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Abstract

Objective

To apply a fully automated method to quantify the 3D structure of the bony nasolacrimal

canal (NLC) from CT scans whereby the size and main morphometric characteristics of the

canal can be determined.

Design

Cross-sectional study.

Subjects

36 eyes of 18 healthy individuals.

Methods

Using software designed to detect the boundaries of the NLC on CT images, 36 NLC recon-

structions were prepared. These reconstructions were then used to calculate NLC volume.

The NLC axis in each case was determined according to a polygonal model and to 2nd, 3rd

and 4th degree polynomials. From these models, NLC sectional areas and length were

determined. For each variable, descriptive statistics and normality tests (Kolmogorov-Smir-

nov and Shapiro-Wilk) were established.

Main OutcomeMeasures

Time for segmentation, NLC volume, axis, sectional areas and length.
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Results

Mean processing time was around 30 seconds for segmenting each canal. All the variables

generated were normally distributed. Measurements obtained using the four models polyg-

onal, 2nd, 3rd and 4th degree polynomial, respectively, were: mean canal length 14.74, 14.3,

14.80, and 15.03 mm; mean sectional area 15.15, 11.77, 11.43, and 11.56 mm2; minimum

sectional area 8.69, 7.62, 7.40, and 7.19 mm2; and mean depth of minimum sectional area

(craniocaudal) 7.85, 7.71, 8.19, and 8.08 mm.

Conclusion

The method proposed automatically reconstructs the NLC on CT scans. Using these recon-

structions, morphometric measurements can be calculated from NLC axis estimates based

on polygonal and 2nd, 3rd and 4th polynomial models.

Introduction
The nasolacrimal drainage system, or tear duct, is mostly lodged in the nasolacrimal canal
(NLC). The bony NLC is defined, laterally, by the lacrimal groove of the medial side of the
maxilla and by the lacrimal hook of the lacrimal bone, which scrolls over the outer edge of the
canal's upper orifice; and medially, by the lacrimal bone superiorly and by the lacrimal process
of the inferior nasal concha inferiorly. The medial canal wall is comprised of the lacrimal bone
in its upper region and by the lacrimal process of the inferior nasal concha in its lower portion.
Obstruction of the tear duct may cause epiphora and dacryocystitis [1–9] and has been associ-
ated with a greater risk of endophthalmitis following intraocular surgery [10, 11]. The most fre-
quent causes of secondary acquired obstruction are facial surgery, trauma, neoplasm,
sarcoidosis, and Wegener granulomatosis [1–9]. In contrast, primary acquired obstruction is
idiopathic and involves gradual chronic inflammation and fibrosis [1–9]. Anatomical charac-
teristics inherent to skull dimensions may also be a cause of obstruction [1–9]. Few studies
have examined the anatomy of the lacrimal system, and most such studies have been based on
visual inspection and manual analysis of computed tomography (CT) scans, a procedure that
can be inaccurate and time consuming [1–9].

Detailed knowledge of the anatomy of the NLC would provide useful information for diag-
nostic purposes and for planning interventions for tear duct obstruction. Herein, we describe a
new completely automated method of bony NLC reconstruction whereby segmentation soft-
ware is used to determine the canal's size and main morphometric characteristics in high-reso-
lution CT scans.

Materials and Methods
We retrieved the electronic medical records of patients that included a DICOM computerized
tomography (CT) of the nasolacrimal canal (NLC) performed from January 2008 to December
2014 at the Hospital Universitario de Fuenlabrada (Madrid, Spain). All patients under 18 years
of age were excluded. The study protocol was approved by our institution’s Review Board (Eth-
ics Committee of The Hospital Clínico Universitario San Carlos of Madrid, Spain and com-
plied with the guidelines of the Declaration of Helsinki. Being a retrospective study, informed
consent was not required although the study examiners were masked to patients' personal data
to protect their confidentiality. All the study participants were Caucasian.
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CT scans were required to have a high spatial resolution (pixel spacing� 0.5mm, slice
thickness 0.625 mm) and to be reconstructed with standard or bone kernels. Scans showing a
sinus condition were not selected.

CT scans obtained in patients who had previously undergone previous tear duct imaging
and/or irrigation or those undergoing a scan after dacrocystorhinostomy (DCR) surgery were
also excluded. We also excluded scans obtained in patients with infection, inflammation, neo-
plasm, malformations or any pathology which may involve the NLC. Those undergoing trauma
or surgery involving the NLC were also excluded.

CTs were generated using GE LightSpeed16 equipment without contrast and with the sub-
ject in supine position. The plane of imaging was perpendicular to the gantry table. A contigu-
ous helical axial data set was obtained from below the maxilla or skull base to above the frontal
sinus. Voxel data: pixel spacing 0.292969/0.292969 to 0.417969/0.417969 mm and slice thick-
ness 0.625 mm with neither gaps nor overlap between consecutive slices. Protocol for head/
skull-base/petrous bone: 120 kVp, 240 mA fixed value without modulation, slice thickness
0.625 mm with the same image interval, gantry angle 0°, FOV 250 mm, CTDI: 74.02 mGy. CT
volumes were exported in DICOM format. Age and sex were also recorded.

A software was developed to virtually reconstruct the bony NLC. From this automatic
reconstruction, stereometric parameters of the NLC were obtained as follows.

Models of the NLC
To provide the formal description and characteristic parameters of each NLC, two types of
models have been created, each providing different information about the 3-D structure of the
NLC: the axis models and surface models.

Axis models. This type of models was derived from the centroids of the NLC regions seg-
mented in each CT slice, by interpolating them or by fitting mathematical functions. Centroids
were calculated according to established methods (Gonzalez and Woods, 2002 [12]). The axis
model may be described as the sequence of centroids (c1, c2, . . ., cp)—ci having (xi, yi, zi) as its
physical coordinates-, and as any function interpolating them: polygonal, sinc, or other. How-
ever, as a result of various factors affecting segmentation, each computed centroid may deviate
randomly from its true position. Thus to minimize the impact of those errors, a new type of
axis model has been obtained by fitting different smooth functions to the sequence of all cen-
troid points: third and fourth order polynomials were selected because of their smoothness,
few parameters and at least one inflexion point; second order polynomial has been added for
comparison; thus the family of polynomial models s(z) for the canal axis adopted the following
parametric expression:

sðzÞ �

xðzÞ ¼ a0 þ a1z þ a2z
2 þ a3z

3 þ a4z
4; sagital coordinate

yðzÞ ¼ b0 þ b1z þ b2z
2 þ b3z

3 þ b4z
4; coronal coordinate

z 2 z1 �
d
2
; zp þ

d
2

� �
� R; depth coordinate

ð1Þ

8>>><
>>>:

where δ is the slice spacing given by the difference between the third components of DICOM
tags “Image Position (Patient)” (0020,0032) in two contiguous slices, and z1 and zp are the z-
coordinates of centroids of the canal region in the first and last slices of the NLC; coordinates
were expressed in mm and the origin of the coordinate system was that of the whole CT (i.e.
geometrical centre of the upper left voxel in the first slice of the CT series).

To construct the polynomial model for the NLC axis corresponding to the polynomial func-
tion of degree 2, 3 or 4, the coefficients ai and bi of its x(z) and y(z) components were obtained
for each NLC by separately fitting x(z) and y(z) to coordinates (xi, zi) and (yi, zi) (i = 1, 2, . . .,p)
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of the NLC centroids, respectively, by the least squares method; the square of Pearson correla-
tion coefficients was used to assess the goodness of fit.

Surface model. To describe the external surface of the NLC, a numerical model was
obtained for each NLC of all subjects by 3-D interpolating and smoothing the contours of the
automatically segmented NLC sections, followed by rendering of peripheral isosurface.

Length of the NLC
The length of the 3-D curve described by each axis model provided a new method of measuring
NLC length; thus polygonal length and three polynomial lengths were compared with the tradi-
tional methods based on axial distance and end-to-end distance (Figs 1 and 2).

Cross-sectional area
The area of the canal section as it appears on the CT image (axial area) has been frequently cal-
culated with many different computer aids but based on points or contours that are identified
visually and marked manually. However, this manual procedure is cumbersome determining
that measurements are usually only taken at one or few NLC levels; also in many cases rather
than measuring the irregular shape of the canal region, the area measured is an ellipse or other
regular shape that is manually fitted to the region or otherwise only estimated from anterior-
posterior and transverse diameters (e.g. Lee et al. [13]).

The new method proposed here to calculate cross-sectional NLC areas in axial slices is a
fully automated three-step computer procedure: in the first step, the canal is segmented from
the rest of the image; in the second step, the program counts the number of pixels in the region
identified; and in the final step, this number is multiplied by the area covered by an individual

Fig 1. Different evaluations of NLC length: axial (dotted red line), end-to-end (dashed green line) and true (continuous
blue line).

doi:10.1371/journal.pone.0155436.g001
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pixel, obtained by multiplying the two components of the “pixel spacing tag” (0028,0030) pro-
vided in the DICOM image header. However automation improves speed and objectivity but is
not sufficient, because the sectional area obtained is overestimated unless the CT slice is per-
pendicular to the canal, as in the manual method. Two different approaches have been devel-
oped to get the sectional area orthogonal to the canal: estimation from the axial area and direct
calculation.

Direct calculation method is based on the now available models of NLC axis, which can pro-
vide the canal’s direction at any point k of its track and easily identify the plane P?

k orthogonal
to it, which is the sectional plane where the true sectional area A?

k of the canal must be calcu-
lated. An automatic implementation of this calculation was then defined, similar to the visual
and manual methods described by Estes et al [9]. This firstly involves computing the geometri-
cal tangent to the curve of the selected axis model at point k and the equation of its orthogonal
plane P?

k , then generating by image interpolation a new slice reconstructed at P?
k and finally

segmenting the canal and assessing its area to directly obtain the value of A?
k , all as automated

steps with our software.
Estimation of the orthogonal area from the axial one is however feasible and faster when it

can be assumed that the NLC path doesn’t change abruptly and the slicing orientation is not
strongly deviated from orthogonality to NLC at point k; then the true sectional area A?

k can
also be obtained as the projection’s area on P?

k of the axial section, and is given by
A?

k ¼ Ak cos bk, where Ak is the sectional area of axial slice at the same point and βk is the angle
between canal and CT axes. This equation implies that orthogonal areas are always equal to or
less than the corresponding axial areas, as expected.

In this work, four axis models were constructed: polygonal, 2nd, 3rd and 4th order polynomi-
als; each model provides its own basis to measure the orthogonal cross-sectional area at all the
slicing points of each NLC; so far, five different variables related to sectional area of the NLC
have been studied, four orthogonal and one axial, all areas being computed automatically:
axial, polygonal, polynomial-2, polynomial-3 and polynomial-4 areas.

Volume
In its simplest approach, NLC volume has been derived from geometrical solids, such as cylin-
ders, ellipsoids or spheroids, derived from orthogonal radii and other manual measurements

Fig 2. Depiction of the four methods to compute NLC length: axial, end-to-end, polygonal, polynomial.

doi:10.1371/journal.pone.0155436.g002
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or visually fitted to canal images. However as the canal’s shape is irregular, geometric approxi-
mations are too inaccurate. To determine the volume of the canal's real shape we used auto-
matic segmentation to identify the voxels making up the NLC in each CT slice.

Before automatically calculating NLC volume, the consistency of data in all relevant
DICOM tags needs to be verified, given that some errors have been reported [14, 15].

We thus checked for all slices that the difference between consecutive slices in “slice-loca-
tion” (0020,1041) equals the difference in the third component of “image-position-patient”
(0020,0032). It was also checked that the coordinate system indicated by the direction cosines
in “image orientation patient” (0020,0037) was the canonical one.

To compute NLC volume, the volume of each voxel is calculated by simply multiplying its
base area by its depth. Base area is the product of the two “pixel spacing” numbers in tag
(0028,0030) and depth is the difference in “slice location” (0020,1041) with respect to the next
slice. Alternatively, “slice thickness” (0018,0050) can also be used for depth provided there is
no gap or overlap between consecutive slices. NLC volume is then given by the sum of volumes
of all the voxels that the segmentation software has marked as included in the NLC. If the
approach here proposed reveals fruitful, future research will include an additional correction at
both ends of the NLC, by adding or subtracting the wedge between the outer surface of the slice
now delimiting each end of the canal and its true delimiting plane which is orthogonal to the
end of its axis.

The effects on goodness of fit due to polynomial order (2, 3, 4), coordinate (x, y) and NLC
laterality (right, left) were evaluated using a factorial design 3x2x2 with repeated measures in
all factors. The dependent variable was data fit to the model assessed by the Fisher Z transform
of Pearson correlation coefficient r, to normalize its distribution.

Six methods were used to measure NLC length in all NLCs: three direct methods (axial,
end-to-end and polygonal) and three model based methods (using polynomials-2, -3 and -4 as
NLC models). Axial length was obtained as the Euclidean distance between the external planes
of the two slices delimiting the NLC. End-to-end length was taken as the distance between
canal central points on its outer delimiting planes. Polygonal length was obtained as the sum of
the lengths of the linear segments joining the 3D centroids and adding their extensions from
the two extreme centroids to their respective outer planes delimiting the NLC. The lengths of
polynomial curves were computed by numerical methods with a precision greater than 0.1
mm. The effect on length results of the measurement method (axial, end-to-end, polygonal,
polynomial-2, polynomial-3 and polynomial-4), controlling for the correlation between canals
of the same subject (left and right), was studied with a two factor 6x2 repeated measures
ANOVA.

Cross-sectional areas for each slice were determined using five methods: directly on the CT
in the image plane (axial method) or in the planes orthogonal to the NLC direction as given by
the polygonal and polynomial-2, -3 and -4 models. The mean cross-sectional area represents
the average value of the sectional areas of all the NLC segments differentiated in the CT. The
independent variable was thus the measurement method, and the dependent variable the mean
cross sectional area of each NLC obtained by each method. The five methods were compared
by 5x2 factorial design repeated measures ANOVA for both factors: method and laterality
(included again to control for correlations among measures in left and right NLC of the same
subject).

The minimum axial cross-sectional area represents the area of the smallest section of the
NLC. We also compared minimum cross-sectional areas obtained using the five different
methods as described above, as well as the distance from the point of minimum area to the
orbit end of the NLC.
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The NLC variables generated through our proposed segmentation model were: volume
(Vol), axial length (AxL), end-to-end length (ExL), polygonal axis length (PolygL), second-
order polynomial axis length (Polyn2L), third-order polynomial axis length (Polyn3L), fourth-
order polynomial axis length (Polyn4L), mean area of sections normal to the CT axis (SecA),
mean area of sections normal to the polygonal axis (SecPolygA), mean area of sections normal
to the 2nd order polynomial axis (SecPolyn2A), mean area of the sections normal to the 3rd
order polynomial axis (SecPolyn3A), mean area of the sections of the NLC normal to the 4th
order polynomial axis (SecPolyn4A), minimum area of sections normal to the TC axis (Min-
SecA), minimum area of sections normal to the polygonal axis (MinSecPolygA), minimum
area of sections normal to the 2nd order polynomial axis (MinSecPolyn2A), minimum area of
sections normal to the 3rd order polynomial axis (MinSecPolyn3A), minimum area of sections
normal to the 4th order polynomial axis (MinSecPolyn4A), depth of minimum areas of sec-
tions normal to the CT axis (MinSecD), depth of minimum areas of sections normal to the
polygonal axis (MinSecPolygD), depth of minimum areas of sections normal to the 2nd order
polynomial axis (MinSecPolyn2D), depth of minimum areas of sections normal to the 3rd
order polynomial axis (MinSecPolyn3D), and depth of minimum areas of sections normal to
the 4th order polynomial axis (MinSecPolyn4D).

For each of the 22 variables, mean, standard deviation, median and quartiles were calcu-
lated. The normality of data was checked using Kolmogorov-Smirnov and Shapiro-Wilk tests.

Gender differences in all variables were assessed using the Mann-Whitney test.
The image processing programs were developed in Matlab R2014a (MathWorks, Natick,

MA, USA) using Image Processing Toolbox, running on Windows 7 Professional 64 bits,
installed in a laptop with i5 M540 processor of 2’53 Gh and 4GB of RAM. Data analysis was
performed using SPPS 22 (IBM). The DICOM viewer Centricity (GE) was used by a radiologist
to display images of diagnostic quality, identify extreme slices of each NLC and also to identify
contours for validation of automated segmentation. When randomization was necessary, true
random numbers were obtained from atmospheric noise [16].

Results
Inclusion criteria were met by 18 CT scans of 36 NLC in 18 healthy participants. Median par-
ticipant age was 43 years (26 to 77, interquartile range 32). 38.9% were male. No age differences
depending on gender were detected (Mann-Whitney U = 98; p = 0.071).

In the 36 NLC, our software was used to segment 591 nasolacrimal regions in 328 different
CT slices. Software output was the binary mask for each canal region (Fig 3, above) along with
auxiliary images (Fig 3, below) and a set of 54 indices providing information about the shape of
each region, including its sectional area and centroid coordinates.

To test the segmentation capacity of the program in terms of robustness and stability seg-
mentation parameters were defined and evaluated on half the NLC samples and then tested on
the remaining NCL in the sample. Segmentation was successful in all cases and all measure-
ments could be obtained.

The number of slices available was similar for both canals in a subject (Pearson r = 0.91) yet
varied widely between subjects (right NLC mean = 16.39, range 7–21, SD = 4.42; left NLC
mean = 16.44, range 6–22, SD = 4.25).

Mean processing time was around 30 seconds for segmenting each canal. As an example,
Fig 4 shows the fit between the polynomial-3 model and the empirical NLC centroids obtained
automatically by the program. Goodness of fit was high in both cases (r2 = 0.99 and 0.91). The
sagittal coordinate plane showed significantly better model fit than the coronal one (F(1, 17) =
23.79; p = 0.000). The order of the polynomial also had a significant effect (Greenhouse-Geisser
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F(2, 17) = 108.21; p = 0.000), and, as expected the greater the order the better was its fit to the
data (p = 0.000 for each pairwise comparison), but at the expense of model parsimony. As a
compromise, goodness of fit may be considered sufficient when the lower confidence interval
limit (p = 0.05) of the determination coefficient is equal or greater to 0.95. Thus, it may be
inferred that the NLC axis will be represented correctly by the vector function in Eq 1 either

Fig 3. Segmentation results for slice 57 of subject #27 showing above the masks obtained by
automatic segmentation for left and right NLC and below the contours of the segmented left and right
NLC superimposed to CT slice.

doi:10.1371/journal.pone.0155436.g003

Fig 4. Fit to data of 3rd degree polynomial model (right NLC of subject #20). a) Polynomial model of the
NLC axis. b) Sagittal projection. c) Coronal projection.

doi:10.1371/journal.pone.0155436.g004
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with cubic polynomials in both components, or with a quadratic polynomial for its sagittal (x)
component and a cubic polynomial for its coronal component.

Polynomial models for the right NLCs of six subjects selected at random are provided in
Table 1 as polynomial coefficients for each coordinate, their determination coefficients giving
fit to the model, their depth range and the number of slices forming the NLC. The 3-D repre-
sentation of the model for the NLCs of subject 17 is shown in Fig 5, together with the corre-
sponding axis model.

Table 2 provides descriptive data for NLC length measurements.
Correlations between pairs of contralateral NLC lengths ranged from 0.83 to 0.92 using the

same method, and from 0.54 to 0.99 among all six methods; all were significant (p = 0.05).
According to two factor repeated measures ANOVA, the effect of the method was significant
(Greenhouse-Geisser F(1.17, 20.97) = 65.34; p = 0.000) whereas that of laterality was not (F(1,
17) = 2.51; p = 0.13). Pairwise comparisons among methods indicated that the 3rd order poly-
nomial-based method differed significantly from all other methods (p<0.000).

Table 3 provides descriptive data for the NLC sectional area measurements.
Mean sectional areas obtained with the five methods were compared by repeated measures

ANOVA according to both method and laterality. Correlations between left and right measure-
ments with the same method were ranging from 0.30 to 0.63 using the same method (two sig-
nificant with p<0.01; three with p>0.05), and from 0.15 to 0.63 among all methods (only four
being significant with p<0.05). Results showed a significant main effect of method (Green-
house-Geisser F(1, 25, 21.30) = 68.34, p = 0.000) and pairwise comparisons of each method
with the polynomial-3 method indicated significant differences for the axial (F(1, 17) = 74.82;
p = 0.000), polygonal (F(1, 17) = 47.13; p = 0.000) and polynomial-2 (F(1, 17) = 4.63;
p = 0.046) and no significant difference with polynomial-4 (F(1, 17) = 0.42; p = 0.52).

Descriptive data for minimum NLC sectional area are provided in Table 4. Descriptive data
for depth of minimum NLC sectional area are provided in Table 5. Correlations between left
and right minimum NLC sectional area measurements in each subject range from 0.21 to 0.53
using the same method (being significant, p<0.05, for only two methods), and on the same
range among all methods (only five being significant, p<0.05). The main effect of method was
significant (Greenhouse-Geisser F(2, 17, 41.68) = 43.52, p = 0.000) and pairwise comparisons
with the polynomial-3 method revealed significant differences only for the axial (F(1, 17) =
59.53; p = 0.000), and non significant for polygonal (F(1, 17) = 0.78; p = 0.39) and polynomial-
2 (F(1, 17) = 1.00; p = 0.33) and polynomial-4 method (F(1, 17) = 0.15, p = 0.70).

Mean NLC volume was 215.19 mm3 (95% CI: 192.04–238.06). Median 213.1 mm3, Q25

161.93mm3, Q75 265.75 mm3.
Significant gender differences were detected for the measurements AxL (U = 57.5; p = 0.003;

median difference = 4.375 mm in favour of males) and SecA (U = 66; p = 0.004; median differ-
ence = 5.15 mm in favour of females).

Table 1. Polynomial models for the right NLCs of six subjects selected at random.

Patient rx
2 a x3 + b x2 + c x + d ry

2 e y3 + f y2 + g y + h zmin zmax Number
of slices

23 0.9975 0.0301 -0.4251 -2.8260 50.8315 0.9979 0.0157 -0.3379 1.5002 66.6736 7.8125 12.1875 7

26 0.9964 -0.0050 0.1820 -2.6980 35.6230 0.9115 -0.0039 0.0870 -0.5902 76.6122 1.5625 14.6875 21

17 0.9964 -0.0036 0.7154 -47.4757 1103.3619 0.9583 0.0016 -0.2846 16.4710 -225.7000 54.6875 67.8125 21

29 0.9967 -0.0047 0.2812 -6.0968 70.5200 0.9130 0.0014 -0.0614 0.8964 73.6686 10.9375 23.4375 20

19 0.9993 0.0001 0.0678 -3.1991 49.9476 0.9602 -0.0008 0.0618 -1.2999 78.7241 10.3125 20.3125 16

13 0.9898 -0.0424 3.5863 -101.5361 1.001.4566 0.9798 -0.0029 0.2722 -8.3017 166.9721 23.4375 30.9375 12

doi:10.1371/journal.pone.0155436.t001
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An example of the 3D reconstruction of the NLC is provided in Figs 1 and 5. Corresponding
virtual reality colour models allowing 3D rotation are available at www.drajanez.com/
nlc3Dmodels.

Data underlying the surface model of subject #17 are provided in S1 File; MATLAB pro-
grammes to get such model are provided in S2 File. The sequences of the centroids underlying
axis models of table 1 are provided in S3 File. Measurements automatically obtained of all our
variables are provided in S4 File.

Fig 5. Surface and axis models of NLCs: oblique and overhead views (subject #17).

doi:10.1371/journal.pone.0155436.g005
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Discussion
Computer tomography is a widely available imaging system that provides high-resolution
images based on tissue density. Epiphora caused by nasolacrimal duct obstruction accounts for
approximately 3% of ophthalmologic consultations and this has prompted an interest in NLC

Table 2. Descriptive data for NLC lengthmeasurements.

Mean Median Std. Deviation Percentiles

25 50 75

AxL 10.26 10.63 2.66 8.13 10.63 12.50

ExL 12.84 12.79 2.69 10.12 12.79 14.92

PoligL 14.74 14.43 3.04 11.82 14.43 17.01

Polyn4L 15.03 14.71 3.07 12.72 14.71 17.39

Polyn3L 14.80 14.40 3.07 12.59 14.40 17.01

Polyn2L 14.30 14.32 2.82 11.53 14.32 16.53

doi:10.1371/journal.pone.0155436.t002

Table 3. Descriptive data for the NLC sectional area measurements.

Mean Median Std. Deviation Percentiles

25 50 75

SecA 21.69 20.20 6.77 16.78 20.20 26.31

SecPoligA 15.15 13.98 4.36 12.63 13.98 17.41

SecPolynA2 11.77 11.77 2.82 10.48 11.77 14.04

SecPolynA3 11.43 11.00 2.93 9.88 11.00 13.67

SecPolynA4 11.56 11.00 3.24 9.67 11.00 13.88

doi:10.1371/journal.pone.0155436.t003

Table 4. Descriptive data for minimumNLC sectional area.

Mean Median Std. Deviation Percentiles

25 50 75

MinSecA 13.24 12.56 4.53 10.43 12.56 14.39

MinSecPoligA 8.69 9.09 3.35 5.95 9.09 10.62

MinSecPolyn2A 7.62 7.63 2.64 5.52 7.63 9.46

MinSecPolyn3A 7.40 7.57 2.69 5.03 7.57 8.75

MinSecPolyn4A 7.19 7.58 2.67 4.77 7.58 8.87

doi:10.1371/journal.pone.0155436.t004

Table 5. Descriptive data for depth of minimumNLC sectional area.

Mean Median Std. Deviation Percentiles

25 50 75

MinSecD 4.03 4.06 2.83 1.56 4.06 6.25

MinSecPoligD 7.85 7.63 3.82 5.44 7.63 11.24

MinSecPolyn2D 7.71 7.54 2.32 5.86 7.54 9.64

MinSecPolyn3D 8.19 8.31 3.58 5.51 8.31 11.25

MinSecPolyn4D 8.08 9.43 3.99 5.39 9.43 11.33

doi:10.1371/journal.pone.0155436.t005
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anatomy [1–9]. Although a hollow tube is clearly different from the in vivo situation of a canal
lined with mucosa, small differences in its diameter could influence tear flow and canal
obstruction [1–9]. Racial and gender differences in facial skull dimensions and therefore NLC
width have been used to explain the different incidence of nasolacrimal duct obstruction [1–9].

Bony NLC anatomy has been explored in cadaveric studies and using techniques such as X-
ray imaging or CT [1–9]. However, as far as we are aware, only Estes et al [9] have published a
3D reconstruction of the NLC obtained by computer assisted manual methods but no one has
yet been obtained with sufficient quality and by objective methods and without human
interaction.

Our automatic segmentation method based on a priori knowledge and HU values over-
comes serious challenges including: a small diameter of the tear ducts; extreme thinness of the
canal walls which are sometimes below voxel size Tao [17] and with low HU levels preventing
the use of conventional thresholding techniques alone; strong variability in the contrast of
canal boundary (Fig 6); a density varying inside the canal, especially when obstructed, often
approaching that of thin bones; variable CT procedures and acquisition parameters affecting
the geometry of CT volume and its voxels; and random HU fluctuation inherent to CT.

Being automatic it has several benefits over other methods: it fully exploits the information
provided by CT by determining sectional area in all slices containing the NLC; it avoids the
subjective nature of manual/visual tasks; the real area of the region is measured despite its
irregular shape avoiding geometrical approximations; and finally, it is faster than non-auto-
mated methods.

When adding the volumes of all voxels identified as comprising the NLC, positive and nega-
tive errors in some pixels, possibly arising from a partial volume effect or CT noise, will also be
summed. When CT resolution is high, the number of pixels containing this type of random
error will also be high, though according to the central limit theorem, positive and negative
errors within each NLC will cancel each other out.

The computation of morphometric variables related to the sectional areas and diameters of
the NLC is based on automatic determination of the NLC axis. Rather than using the CT axis
as reference, four estimates of the NLC axis are provided by our method: polygonal,

Fig 6. Wall thickness inhomogeneity in the nasolacrimal canals.

doi:10.1371/journal.pone.0155436.g006
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polynomial-2, polynomial-3 and polynomial-4 to calculate NLC length, sectional area (normal
to each axis) and diameter. The morphometric measurements obtained were normally
distributed.

The polynomial-3 model showed good fit to the data meaning that its length correctly
reflects that of the NLC and may be used as the gold standard for other methods. According to
our observations, methods based on the polygonal and polynomial-4 model could be consid-
ered equivalent though the polynomial-3 model has two benefits: it is less sensitive than the
polygonal model to random deviations in local axis regions due to random errors in HU values;
and it is also more parsimonious that the polynomial-4 model.

Our NLC mean lengths obtained with each axis determination method are within the range
of: 10 mm reported by Truchot et al [18], 12 mm, Groell et al [19], 12–18 mm, Francisco et al
[20], 21.9 mm, Tatlisumak et al [21] and 12.3 mm (men) and 10.8 mm (women), Ramey et al
[22].

The normal diameter of the bony NLC has been determined by several authors. Duke-Elder
[23] reported a transverse diameter of approximately 4.6 mm based on anatomical observa-
tions. Steinkogler [24] measured epoxy resin casts of macerated skulls reporting a transverse
diameter of 4.8 mm and anteroposterior diameter of 6.8 mm. Further reported figures include
a transverse diameter of 3–5 mm and anteroposterior diameter of 4–8 mm by Cowen and Hur-
witz [25]; diameters of 5.6 mm and 5.0 mm respectively in Asian patients measured on CT
images by Shigeta et al [2] and a mean minimum transverse diameter of 3.5 mm in 100 healthy
adults measured on axial CT images by Janssen et al [26].

In our study, sectional area determinations varied significantly according to the model
except when comparing polynomial-3 and -4 indicating a need to replace the conventional
axial model with a polynomial axis model, preferably a 3rd order model. Accordingly, NLC sec-
tional area should not be directly determined in axial CT slices because of a strong tendency to
overestimate this area. Our new polynomial method for assessing the sectional area of the NLC
has various advantages over conventional axial methods: objectiveness, repeatability, automa-
tion and exploiting all the information provided by the CT (instead of examining a few selected
points). Our model also provides an automatic estimation of the depth at which the minimum
sectional area is produced.

Some studies have shown gender differences in the bony NLC. Groessl et al [27] reported
that the lower nasolacrimal fossa and middle bony lacrimal duct are significantly smaller in
females than males. Janssen et al [26] argued that women had a significantly smaller minimum
NLC diameter (0.35 mm on average). Shigeta et al [2] described a significantly smaller bony
nasolacrimal canal in female patients; on average anteroposterior diameter was 0.6 mm
smaller, transverse diameter 0.3 mm smaller and sectional area 13% smaller. Surprisingly, we
only detected gender differences in length and sectional area when computed directly on CT
slices, using the conventional axial method.

In conclusion, we here present a new automated segmentation program that provides accu-
rate NLC length, sectional area and volume measurements on CT based on calculating the
canal's axis at each measuring point. We consider that this new method could be useful in cases
of NLC obstruction, especially in those with repeated treatment failure. Three-dimension mod-
els provide a realistic NLC representation that could be used to guide robotic surgery or custom
implants production. The fully automated measurement process has gained in objectivity, sen-
sitivity, reproducibility and speed compared to previous methods; consequently its versatility
will probably result in making NLC reconstruction easily performable in routine clinical prac-
tice whereas the more tedious previous NLC analysis were restricted to the field of research.
The method proposed here can be extended to other bony anatomical structures such as
intraosseous nerves and vessels, orbit, sinuses, inner ear, internal auditory canal, etc., being
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therefore useful in other medical specialities. The new methodology can be applied directly to
any tomographic study, regardless of manufacturer, CT technology, acquisition (multislice,
helical, etc.), reconstruction kernel, voxel size, image resolution, slice spacing and the overlap
or gaps between consecutive slices. In future studies, this method can be used to compare the
NLC dimensions of subjects with primary acquired NLC obstruction with that of healthy vol-
unteers. Furthermore, we consider it to be a promising tool to determine the association
between the dimensions of the NLC and the outcome of any therapeutic intervention per-
formed to treat its pathology.
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