin A, that was encoded
and produced by only one strain in the collection, S. arenicola CNT005 (Figure 2A).

An analogous study was performed in the bacterial genera Photorhabdus and Xenorhab-
dus, both associated with insects and known for prolific natural product production, by the
Bode group [40]. Here, a metabolomic network from HPLC-MS/MS data of 30 strains was
created, annotated and compared with BGC patterns in the respective strains (Figure 2B).
This study revealed the robust expression of known metabolites under laboratory con-
ditions in a number of strains, but also led to the detection of previously unidentified
metabolite classes in these bacteria, such as the novel xefoampeptides and tilivallin and
connection to their BGCs. Furthermore, novel depsipeptides named fatflabets and xene-
protides were discovered from analysis of the molecular network, and their structures
elucidated. However, a complete BGC for these novel compound families could not be
assigned with certainty.

A similar concept to bridge metabolomic and genomic information, termed metabologe-
nomics, was developed in the Metcalf and Kelleher labs (Figure 2C). This approach relies
on the establishment of correlations between MS spectra and GCFs in a huge dataset of
830 sequenced actinomycete bacteria, of which 178 were subjected to detailed HPLC-MS
metabolic profiling in different culture media [41]. Here, a correlation score between GCF
and MS1 data was generated and then applied by searching for exact masses of predicted
metabolites in the dataset. Subsequent mining of this extensive, paired dataset for detected
metabolites encoded by biochemically interesting BGCs enabled the discovery and char-
acterization of several natural products such as tambromycin [42], rimosamides [43] and
tyrobetaines [44] and the detailed investigation of their biosynthetic pathways.

Zdouc, Sosio and colleagues recently performed a detailed metabolomic investigation
of the actinobacterial genus Planomonospora [45]. Four of the 72 investigated strains were
also genome-sequenced, which allowed for a paired omics analysis leading to the annota-
tion of a BGC for the thiopeptide siomycin and congeners. Furthermore, two novel biaryl-
linked tripeptides were isolated after network analysis and their structures elucidated.
They represent the first members of a widespread novel class of small RiPPs, encoded by
the smallest gene ever reported, as revealed by peptidogenomics and heterologous ex-
pression [46]. Metabologenomics was also used by the Duncan lab for the evaluation of a
dataset of 25 polar actinomycetes, published in this Special Issue [47]. Their metabolomes
were analyzed and correlated to genome data by using a newly developed tool, NP-linker,
designed for the automated establishment of NP-BGC correlations [48].

In a recent study on the biosynthetic and metabolic diversity in the actinomycete genus
Nocardia, metabolite-BGC correlations were analyzed based on a double-network approach
by the Ziemert and Kaysser groups [49]: A metabolomic network was constructed with
GNPS molecular networking [9], as well as a BGC network of all selected strains created
via BiG-SCAPE [5]. Then, both networks were analyzed and compared for correlations of
molecular families and gene cluster families over the same number of strains. This strategy
was validated by the strain-specific discovery and annotation of a battery of unprecedented
nocobactin-like siderophores.
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Figure 2. Discovery examples for correlation-based approaches using paired datasets. (A) Correlation of Salinispora strain
BGC patterns with a molecular network of 35 strains led to the identification of a candidate peptide, encoded and produced
by only one strain in the dataset. The peptide was matched to its NRPS BGC with additional help of the peptidogenomic
approach. The structure of the elucidated metabolite retimycin A is depicted. Building blocks are color-coded corresponding
to responsible biosynthetic genes [39]. Taken from reference 39 and rearranged with permission of Elsevier. (B) Xenorhabdus
and Photorhabdus strains were analyzed for BGC patterns and production of encoded metabolites (left). Subsequent
molecular network analysis led to the identification and discovery of several NRPS-derived cyclic depsipeptides (right) [40].
(C) Metabologenomic workflow of a 178 strain actinomycetes dataset [41–44]. An example for the applied scoring metric
can be found in reference 21.
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The generation of standardized community repositories such as MIBiG for char-
acterized NP BGCs [50], and the GNPS database for MS/MS data of NP datasets and
compounds [9], has improved and facilitated many natural products workflows. However,
genome-metabolome links have not been systematically documented and are cumbersome
to search for. To overcome this obstacle and to standardize NP-BGC links that can be reused
by the community for further projects, recently the paired omics database has been devel-
oped and launched [51]. This platform gathers a large number of paired datasets generated
by the NP community including links to MS/MS datasets on GNPS and sequence data
of characterized BGCs on MIBiG and standardized metabolite-BGC links were generated.
This standardized and open community database may be very useful for the application
and automation of future correlative network-based approaches and prioritization of novel
metabolites and BGCs that are worth investigating.

An alternative pipeline for bioinformatic analyses of BGCs and compound-cluster
matching was developed by the Magarvey lab [52]: Here, a prediction engine (PRISM)
identifies and predicts BGC in microbial genomes. A retrobiosynthetic algorithm (GRAPE)
performs retrobiosynthetic analyses of known natural products and suggests a likely BGC
for these metabolites. A matching algorithm (GARLIC) then compares PRISM and GRAPE
outputs and gives matching scores. By that procedure, BGCs with unknown products
can be identified with high confidence. Additionally, a “genomes to natural products”
(GNP) algorithm matches LC-MS/MS data to BGCs by structure prediction, substructure
analysis and in silico fragmentation prediction generating confidence scores of the NP-BGC
matches [53]. Notably, this pipeline is restricted to modular PKS and NRPS pathways.

To conclude, in the last decade, several novel MS-guided genome mining workflows
and global, standardized mass spectral and BGC databases have been developed and led
to a significant number of natural product discoveries. For reliable NP-BGC linkages, these
paired omics workflows rely on high quality MS/MS and sequence data and bioinformatic,
mass spectral and biosynthetic knowledge. To further expand a paired omics NP min-
ing workflow to other natural product classes, the integrated use of recently developed
substructure annotation tools [11], classification-based methods [54] and fragmentation
trees [55] together with the use of further improved automated linking approaches [48]
are of great promise. Structure elucidation remains a major bottleneck in NP discovery
pipelines, and is often limited by the low yields of the NP of interest. However, the develop-
ment of neural network algorithms for NMR analysis [56] and novel structure elucidation
methods such as MicroED [57] may, integrated into the described workflows, further
brighten the future for natural product research and enable many exciting discoveries.

Funding: The author acknowledges a postdoctoral fellowship from the Deutsche Forschungsgemein-
schaft (DFG), grant number CR464-1.

Conflicts of Interest: The author declares no conflict of interest.
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