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There has been recent interest in epigenetics in psychiatry since it offers a means of
understanding how stressful life experiences, in interaction with the genotype, result
in epigenetic changes that result in altered gene expression, ultimately affecting the
risk for mental disorders. Many studies focused on methylation of the glucocorticoid
receptor exon 1F promoter following an initial observation that changes in this region
could be modulated by the environment. This review examines all published studies
that have attempted to measure methylation in this region using different techniques,
several tissue types, populations at different behavioral state and stages of development.
Methodological issues have been raised with the aim of attempting to understand
methylation quantification and site of action. We propose that it is useful to examine
whether methylation at specific sites within the promoter region may be particularly
relevant to psychiatric vulnerability to stress-related outcomes.
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Epigenetic plasticity is a mechanism through which environmen-
tal exposures influence genetic predispositions resulting in persis-
tent alterations in gene expression and protein synthesis (Zhang
and Meaney, 2010; Feil and Fraga, 2011). There has been recent
interest in epigenetics in psychiatry since it offers a means of
understanding how stressful life experiences, in interaction with
the genotype, result in epigenetic changes that result in altered
gene expression, ultimately affecting the risk for mental disorders
(Tsankova et al., 2007; Yehuda and Bierer, 2009; Nestler, 2014).

Among multiple epigenetic modifications, DNA cytosine
methylation has been most reliably studied in experimental
and clinical settings (Olkhov-Mitsel and Bapat, 2012; Klengel
et al., 2014). Studies attempting to understand stress-dependent
developmental programming, have largely focused on promoter
methylation of stress-regulatory genes, such as the glucocorti-
coid receptor (GR) gene, in association with vulnerability and
resilience to psychiatric disorders (Daskalakis et al., 2013). The
first of these studies examined the rat hippocampal GR exon 17

promoter methylation showing an association with variation in
maternal care the first week of life particularly at the nerve growth
factor-inducible protein A (NGFI-A) binding sequence (Weaver
et al., 2004). Soon, other methylation studies of the ortholog
human GR promoter (GR exon 1F promoter; GR-1F promoter)
emerged. This promoter also contains binding sequences for
NGFI-A (two canonical and two non-canonical; Figure 1). In this
paper, we present a systematic review of 16 studies that examined
methylation in this region and reported methylation changes

in the specific C—phosphate—G dinucleotides (i.e., CpG sites)
in relation adverse experiences or adversity-related conditions
(Oberlander et al., 2008; McGowan et al., 2009; Dammann et al.,
2011; Perroud et al., 2011, 2014a,b; Tyrka et al., 2012; Conradt
et al., 2013; Hompes et al., 2013; Melas et al., 2013; Martin-Blanco
et al., 2014; Na et al., 2014; Romens et al., 2014; Van Der Knaap
et al., 2014; Vukojevic et al., 2014; Yehuda et al., 2014b); Figure 2.
More studies examined methylation in this region (Moser et al.,
2007; Alt et al., 2010; Radtke et al., 2011; Mulligan et al., 2012;
Steiger et al., 2013; Yehuda et al., 2013, 2014a; Rodney and
Mulligan, 2014), but only the above 16 report methylation
differences at a single CpG site resolution. It is already becoming
clear that different studies use different methodologies, examine
slightly different sub-regions, and accordingly, produce different
findings with respect to directionality of the associations with
stressful experience and stress-related illness (Figure 2). To
date, most studies draw conclusions about whether the GR-1F

promoter is hyper- or hypo- methylated based on the average
% methylation across several CpG sites. Upon careful review
of the data we propose that it is equally useful to examine
whether specific sites within the promoter region may be par-
ticularly relevant to psychiatric vulnerability to stress-related
outcomes.

PROMOTER METHYLATION
Heightened promoter methylation is typically associated
with downregulation of gene expression, whereas intragenic
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methylation correlates with higher transcriptional activity (Jones,
2012; Moore et al., 2013; Yang et al., 2014). Methylation at
promoter regions of highly expressed genes is often low con-
tributing to the notion that promoter methylation is negatively
associated with gene expression (Weber et al., 2007; Moore et al.,
2013). Most of the studies in such hypomethylated genomic
regions detect increases in methylation under pathologic con-
ditions (e.g., Tan et al., 2013), but this could be also related
to lack of methodological sensitivity to detect decreases in
methylation. The transcriptional repression by methylation is
thought to be mediated by blockade of transcription factor
binding (Weber et al., 2007; Moore et al., 2013). The extent of
promoter hypomethylation needed to enhance gene-expression,
and conversely, the extent of hypermethylation required for
reduction in gene expression is currently not known. In cancer
research, and severe developmental disorders, large effects have
been observed (Robertson and Wolffe, 2000; Bergman and Cedar,
2013). However, modest changes could have functional impact
for example in psychiatric conditions if they are stable and
produce meaningful changes in functional outcomes (Yehuda
et al., 2013; Klengel et al., 2014). It is noteworthy, that even in
cancer small percent changes in promoter methylation have been
found to have great impact (Galetzka et al., 2012).

GR-1F PROMOTER METHYLATION
The human GR gene (NR3C1) is localized on chromosome
5q31-q32, contains nine exons (1–9), with the start codon
located 13 nucleotides downstream from the start of exon 2.
The 5′untranslated region (5′UTR) has 14 exon 1 splice variants
(Figure 1, Turner and Muller, 2005; Steiger et al., 2013), all of
which bear unique splice donor sites and share a common exon
2 splice acceptor site (Turner and Muller, 2005). Four of these
alternative first exons (A1−3 and I) and their promoters are form-
ing the distal promoter region of the gene (30 kb upstream of the
start codon), while the other 10 first exons (D, J, E, B, F, G, C1−3,

and H) and their promoters are forming the proximal promoter
(5 kb upstream of the start codon, Figure 1), which comprises of
a CpG island. The usage of the alternative exon 1 promoters, and
the resulting participation of the alternative exon 1 splice variants
in the mature GR mRNA, is tissue specific. The promoter usage is
considered to eventually affect the expression of GR mature tran-
scripts and protein isoforms, but the nature of this relationship is
not known (Turner et al., 2010, 2014).

The GR-1F is transcriptionally active in hippocampus, B lym-
phocytes and innate immune cells (but not in T lymphocytes or
monocytes) (Turner and Muller, 2005). GR-1F promoter (326 bp)
and exon 1F (63 bp) contain 47 CpG sites (Figure 1). Methylation
of the GR-1F promoter region associated, in neonatal cord blood,
with maternal depression during gestation (Oberlander et al.,
2008) and, in adult offspring hippocampus, with childhood abuse
(McGowan et al., 2009). We have recently observed lower periph-
eral blood mononuclear cells’ (PBMCs) methylation of the same
promoter region in adult combat exposed veterans with PTSD
compared with combat exposed controls (Yehuda et al., 2014b).
The small % changes in GR-1F promoter methylation had a func-
tional impact since it was associated with endocrine functional
outcomes (Yehuda et al., 2014b).

TECHNICAL CONSIDERATIONS ON METHYLATION
ANALYSIS OF GR-1F PROMOTER REGION
METHOD
DNA methylation analysis involves bisulfate treatment of the
DNA as an initial step. Bisulfite treatment describes the conver-
sion of all unmethylated cytosine residues to uracils (deamina-
tion) in the presence of NaOH and sodium bisulfite, but leaves
the methylated cytosine residues intact. Thus, sequencing of the
treated DNA after amplification of the target region allows the
analysis of methylation, by determining the ratio of cytosine to
thymine, at a single CpG site level (Tost and Gut, 2007; Zhang
et al., 2009).

FIGURE 1 | Schematic representation of human glucocorticoid receptor

gene (NR3C1) non-coding first exons according to Turner and Muller

(2005), Sinclair et al. (2012), Steiger et al. (2013). The solid black line
boxes with a number represent the different exons and the 5′–3′
orientation goes from left to right. The NR3C1 gene 5′ region is composed
of multiple first exons: four in the distal promoter region (A1−3 and I) and
ten (D, J, E, B, F, G, C1−3, and H) in the proximal promoter region located

in a C—phosphate—G (CpG) island. The exon 1F promoter (lower case)
and exon 1F sequence (uppercase) is illustrated. The numbering is relative
to the start codon (ATG: +1), which is located 13 nucleotides downstream
from the start of exon 2. The 47 CpG sites are in red and numbered.
Boxes represent known or putative canonical (solid-lined box) and
non-canonical (broken-lined box) NGFI-A–binding sites according to
McGowan et al. (2009).
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Quantitative measures of DNA methylation patterns are essen-
tial in the context of disease. Given the heterogeneity in methyla-
tion between cells, Sanger sequencing of bisulfite-treated samples
alone is not sufficient for quantitative analysis of methylation
status of the target region. To overcome this, cloning of the
region of interest (usually 300–500 bp) followed by sequenc-
ing of individual clones is needed (Olkhov-Mitsel and Bapat,
2012). Alternatively, the use of other sequencing methods with
improved quantitative resolution does not require the expensive,
time-consuming and laborious clone-based methylation analysis.
Pyrosequencing gained popularity the recent years as an accu-
rate and reliable approach for methylation analysis of short DNA
stretches (usually <150 bp). Bisulfite treated DNA is first ampli-
fied and then, since one of the amplification primers used is
biotinylated, a single strand is isolated. Finally, with the use of
a pyrosequencing primer, the purified single strand is subjected
to a pyrosequencing reaction where single nucleotides are incor-
porated sequentially and generate light that can be detected and
quantified (Tost and Gut, 2007).

No direct comparisons have been made with respect to
Sanger sequencing and pyrosequencing with respect to the GR-1F

promoter methylation analysis. Methylation in this region has
been analyzed by some using clone-based Sanger sequencing
(McGowan et al., 2009; Yehuda et al., 2014b) and by others using
pyrosequencing (Oberlander et al., 2008; Dammann et al., 2011;
Perroud et al., 2011, 2014a,b; Tyrka et al., 2012; Conradt et al.,
2013; Martin-Blanco et al., 2014; Na et al., 2014; Romens et al.,
2014; Vukojevic et al., 2014). More recently, the Matrix-assisted
laser desorption ionization time of flight mass spectrometry
(MassARRAY) provided another method for quantitative methy-
lation analysis of long DNA sequences (usually >600 bp), based
on fragmentation by base-specific cleavage and subsequent anal-
ysis of the cleavage products (Claus et al., 2012) and three studies
in this review have utilized it (Hompes et al., 2013; Melas et al.,
2013; Van Der Knaap et al., 2014).

TISSUE TYPE
Methylation patterns at transcriptional regulatory elements,
which contain transcription factor binding sites, are tissue-
specific and cell-type specific, apart from development-,
individual-, or disease- specific (Zhang et al., 2013; Ziller et al.,
2013). Tissue-type and cell-type specific methylation changes
occur at evolutionary conserved sequences (Zhang et al., 2013).
The tissue-specific methylation differences, in an order of mag-
nitude, are larger than the cell-type specific differences (Ziller
et al., 2013). Promoter methylation seems to participate more in
tissue differentiation, whereas enhancer methylation in cell-type
differentiation (Zhang et al., 2013). DNA in the under review
studies was extracted from a wide range of tissue-types (blood,
brain, placenta, saliva) involving many cell-types, suggesting that
a big part of variance between studies could be related to this
choice.

In psychiatry, there is special interest on peripheral tissues,
more often blood, in methylation studies because peripheral tis-
sue is more readily accessible. Using peripheral methylation as
a surrogate to brain methylation has been supported by two
types of data: first, causal biological mechanisms of the condition

studied can affect peripheral methylation, in an independent
way to brain methylation, providing useful peripheral biomark-
ers; second, condition-related methylation patterns in some loci
can be the same in the periphery and brain revealing com-
mon condition-related epigenetic reprogramming giving clues on
developmental origins of the condition (Aberg et al., 2013).

SUB-REGION OF INTEREST WITHIN THE GR-1F PROMOTER
When observing the studies under review in chronological order,
several trends in the field can be observed (Figure 2). Initial publi-
cations have an extremely high influence on the choices of regions
of interest in subsequent studies. Oberlander et al. (2008) choice
focused on methylation at one canonical NGFI-A binding site
sequence was motivated by previous work (reviewed above) in
rats by Weaver et al. (2004) on the rat ortholog sequence. The
technique that Oberlander et al. chose (i.e., pyrosequencing) lim-
ited the sequence length (105 bp) which trucated the number of
CpGs under investigation to eight, four in exon 1F promoter and
four in exon 1F (another five sites were measured from the down-
stream region) from 47 potential sites. This first original human
publication investigating the effects of prenatal maternal mood
on newborn cord blood on methylation, affected the choice of
technique and region for two studies examining similar prena-
tal factors (Conradt et al., 2013; Perroud et al., 2014b), but also
seven studies that examined other questions entirely (Perroud
et al., 2011, 2014a,b; Tyrka et al., 2012; Martin-Blanco et al., 2014;
Romens et al., 2014; Vukojevic et al., 2014).

Similarly, the choice of McGowan et al. (2009) to study 39 CpG
sites (38 in exon 1F promoter, 1 in exon 1F) containing 4 NGFI-A
binding sites (2 canonical and 2 non-canonical, Figure 2) in asso-
ciation with childhood abuse on adult hippocampal methylation
has influenced the choice of another study of early adversity (Van
Der Knaap et al., 2014) and a study of combat-related PTSD
(Yehuda et al., 2014b). Two recent studies using MassARRAYs
reported methylation for even larger regions (Hompes et al., 2013;
Melas et al., 2013).

STABILITY
There is an emerging dialectic between the idea that epigenetic
changes are enduring enough to persist through gamete mito-
sis and meiosis and the idea that epigenetic marks may undergo
observable changes in response to the environment through-
out life (Bergman and Cedar, 2013). The apparent discrepancy
between these two ideas is partly resolved by the idea that the
nature of epigenetic changes may in part depend on regional
specificity (gene promoter vs. gene body) and sub-regional
specificity (site-specific effects).

GR-1F PROMOTER SITE-SPECIFIC METHYLATION
From the 16 studies reviewed (Oberlander et al., 2008; McGowan
et al., 2009; Dammann et al., 2011; Perroud et al., 2011, 2014a,b;
Tyrka et al., 2012; Conradt et al., 2013; Hompes et al., 2013; Melas
et al., 2013; Martin-Blanco et al., 2014; Na et al., 2014; Romens
et al., 2014; Van Der Knaap et al., 2014; Vukojevic et al., 2014;
Yehuda et al., 2014b), four studies showed site-specific effects
in offspring based on maternal mood during gestation [anxi-
ety (Hompes et al., 2013), depression (Oberlander et al., 2008;
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Conradt et al., 2013; Hompes et al., 2013), PTSD (Perroud et al.,
2014b)], six studies investigated the site-specific effects of adver-
sity occurring in the period from birth to adolescence [abuse
(McGowan et al., 2009; Perroud et al., 2011, 2014a; Tyrka et al.,
2012; Martin-Blanco et al., 2014; Romens et al., 2014; Van Der
Knaap et al., 2014), low parental care (Tyrka et al., 2012), parental
death (Melas et al., 2013), parental loss (Tyrka et al., 2012) and
other early stressful life events (Van Der Knaap et al., 2014)],
and four studies detected differences in subjects meeting crite-
ria for disorders associated with life adversity [BPD (Dammann
et al., 2011; Martin-Blanco et al., 2014), MDD (Na et al., 2014),
PTSD (Perroud et al., 2014b; Vukojevic et al., 2014; Yehuda et al.,
2014b)]. There was further variation across studies based on the
age (neonate, adolescent, adult) and sex distribution (male only,
female only, mixed) of the sample used.

While the majority of studies detected hypermethylation in the
specific CpG sites, there were sites where hypomethylation was
detected demonstrating a general positive association of adver-
sity with methylation of this region. However, the lower rate of
detected hypomethylation in association with adversity might be
also related to a “floor effect” due to low overall methylation
levels in this region, which make difficult to statistically prove
lowering of methylation. Potential false negative detection of
hypomethylation needs to be investigated further in large studies
especially since it can also have effects in downstream expres-
sion and functional endocrinology (Yehuda et al., 2014b) so as
hypermethylation (McGowan et al., 2009).

If different adversity factors and associated conditions can
affect the methylation of different CpG sites in opposing direc-
tions, it remains to be explored what is the outcome of the
opposing methylation changes for gene expression. Only two of
the 16 studies provided data on gene expression in relation to
site-specific methylation in GR-1F promoter. We have reported
a negative correlation of GR-1F expression with methylation at
site 28 (Yehuda et al., 2014b), which was one of the two sites
associated with PTSD. Vukojevic et al. observed an inverse cor-
relation of GR expression with methylation at site 42 in healthy
young adults, but they did not report expression data in the sam-
ple, where they observed the association with PTSD (Vukojevic
et al., 2014).

Furthermore, while there were CpG sites for which multiple
studies were in agreement (CpG 35, 37, 40, 41, 42, 43, 44, 45, 46,
and 47), but there were also sites with disagreement (CpG 15, 16,
22, 23, 26, 36, 40, 42, 43, and 44). Factors that could potentially
account for the disagreements are different time window in which
adversity acted (1st -2nd - 3rd trimester of pregnancy, postna-
tal period and childhood, adulthood), differences in tissue type,
subject’s sex and age (at assessment).

POSSIBLE TRANGENERATIONAL EFFECTS OF PARENTAL
TRAUMA EXPOSURE AND SYMPTOMS ON GR-1F

PROMOTER SITE-SPECIFIC METHYLATION
In a recent study in Holocaust survivor offspring and demo-
graphic controls (Yehuda et al., 2014a), we wanted to identify

FIGURE 3 | Percent methylation at each of 39 C-phosphate-G

dinucleotides (i.e., CpG sites) of the glucocorticoid receptor gene

(NR3C1) exon 1F promoter (sites 6–43) and exon 1F region (site 44)

analyzed by cytosine methylation bisulfite mapping (clone-based

Sanger sequencing) using peripheral blood mononuclear cells

(PBMCs) DNA, in a population of offspring described in our previous

publications (Lehrner et al., 2014; Yehuda et al., 2014a). The 39 CpG
sites accessed in the study are numbered as in Figure 1. The
represented data (mean ± s.e.m.) are based on a multivariate Two-Way

analysis of covariance with maternal and paternal post-traumatic stress
disorder (PTSD) as fixed factors and parental Holocaust exposure, age,
smoking history, and PBMC-type as covariates. μ, significant maternal
PTSD effect. π, significant paternal PTSD effect. x, significant maternal
by paternal PTSD interaction effect. Significance was set at p < 0.05.
Boxes represent the location of known or putative canonical (solid-lined
box) and non-canonical (broken-lined box) NGFI-A binding sites, according
to McGowan et al. (2009), and a gray box represents the location of the
beginning of exon 1F.
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effects of parental Holocaust exposure or exposure-related
symptoms (i.e., PTSD) on GR-1F promoter methylation in
order to find epigenetic marks associated with glucocorticoid
dysregulation (Bader et al., 2014; Bierer et al., 2014; Lehrner et al.,
2014) in this population at risk for PTSD. Paternal PTSD, only in
the absence of maternal PTSD, was associated with higher levels
of GR-1F promoter methylation, while offspring with both mater-
nal and paternal PTSD displayed the lowest level of methylation.
The relatively small differences in methylation were associated
with differences in GR-1F expression and functional endocrinol-
ogy (Yehuda et al., 2014a). A site-specific analysis presented here
(Figure 3), reveals that there are sites with significant effects of
maternal PTSD (CpG 11, 23 and 30), paternal PTSD (CpG 15
and 23) or their interaction (CpG 39 and 43).

Exposure to trauma in parents has been also linked to an
increased risk for child abuse and maltreatment in offspring espe-
cially in the presence of maternal or paternal PTSD (Yehuda
et al., 2001; Yehuda and Bierer, 2008; Palosaari et al., 2013). It is
difficult to disentangle effects that reflect trauma-related trans-
generational inheritance from early rearing influences, includ-
ing childhood traumatic events, experienced as a consequence
of having trauma-exposed or symptomatic parents. We have
previously suggested that part of the phenotype in Holocaust
offspring is the recollection of perceived emotional abuse or
neglect, whereas recollections of sexual abuse and physical abuse
or neglect may be relatively independent risk factors for PTSD
in Holocaust offspring, as in persons who develop PTSD with-
out having traumatized parents (Yehuda et al., 2001). Phenotypic
clustering of Holocaust offspring demonstrated an association of
paternal, but not maternal, PTSD with childhood trauma and
abuse and increased GR-1F promoter methylation (Yehuda et al.,
2014a).

CONCLUSIONS
Because the study of epigenetics in neuropsychiatry is rela-
tively new, many fundamental questions are just beginning to be
answered. It is not clear whether epigenetic marks are equally sta-
ble across all genes and all gene regions since some epigenetic
marks have been shown to persist across generations (Gapp et al.,
2014), while others have demonstrated change in response to psy-
chotherapeutic interventions (Perroud et al., 2013; Yehuda et al.,
2013). At the current time, complicating the discussion about the
stability of epigenetic marks is that the reliability of the assess-
ment of epigenetic marks such as methylation is not fully explored
making difficult to identify the rate of potential stochastic epi-
genetic phenomena (Nestler, 2014). Thus, even in studies that
assume epigenetic marks to be stable, there is value in perform-
ing multiple assessments of the same sample, or different samples
from individuals within short periods of time. Such studies have
been lacking, but will be very informative if performed in the near
future.
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