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ABSTRACT
Objectives: Neglecting the presence of unobserved
heterogeneity in survival analysis models has been
showed to potentially lead to underestimating the effect
of the covariates included in the analysis. This study
aimed to investigate the role of unobserved
heterogeneity of frailty on the estimation of mortality
differentials from age 50 on by education level.
Design: Longitudinal mortality follow-up of the
census-based Turin population linked with the city
registry office.
Setting: Italian North-Western city of Turin,
observation window 1971–2007.
Population: 391 170 men and 456 216 women
followed from age 50.
Primary outcome measures: Mortality rate ratios
obtained from survival analysis regression. Models
were estimated with and without the component of
unobserved heterogeneity of frailty and controlling for
mortality improvement over time from both cohort and
period perspectives.
Results: In the majority of cases, the models without
frailty estimated a smaller educational gradient than the
models with frailty.
Conclusions: The results draw the attention of the
potential underestimation of the mortality inequalities
by socioeconomic levels in survival analysis models
when not controlling for unobserved heterogeneity of
frailty.

INTRODUCTION
An extensive body of literature shows signifi-
cant differential mortality by socioeconomic
condition.1–3 The elderly show decreasing rela-
tive social inequalities in general mortality with
increasing age.4–8 The age-as-leveller hypoth-
esis attributes this to factors that contribute to
the levelling-off of differences at old ages: gov-
ernmental support to the elderly,9–11 disen-
gagement from systems of social stratification12

and general vulnerability.13 14 However, this
phenomenon could also be an artefact of

selection due to the unobserved characteristics
of the individuals: selective effects of earlier
higher mortality, experienced by the disadvan-
taged group, would leave more robust indivi-
duals at old ages, causing the convergence
with the risk of the lower mortality group that
is subject to weaker selection.15–18 Neglecting
these hidden differences in survival chances
(called unobserved frailty) has been shown to
lead to biased estimates of the mortality
hazard and of the effect of the covariates on
the survival probability.19–25

ARTICLE SUMMARY

Article focus
▪ Neglecting the presence of unobserved hetero-

geneity in survival analysis models has been
shown to potentially lead to underestimating the
effect of the covariates included in the analysis.

▪ Although frailty models have been widely devel-
oped to account for unobserved heterogeneity, in
differential mortality analyses this source of vari-
ation is seldom controlled for. This study has
applied these models to a longitudinal mortality
analysis by education level.

Key messages
▪ Mortality differentials by education (or by any

other variable used as a proxy of socioeconomic
status) could be larger than those estimated with
standard survival analysis approaches that do
not control for unobserved heterogeneity.

Strengths and limitations of this study
▪ The strength of this study lies in the population-

based longitudinal data. The long observational
time (36 years) for more than 847 000 indivi-
duals gives a solid base for statistical power and
detection of trends.

▪ The limitation consists in the lack of individual
information on lifestyle factors and health events,
which could certainly help to better model the
concept of unobserved individual frailty by unco-
vering a part of it.
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In longitudinal analyses on differential mortality, it is
important to control for hidden frailty because not con-
trolling for it, in models of survival analysis, could lead
to biased estimates of the effect of social position on
mortality risk. The statistical literature shows that the
bias is towards zero.24–26 This would lead to an under-
estimation of the relative differences in mortality risks by
socioeconomic group. Frailty models have been devel-
oped to control for unobserved frailty and to evaluate its
impact on the observed mortality dynamics.27 For more
detailed explanations of the frailty models and how they
relate to differential mortality analyses, please see online
supplementary appendix A.
This study investigated the presence of selection pro-

cesses in the mortality patterns of the Turin population
(North-West Italy) from age 50 on. Adopting a longitu-
dinal perspective, this study aimed to investigate if the
estimates of the mortality differentials are affected by
the introduction of the unobserved heterogeneity com-
ponent into the models.

DATA AND METHODS
We used high quality census-linked data from the Turin
Longitudinal Study (TLS), which includes 1971, 1981,
1991 and 2001 census data for the Turin population.
TLS records the individual census sociodemographic
information and, through record linkage with the local
population registry and other local-health information
systems, collects information on vital status, cause of
death and other health indicators.28 29

For this study, the individuals registered in Turin
during at least one of the four censuses were selected.
Data on their migration and vital status were followed up
until the end of July 2007. The result is an observation
window of 36 years (from 24 October 1971, official date
of the census, to the end of July 2007, end of the
linkage) during which the individuals were followed up
until death, emigration from the city or end of the
observation period. The follow-up started at age 50. The
study population contains 391 170 men and 456 216
women.
Study information includes an individual’s date of

birth, date of exit from the study, cause of exit (death or
emigration), sex, macroregion of birth and education
level.
Consistent with the literature30–33 education level was

used as an indicator of social position.
The study also controlled for the individual macro

region of birth, as Turin is characterised by a history of
immigration from other regions of the country.34

To facilitate comparison over a long follow-up and dif-
ferent cohorts, we created three broad educational
groups: high (high school diploma or higher), medium
( junior high school) and low (primary school or lower).
We estimated parametric survival models stratified by

gender and as a function of macroregion of birth and edu-
cation level, with and without a parameter for the

unobserved heterogeneity component. The choice of
using parametric models, rather than semi parametric or
non parametric ones, is justified by the wide demographic
literature showing that human adult mortality can be
accurately described by a Gompertz function35 or by some
Gompertz-like variants, like Makeham. To identify the best
functional form for the baseline, we compared the models
with Akaike Information Criterion (AIC).36

The data are both right censored (due to emigration
or end of follow-up) and left truncated (due to the dif-
ferent age at entry in the study of individuals).
The study includes many cohorts, each passing

through 36 years of observation at different ages.
However, from 1971 to 2007, a significant mortality
improvement occurred and younger cohorts experi-
enced lower age-specific mortality than older cohorts.
Time is a complex variable including three dimen-

sions: age, period and cohort. Controlling adequately
for the effect of time would require simultaneous assess-
ment of the three components, but such models have
been not identifiable for a long time because of the
linear dependence between the three dimensions.37–39

Recently, it has been shown that, through the introduc-
tion of the generalised linear mixed models framework,
new estimation methods and model specifications can
be used to tackle the identification problem.40 However,
this goes beyond the scope of our study.
We adopted two approaches for the control of time,

corresponding to an age-cohort approach and an age-
period approach, being aware that they represent two
different dimensions of time.
First, we regarded the improvement as a cohort phe-

nomenon, including a covariate for the cohort to which
the individuals belong. In this setting, controlling for
unobserved heterogeneity was implemented with uni-
variate frailty models, which estimate the baseline para-
meters, the coefficients of the covariates and the
variance of frailty (assumed to follow a γ distribution
with mean 1 and variance σ2 to be estimated).
We then considered the improvement as a period phe-

nomenon and split the time into several calendar period
covariates, as well as the survival spell of the individuals,
according to which period they were passing through.
This implied organising the data into clusters, where
each cluster represents one individual’s survival spells.
In this setting, to control for unobserved heterogeneity
shared frailty models are needed, where the spells in
each cluster pertain to the same individual and share
the same hidden frailty. For computational reasons, the
estimation of these highly complex models required the
use of random subsampling.41–43 We repeated the esti-
mation 250 times on a 1% sample of the dataset, ran-
domly drawn without replacement and stratified by the
major variables in analysis. The aim was to approximate
the parameters’ estimates based on the empirical distri-
bution of the repeated estimates.
In the model without frailty, it was possible to include

a finer calendar period division, 12-period variables of
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3 years each (1971–1973, 1974–1976…), while in the
model with frailty, for computational reasons, the
number of variables was reduced to two broader
periods: 1971–1990 and 1991–2007.
Computations were realised with the software R.44

Formal details are in online supplementary appendix A.

RESULTS
Figure 1 shows that the log-death rates by education
level and gender, for the cohort aged 50–59 in 1971,
converge at old ages. Other cohorts showed very similar
patterns.
A preliminary analysis found that the reduction of the

gradient over age is statistically significant and more pro-
nounced among women (results are reported in online
supplementary appendix B, table B1).

Frailty modelling
Table 1 shows AIC of the survival models, fitted to the
all population mortality, with Gompertz and Makeham
baselines. It also shows the results of the fit when unob-
served frailty was controlled for. The comparison reveals
that the Gompertz baseline was a better fit for male

data, while the Makeham baseline was better for female
data. In both cases, the models controlling for unob-
served heterogeneity performed a better fit (table 1).
We then estimated the mortality differentials, using a

cohort and a period approach, to control for mortality
improvement over time. We included in the analysis the
variables for education level (high, medium and low)
and region of birth (North-West, North-East, Center,
South and Abroad).
Tables 2 and 3 report the results of the models esti-

mated with and without the unobserved heterogeneity
component: the parameters of the baseline hazard (a
and b of the Gompertz function for men and a, b and c
of the Makeham function for women), the variance of
frailty in the population and the rate ratios of the mor-
tality differentials by education level and region of birth.
Figure 2 compares the results for the educational gradi-
ent obtained by the models with and without frailty.

Educational gradient
In the model with the age-cohort improvement approach,
the introduction of the frailty term made the male differ-
ences widen significantly, consistent with the statistical lit-
erature. The rate ratios with respect to high education

Figure 1 Death rates on logarithmic scale for the birth cohort aged 50–59 at the beginning of the follow-up (1971) by three

education levels: high, medium and low.

Table 1 Model selection for the baseline hazard and comparison of the model with best baseline hazard and unobserved

heterogeneity of frailty component

Model with different baseline

hazards Model with best baseline hazard and frailty

Gompertz Makeham Gamma-Gompertz Gamma-Makeham

aebx aebx þ c
aebx

1þ s2ða=bÞ(ebx � 1)

aebx þ c

1þ s2ða=bÞ(ebx � 1)þ cx

AIC women 1 327 474 1 326 878 – 1 326 695

AIC men 1 303 693 1 303 695 1 303 655 –

Comparison is based on AIC.
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Table 2 Results of the regression models with cohort covariates

Men Women

Model without frailty Model with frailty Model without frailty Model with frailty

Estimate 95% CI Estimate 95% CI Estimate 95% CI Estimate 95% CI

a 5.241×10–5 5.237×10–5 to

5.245×10–5
4.495×10–5 4.488×10–5 to

4.501×10–5
3.767×10–6 3.755×10–6 to 3.779×10–6 1.605×10–6 1.588×10–6 to 1.623×10–6

b 0.081 0.080 to 0.082 0.083 0.082 to 0.084 0.106 0.105 to 0.107 0.117 0.115 to 0.119

c – – – – 0.001 0.001 to 0.001 0.001 0.001 to 0.001

σ2 – – 0.035 0.027 to 0.045 – – 0.096 0.082 to 0.111

Cohort 0.016 0.015 to 0.016 0.016 0.015 to 0.016 0.016 0.015 to 0.016 0.017 0.016 to 0.017

Education level

High 1 – 1 – 1 – 1 –

Medium 1.166 1.147 to 1.186 1.221 1.200 to 1.243 1.141 1.116 to 1.166 1.111 1.086 to 1.137

Low 1.239 1.221 to 1.257 1.302 1.283 to 1.322 1.246 1.222 to 1.270 1.213 1.188 to 1.238

Region of birth

North-West 1 – 1 – 1 – 1 –

North-East 1.053 1.036 to 1.070 1.060 1.042 to 1.077 0.989 0.973 to 1.004 0.974 0.958 to 0.991

Centre 1.011 0.984 to 1.038 0.996 0.969 to 1.024 0.939 0.913 to 0.966 0.968 0.939 to 0.998

South 1.000 0.988 to 1.012 0.950 0.938 to 0.962 0.932 0.919 to 0.945 0.987 0.973 to 1.002

Abroad 1.031 1.006 to 1.057 0.998 0.974 to 1.024 1.071 1.047 to 1.096 0.993 0.968 to 1.018

logLk −651 219 −651 082 −663 238 −663 098

AIC 1 302 456 1 302 184 1 326 496 1 326 218

Baseline parameters (Gompertz for men and Makeham for women) and rate ratios of the differentials by education and region of birth.

4
ZarulliV,M

arinacciC,Costa
G,etal.BM

J
Open

2013;3:e002841.doi:10.1136/bm
jopen-2013-002841

F
ra

ilty
m
o
d
e
ls

a
n
d
e
d
u
c
a
tio

n
a
l
m
o
rta

lity
in

T
u
rin



Table 3 Results of the regression models with period covariates

Men Women

Model without frailty Model with frailty* Model without frailty Model with frailty*

Estimate 95% CI Mean 0.025–0.0975 Estimate 95% CI Mean 0.025–0.0975

a 4.159×10–5 3.196×10–5 to 5.410×10–5 0.004 0.000–0.010 8.031×10–6 6.028×10–6 to 1.070×10–5 0.008 0.000–0.016

b 0.096 0.095 to 0.096 0.069 0.061–0.163 0.121 0.120 to 0.122 0.084 0.073–0.106

c – – – – 0.001 0.001 to 0.002 2.852×10–6 8.610×10–7–2.997×10–5

σ2 – – 0.269 0.026–0.367 – – 0.292 0.174–0.367

Calendar period

1971–1973 1 – 1 – 1 – 1 –

1974–1976 0.999 0.972 to 1.027 0.978 0.950 to 1.007

1977–1979 0.947 0.921 to 0.973 0.919 0.893 to 0.946

1980–1982 0.928 0.903 to 0.953 0.896 0.871 to 0.922

1983–1985 0.943 0.918 to 0.969 0.967 0.941 to 0.994

1986–1988 0.870 0.847 to 0.894 0.848 0.824 to 0.872

1989–1991 0.820 0.798 to 0.843 0.728 0.613–0.985 0.796 0.774 to 0.818 0.888 0.671–1.035

1992–1994 0.796 0.774 to 0.817 0.757 0.736 to 0.778

1995–1997 0.741 0.721 to 0.762 0.704 0.684 to 0.724

1998–2000 0.701 0.682 to 0.721 0.682 0.663 to 0.701

2001–2003 0.670 0.652 to 0.689 0.657 0.639 to 0.676

2004–2007 0.631 0.615 to 0.648 0.625 0.608 to 0.642

High 1 – 1 – 1 – 1 –

Medium 1.204 1.184 to 1.225 1.277 1.054–1.349 1.107 1.083 to 1.131 1.256 1.053–1.347

Low 1.301 1.282 to 1.320 1.268 1.074–1.591 1.209 1.186 to 1.232 1.475 1.103–1.641

North-West 1 – 1 – 1 – 1 –

North-East 1.040 1.024 to 1.057 1.075 0.855–1.220 0.963 0.948 to 0.978 1.122 0.888–1.217

Centre 0.943 0.917 to 0.969 1.081 0.854–1.212 0.964 0.938 to 0.992 1.102 0.864–1.218

South 0.900 0.889 to 0.911 1.037 0.854–1.216 0.962 0.949 to 0.975 1.130 0.904–1.220

Abroad 0.965 0.941 to 0.989 1.082 0.864–1.218 0.985 0.962 to 1.009 1.082 0.847–1.215

logLk −650 997 Na −663 081 Na

AIC 1 302 034 Na 1 326 204 Na

Baseline parameters (Gompertz for men and Makeham for women) and rate ratios of the mortality differentials by education and region of birth.
*The model with frailty does not report conventional point estimates and CI, but the mean value and the 0.025 to 0.975 quantiles of the empirical distribution of the parameters obtained from the
repeated estimates via random subsampling.
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changed from 1.16 (95% CI 1.15 to 1.19) to 1.22 (1.20 to
1.24) for medium education and from 1.24 (1.22 to 1.26)
to 1.30 (1.28 to 1.32) for low education (left upper panel
of figure 2). Among women, on the contrary, there was a
slight reduction, but the confidence regions of the esti-
mates in the two cases overlap: for medium education, the
rate ratio went from 1.14 (1.12 to 1.17) to 1.11 (1.08 to
1.14), and for low education from 1.25 (1.22 to 1.27)
to 1.22 (1.19 to 1.24; lower left panel of figure 2). AIC indi-
cates that the models with frailty fit the data significantly
better than the models without.
In the model adopting the age-period improvement

approach, the AIC comparison of the models with and
without frailty was not possible, because the utilisation of
random subsampling for the estimation of the frailty
model41–43 did not allow for obtaining a likelihood value
comparable with the values of the models without frailty.
Moreover, it is necessary to consider that we are compar-
ing conventional point estimates and CIs with values
obtained via bootstrapping methods, whose confidence
regions are usually wider than conventional CI.
Nevertheless, a comparison is still possible.
The introduction of frailty affected the mortality gradi-

ent by education. Although the uncertainty around the
estimates does not allow for assessing a precise effect,
the rate ratios of medium and low education in respect
to high education in the models with frailty lie in a
higher confidence region than in the models without:
among women with a medium education level, it lies

between 1.05 and 1.34 compared with 1.08 and 1.13 of
the model without frailty and for the low-education
group, between 1.1 and 1.6, compared with 1.18 and
1.23. The same pattern can be observed among men.
The male difference between the medium-education

and low-education group, on the contrary, was not as
clear as that among women.

Other results and the impact of the macroregion of birth
on mortality
As expected, the variance of frailty in the cohort models
was smaller than in the period models, since periods are
more heterogeneous than cohorts.
Women were more heterogeneous than men: 0.09

(0.08 to 0.11) vs 0.04 (0.03 to 0.05) in the age-cohort
models and 0.29 (0.17 to 0.37) vs 0.27 (0.00 to 0.36) in
the age-period models.
This is consistent with the more pronounced conver-

gence of the hazards by education at old age found
among women compared with men. According to the
framework of the frailty models, converging hazards are
the result of the effect of selection on the population
hazards, due to how much variance of unobserved frailty
is present in the population at the initial age of observa-
tion. The bigger the variance, the stronger the conver-
gence is. For more information about frailty models, the
process of selection and how they relate to narrowing
mortality differentials at old ages, see online supplemen-
tary appendix A.

Figure 2 Mortality rate ratios by education level in the models with cohort and period improvement, without and with frailty.
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In the age-cohort models the introduction of unob-
served frailty affected the coefficient for the macrore-
gion of birth significantly. Among men, holding
education equal, those born in the South show a signifi-
cant survival advantage over the natives of the
North-West, while in the model without frailty there was
no such advantage. Among women, the model without
frailty showed a significant survival advantage for those
born in the South but when frailty was controlled for,
this became not significant.
The pattern also resembles the regional mortality

macrodynamics that have characterised Italy for most of
the 20th century (although the two patterns refer to dif-
ferent phenomena, the first one refers to mortality by
region of birth), when male mortality in the South was
lower than in the North.45–48 Cohort-based analyses have
highlighted that, in recent cohorts (those born after
WWII), there is a reversing trend.48 49

The models with an age-period perspective did not
identify any significant geographical differences. This
could be due to the utilisation of random subsampling
of a 1% sample. Although 250 repetitions are consid-
ered by the literature to be a sufficient number for very
complex models,50–52 it is possible that the number was
inadequate to identify a clear pattern from the small
sample. For more detailed results, see tables 1 and 2.

DISCUSSION
Interest in the role of unobserved heterogeneity in a life-
course approach to socioeconomic mortality differences
has recently increased. Most of the studies focus on
health outcomes,53–58 while fewer studies also analyse
mortality.59–61 Their findings are not consistent and fuel
a still controversial debate.
In this study, we investigated the role of unobserved

individual heterogeneity on the estimation of mortality
differentials at adult-old ages by education level in a lon-
gitudinal perspective. This study investigated if the esti-
mates of the mortality differentials are affected by the
introduction of the unobserved heterogeneity compo-
nent into the models.
We fitted survival analysis models with and without

controlling for the unobserved heterogeneity and we
found that when this component was included, the
models gave a significantly better fit.
We also found that in the majority of cases, the educa-

tional gradient estimated by the models with frailty was
higher than the one estimated by the models without
frailty. When big uncertainty around the estimates did
not allow for assessing a precise value, the confidence
regions in the models with frailty spanned over higher
values than those in the models without frailty. It must
be pointed out that, in the age-period approach, the
peculiar statistical procedure used to estimate the frailty
models did not allow for obtaining a likelihood value
comparable with the one of the model without frailty.
Thus, the statistical comparison of the models via AIC

was not possible, making this evidence weaker.
Nevertheless, the results seem to point to a direction
that is consistent with the statistical literature about
unobserved heterogeneity.19–26

Among men, such a pattern was found in both the
age-cohort and age-period approaches. Among women,
on the contrary, this pattern was less clear: in the age-
cohort model, controlling for hidden frailty resulted in a
slight reduction of the mortality gradient. Social deter-
minants also act on mortality through risk factors that
are known to affect more men than women. Moreover,
owing to a lag in the smoking and fertility transitions,
highly educated women in Turin are more exposed to
risk factors like cigarette smoking and a smaller number
of children. Therefore, controlling for hidden frailty in
the case of women might reduce the educational
gradient.
In the models with age-cohort perspective, controlling

for the hidden frailty also affected the estimates of the
differentials by macroregion of birth, showing a survival
advantage of the men born in the South, but not of the
women, for whom an advantage was instead detected by
the model that did not control for frailty.
The healthy migrant effect62–67 could cause this

pattern. Among the cohorts involved in the migration,
women were likely to be more passive actors than men
in the migratory decision,68–70 which might have been
responsible for their being selected less than men.
Frailty is a general concept embedding all the hidden
factors that affect the individual survival chances: innate
and acquired frailty, exposure to risk factors, lifestyle
factors and so on. Therefore, when controlling for
frailty, the survival advantage of women was reduced, as
they might have been less health selected than men by
the migration. On the contrary, the advantage of men
was uncovered. However, another recent study on the
impact of migration on all-cause mortality in Turin did
not find particularly strong gender differences in the
so-called healthy migrant effect,66 and this point
deserves to be investigated further in future.
The study spanned over a long observation window of

36 years. Therefore, it was important to control for the
general mortality improvement that took place during
this time. We did so by adopting both an age-period and
an age-cohort approach.
The age-period models, as expected, estimated higher

heterogeneity than the age-cohort models. Periods
aggregate different generations and are expected to be
more heterogeneous than the cohorts themselves. In
both the period and cohort models, the variance of
frailty was higher among women than among men, indi-
cating that men are more homogeneous than women.
This could be attributed to a stronger selection process
due to mortality that is usually observed to be higher
among men than among women.
On the other hand, it is also possible that the industri-

alisation process and the internal migration experienced
by Italy after WWII34 played a role. The vast majority of
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less educated individuals in Turin came from the South,
seeking a job in the car factories of the city. As less edu-
cated men were mainly employed in heavier and riskier
jobs and were exposed to higher mortality, it is possible
that during their life they were selected at a faster pace
than other educational groups and women. This might
have reduced the differences in susceptibility to death
among men, contributing to determining a lower level
of heterogeneity than among women.

CONCLUSION
This study found that neglecting selection effects due to
unobserved heterogeneity in longitudinal analyses could
lead to an underestimation of mortality differentials by
social class. In the majority of cases, the models that con-
trolled for unobserved heterogeneity estimated higher
educational differences in mortality than the models
that did not control for it.
Moreover, when compared with the AIC, the models

that controlled for unobserved heterogeneity gave a stat-
istically significantly better fit than the models that did
not control for it. Although the best AIC just shows that
the more complex model approximates the data better, it
does not represent an unequivocal proof of the selection
hypothesis; however, the results point to the possibility
that the data could be better described by this hypothesis.
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