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Clinical Report
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Cleidocranial dysplasia (CCD) is an autosomal dominant
skeletal dysplasia associated with cranial, clavicular, and
dental anomalies. It is caused by mutations in the RUNX2
gene, which encodes an osteoblast-specific transcription
factor and maps to chromosome 6p21. We report clinical and
molecular cytogenetic studies in a patient with clinical
features of CCD including wormian bones, delayed fontanel
closure, hypoplastic clavicles and pubic rami, and super-
numerary dentition. Additional abnormalities of bone
growth and connective tissue, including easy bruisability,
scarring, bleeding, joint hypermobility, and developmental
delay were also observed. Molecular cytogenetic studies
identified a de novo apparently balanced three-way translo-
cation 46,XY,t(4;6;21)(p16;p21.1;q21). Further mapping

revealed the breakpoint on 6p21 to be �50 kb upstream of
exon 1 of the RUNX2 gene, with RUNX2 being intact on the
derivative chromosome 6. We hypothesize that the pro-
band’s CCD has arisen from disruption of the developmen-
tally regulated gene RUNX2 at the 6p21 breakpoint, due to
a position effect mutation which may have altered the
expression of the gene. Further studies might unravel a new
regulatory element for RUNX2. � 2008 Wiley-Liss, Inc.
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INTRODUCTION

Cleidocranial dysplasia (CCD: OMIM 119600) is
an autosomal dominant skeletal dysplasia affecting
bones derived from endochondral and intramem-
branous ossification. The diagnosis of CCD is based
on clinical and radiological findings [Mendoza-
Londono and Lee, 2006]. Hallmark features of CCD
include large open fontanels with delayed or absent
closure, midface hypoplasia, abnormal dentition
including supernumerary teeth, clavicular hypopla-
sia, and hand abnormalities such as brachydactyly
[Taybi and Lachman, 1996]. Intellectual development

is usually normal in patients with CCD [Cooper et al.,
2001]
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ossification [Zheng et al., 2005]. Sixty to seventy
percent of cases of CCD are caused by mutations
in the gene encoding transcription factor RUNX2
(runt-related transcription factor 2) located on
chromosome 6p21 [Lee et al., 1997; Mundlos et al.,
1997]. The mutations include missense, deletion,
splice, insertion, and nonsense mutations [Zhou
et al., 1999, Yoshida et al., 2002]. Microdeletions of
the gene have also been reported [Gelb et al., 1995,
Mundlos et al., 1995, Izumi et al., 2006]. RUNX2
is a transcription factor essential for osteoblast
differentiation and chondrocyte maturation during
endochondral ossification [Zheng et al., 2005].
Heterozygote RUNX2 mice display abnormalities
similar to individuals with CCD [Shapiro, 1999]. The
expression of RUNX2 during development is regu-
lated by at least two separate promoters. Additional
enhancer elements upstream of the gene also modify
its expression [Stock and Otto, 2005].

We present a patient with skeletal findings
consistent with CCD and additional atypical findings
including learning disability, developmental delay,
and features suggestive of connective tissue dis-
orders including easy bruising, joint laxity, and
dislocations. We identified a complex translocation
involving three chromosomes and carried out further
molecular investigations to determine the integrity of
the RUNX2 gene on 6p21 (region involved in the
translocation), which has been implicated in the
causation of CCD.

CLINICAL REPORT

A presently 17-year-old Caucasian male was
recognized at 3 years of age to have a complex
chromosome translocation involving chromosomes
4p, 6p, and 21q, while being evaluated for develop-
mental delay and minor dysmorphisms including a
large head, short stature, hypertelorism, and super-
numerary dentition. No specific syndromic diagnosis
was made. Nearly a decade later, he presented with
severe joint pain, bleeding tendencies, and delayed
puberty, and a clinical and cytogenetic re-evaluation
was done.

In the interval he hadpolydontia requiring removal
of supernumerary teeth, umbilical hernia repair,
normal CT of the head at age 11 years, obstructive
sleep apnea syndrome requiring tonsillectomy and
adenoidectomy, and septoplasty (open reduction
of nasal fracture with repair of septum). Due to
recurrent epistaxis and left nasal polyps he had
removal of the polyps, which showed histopatholo-
gical features of developing angiofibromas. In
addition to the large cranium, abnormal dentition,
short stature, scoliosis, joint laxity, and recurrent
respiratory infections, all features of CCD, he also
had learning disability which is not a feature typical
of CCD.

Abnormalities of bone growth and connective
tissue evolved over time. At 14 years of age (Fig. 1),
he complained of easy bruisability, scarring, bleed-
ing, joint pain, increased shoulder motion, and
occasional shortness of breath during heavy exer-
cise. Pubertal development was delayed. Height,
weight, and head circumference were at the 25th,
50th, and 80th centiles, respectively. He had soft skin
with multiple bruises. His face was asymmetric with
leftward deviation of the nose. There was kyphosis
with a slight rightward deviation. He had pes planus
along with hypoplastic fourth and fifth toenails,
bilaterally. He could actively dislocate his thumb,
knees, and hip. He had bilateral contractures at
the elbows, and two cafe-au-lait macules. Endocrine
studies showed normal gonadotropin levels. At
age 16 years, height was at the 20th centile, weight
was at the 80th centile, and occipital–frontal
circumference was at the 98th centile. Pubertal
development was Tanner III for male pubic hair.
Bilaterally there was decreased supination and
extension of the elbows and shoulders. The clavicles
are diminutive allowing excessive adduction of the
shoulders.

Skeletal survey at age 14 years (Fig. 2) showed
features consistent with CCD, including wormian
bones, short clavicles, posterior wedging of vertebral
bodies in the thoracic and lumbar spine, hypoplastic
pubic bones and ischia, coxa valga, and long
metacarpals and phalanges with supernumerary

FIG. 1. Clinical findings at age 14 years. [Color figure can be viewed in the
online issue, which is available at www.interscience.wiley.com.]
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pseudoepiphyseal centers at the bases of the meta-
carpals one, two, and five.

RESULTS

Cytogenetic analysis and fluorescence in situ
hybridization (FISH) with selected probes identified
an abnormal male karyotype with an apparently
balanced translocation 46,XY,t(4;6;21)(p16;p21.1;q21)
(Fig. 3). Both parents had normal karyotypes. FISH
analysis was performed on metaphase cells with a
combination of whole chromosome painting probe
6 and a Wolf–Hirschhorn syndrome (WHS) locus-
specific probe on chromosome 4p16.3. Locus-
specific probes for chromosome 21 (LSI21, 21q22)
were also used. A locus-specific probe, AML1, a
subtelomeric probe of 21q, and whole chromosomal
paint probes of chromosomes 4 and 21 were also
used on the father’s peripheral blood sample. All
the probes were purchased from a commercial
source (Vysis, Downers Grove, IL) and used accord-
ing to the manufacturer’s protocols with minor
modifications. BAC, PAC, and fosmid clones spann-
ing the 6p21 region were selected from the UCSC
genome database (http://genome.ucsc.edu) and
obtained from the BACPAC Resource Center (http://
www.chori.org/bacpac).

Given the facts that the patient had a CCD
phenotype and that the translocation involved the
genomic location of RUNX2, we performed FISH
analysis with three probes spanning the RUNX2
locus. We used clones RP1-244F24 (AL096865),

RP11-342L7 (AL358135), and RP1-166H4 (AL161907),
which cover the promoter and entire coding region
of the gene (Fig. 4a). Probes RP11-342L7 and RP1-
166H4 showed signals only on the normal and
derivative chromosome 6, and probe RP1-244F24
showed signals on the normal and derivative
chromosome 6 as well as on chromosome 21. In
order to refine the breakpoint on the derivative
chromosome 6, we performed FISH using over-
lapping fosmids G248P80212A10, G248P86676H4,
G248P8418A1, and G248P86565D3 located up-
stream of the RUNX2 gene (Fig. 4a). Fosmid clones
G248P86676H4, G248P8418A1, and G248P86565D3
located immediately upstream of the RUNX2 gene
produced hybridization signal on the normal and
derivative chromosome 6 only, suggesting that the
entire coding sequence of RUNX2 including its
promoter remained intact on the der(6) chromosome
and was not translocated (Fig. 4b). Signals from
fosmid G248P80212A10 were seen on the normal
chromosome 6 and both derivative chromosomes
6 and 21 (breakpoint clone). This result maps the
breakpoint on chromosome 6p21 to a region
approximately 50 kb upstream of the RUNX2 gene
based on the genetic mapping position of
G248P80212A10 and RUNX2 on the UCSC genome
website.

To exclude the possibility of a de novo mutation
in the RUNX2 gene, we sequenced DNA fragments
amplified by PCR. The RUNX2 exons and pro-
moter regions were amplified using intron- and
exon-specific primers as described previously [Lee

FIG. 2. A: Wormian bones. B: Short clavicles. C: Dislocated radial head. D: Supernumerary-pseudoepiphyseal centers at the bases of the metacarpals 1, 2, and 5.
E: Hypoplastic pubic bones and mild hypoplasia of the ischia.
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et al. 1997, Napierala et al. 2005]. Results were
normal.

To determine if small deletions or duplication
around translocation breakpoints may have contrib-
uted to the atypical findings seen in this patient, we
screened for cryptic copy number variants by
oligonucleotide-based array comparative genome
hybridization (aCGH). aCGH was performed using a
Human Genome CGH 244A Oligo Microarray Kit
(Agilent Technologies, Inc., Santa Clara, CA) accord-
ing to the manufacturer’s protocol version 4.0. Arrays
were scanned using an Agilent DNA Microarray
Scanner and data were extracted using Feature
Extraction Software 9.1 and analyzed using CGHA-
nalytics 3.4.27 Software (Agilent Technologies, Inc.,
Santa Clara, CA). DNA from a healthy male with no
personal or family history of CCD served as a control.
A duplication of <77 kb was detected distal to the
BAK1 gene on chromosome 6p21.3. This region is
devoid of any known genes. All other copy number
changes identified in the regions around 4p16, 6p21,
and 21q21 were within copy number variant regions
previously described in the Database of Variants
hosted by the Centre for Applied Genomics (http://
projects.tcag.ca/variation/) or represented changes

in the HLA gene clusters on chromosome 6. No
obvious pathologic duplications or deletions were
found within the remainder of the genome.

DISCUSSION

CCD is a well-defined clinical phenotype arising
from deregulation of intramembranous and endo-
chondral ossification. The majority of cases are
due to loss of function mutations in the RUNX2 gene
that encodes for a transcription factor essential for
osteoblast differentiation and chondrocyte matura-
tion. Microdeletions and translocations involving
RUNX2 explain an additional fraction of the patients.
For proper skeletal development and homeostasis,
the expression of RUNX2 is tightly regulated during
development in a strict temporal and spatial fashion.
This regulation is achieved through regulatory
regions including two promoters [Napierala et al.,
2005]. The mouse RUNX2 gene also contains two
separate promoters [Xiao et al., 1998] and, in osteo-
blasts, RUNX2 expression is driven by the distal
bone-related promoter. Napierala et al. [2005] report-
ed two patientswith promoter sequence variants and
hypothesized that promoter mutations affecting

FIG. 3. A: GTG-banding karyotype of lymphocytes of the patient. B: Idiogram of derivative chromosomes 4, 6, and 21, with their corresponding translocated
segments. C: DNA probes corresponding to chromosome 4p (red) and whole chromosome painting probe for chromosome 21 (green) and hybridized to metaphase
chromosomes and revealed that part of chromosome 21q (green) moved onto chromosome 4p: der(4)t(4p;21q). D: The hybridization of a combination of DNA probes
corresponding to WHS (red) on chromosome 4p and whole chromosome painting probe on chromosome 6p (green) revealed that WHS on chromosome 4p moved
onto chromosome6p: der(6)t(4p;6p). E: Thehybridization ofwhole chromosomepaintingprobeof chromosome 6 (red) and chromosome21 (green) revealed that part
of chromosome 6p moved onto chromosome 21q: der(21)t(6p;21q). [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

456 PURANDARE ET AL.

American Journal of Medical Genetics Part A: DOI 10.1002/ajmg.a



binding of transcription factors critical for RUNX2
expression might change the transcriptional activity
of the gene.

Although the main regulation of RUNX2 expression
is driven by two promoters, the promoter sequence
alone does not seem to be sufficient for adequate
control of the expression. Additional cis-acting reg-
ulatory sequences located 200 and 400 kb upstream of
exon 1 have been identified that act as enhancers of
the RUNX2 gene [Stock and Otto, 2005]. The transloca-
tion of the RUNX2 gene on 6p to chromosome 21 in
our patient may have disrupted a 50-control element,
such as an enhancer, resulting in haploinsufficiency
for RUNX2 and CCD phenotype. Given that in our
patient thebreakpointwas50kbupstreamofexon1of
the RUNX2 gene, this case suggests the location of a
novel RUNX2 regulatory element in this region.

A patient with a de novo reciprocal translocation
t(6;7)(p21.1;q36) with CCD and holoprosencephaly
has been reported [Fernandez et al., 2005]. The
authors proposed that the phenotype was due to two
position effect mutations, one at each breakpoint,
altering the expression of the SHH (holoprosence-
phaly) and RUNX2 (CCD) genes. CCD-like pheno-
types have also been associated with de novo
cytogenetically balanced translocations: t(2;6)(q36;
q16) [Winer et al., 2003], and t(6;18)(p12;q24)
[Narahara et al., 1995]. A male patient with a
pericentric inversion of chromosome 6 and classic

CCD with mild to moderate mental retardation,
hearing deficits, and unusual facial appearance has
also been reported [Nienhaus et al., 1993].

Atypical features seen in this patient cannot be
explained by dysregulation of RUNX2 expression.
The patient’s developmental delay, easy bruising,
and features of connective tissue disorder are not
characteristic of CCD. We hypothesize that disrup-
tion of additional genes on the other two chromo-
somes involved in the translocations (4 and 21)
contribute to this patient’s complex phenotype. The
possibility of microdeletions detectable by array
CGH has been excluded; however, the breakpoints
could have disrupted the coding sequence of
another gene, or resulted in positional effects
affecting other genes. Chromosome region 4p16
has the critical genes that, when deleted, result
in WHS (OMIM 194190), characterized by failure
to thrive, mental retardation, distinct facial features,
and seizures. Although our patient does not have
characteristics suggestive of WHS, it is possible that a
gene involved in cognitive development could have
been affected. A gene involved in neural adhesion,
NCAM2 has been mapped to chromosome region
21q21.

Position effect mutations may result in disease
by repositioning genetic material and thereby lead-
ing to altered gene expression in the absence of
an intragenic change [Fernandez et al., 2005]. A

FIG. 4. A: Schematic representation of the RUNX2 genomic region, and relative location of theprobes used for FISHmappingof the translocationbreakpoint on6p21.
These include clones RP1-244F24 (AL096865), RP11-342L7 (AL358135), and RP1-166H4 (AL161907), and fosmids G248P80212A10, G248P86676H4, G248P8418A1, and
G248P86565D3 located upstream of the RUNX2 gene. B: FISH with probe RP1-244F24 (red) showed signals on the normal and the derivative chromosome 6 and the
derivative chromosome 21. A telomeric probe for 6p (green) was used in B, C, and D. FISH was performed with fosmids located upstream of RUNX2: (C)Fosmid Probe
G248P86676H4 (red) was only seen on the normal and derivative chromosome 6 (not translocated); (D) Fosmid G248P80212A10 (red) showed a split signal, being
present on the normal chromosome 6 and both derivative chromosomes 6 and 21. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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chromosome rearrangement may separate a gene
from distal regulatory elements or exert its effects on
chromatin structure. We propose that our patient’s
CCD phenotype is caused by disruption of a regu-
latory element for the RUNX2 gene at the 6p21
breakpoint causing altered expression of the gene
resulting inCCD.Further studiesmight unravel a new
regulatory element for RUNX2.
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