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1  | INTRODUC TION

The ability of organisms to defend against parasitic infections is 
central in determining their fitness. Both parasite infectivity and 
host resistance show marked genetic variation (Carius et al., 2001; 
Laine,  2007; Penczykowski et  al.,  2016; Seppälä et  al.,  2012; Susi 
& Laine, 2017; Vale & Little, 2009), and the outcome of infections 
is typically determined by complex interactions between host and 
parasite genotypes, GHost × GParasite (Ben-Ami et  al.,  2008; Carius 

et al., 2001; Grech et al., 2006; Susi et al., 2015). However, mech-
anisms maintaining such variation are not well known, but could 
include, for example, interactions between infections of different 
parasite species (Seppälä et  al.,  2009) and variation in infection 
pressure experienced by the hosts (Eizaguirre et al., 2009). Indeed, 
parasitism typically shows significant spatiotemporal variation, for 
example, because of aggregation of infected individuals or parasite 
intermediate host releasing the infective stages (Byers et al., 2008; 
Faltýnková et al., 2008; Jokela & Lively, 1995; Jousimo et al., 2014; 
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Abstract
Genetic variation in resistance against parasite infections is a predominant feature 
in host–parasite systems. However, mechanisms maintaining genetic polymorphism 
in resistance in natural host populations are generally poorly known. We explored 
whether differences in natural infection pressure between resource-based morphs 
of Arctic charr (Salvelinus alpinus) have resulted in differentiation in resistance pro-
files. We experimentally exposed offspring of two morphs from Lake Þingvallavatn 
(Iceland), the pelagic planktivorous charr (“murta”) and the large benthivorous charr 
(“kuðungableikja”), to their common parasite, eye fluke Diplostomum baeri, infect-
ing the eye humor. We found that there were no differences in resistance between 
the morphs, but clear differences among families within each morph. Moreover, we 
found suggestive evidence of resistance of offspring within families being positively 
correlated with the parasite load of the father, but not with that of the mother. Our 
results suggest that the inherited basis of parasite resistance in this system is likely to 
be related to variation among host individuals within each morph rather than ecologi-
cal factors driving divergent resistance profiles at morph level. Overall, this may have 
implications for evolution of resistance through processes such as sexual selection.
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Karvonen et  al.,  2005) and seasonal variation in parasite trans-
mission (Karvonen et al., 2004; Soubeyrand et al., 2009; Taskinen 
et al., 1994). Thus, populations of a host species living in different 
microhabitats may be differently exposed to parasites. There is a 
growing body of literature demonstrating divergent intraspecific 
parasitism, particularly between morphs or ecotypes of freshwater 
fishes (Blais et al., 2007; Eizaguirre et al., 2011; Hablutzel et al., 2016; 
Karvonen, Kristjánsson, et al., 2013; Karvonen et al., 2015; Karvonen 
et al., 2013, 2018; Knudsen et al., 1997, 2003; Maan et al., 2008; 
MacColl, 2009; Natsopoulou et al., 2012; Raeymaekers et al., 2013), 
which on an evolutionary time scale may result in divergent evolu-
tion of resistance profiles of the populations. For example, work on 
threespine stickleback (Gasterosteus aculeatus) has shown that pro-
files of the major histocompatibility complex (MHC) immunogenes 
may readily diverge between populations exposed to different levels 
of parasitism (Eizaguirre et al., 2009, 2012a) and that this can take 
place rapidly within just few generations (Eizaguirre et al., 2012b).

Parasitism varies among individuals within populations, as some 
hosts are more susceptible to infections and/or become more heav-
ily exposed to parasites than others (Karvonen et  al.,  2004; Shaw 
& Dobson,  1995). Susceptibility, or higher parasite resistance, in 
particular, may be genetically determined and offspring of resistant 
individuals may inherit these qualities. This idea is captured under 
the classical theory of sexual selection. For example, individuals with 
genes that influence higher parasite resistance may advertise their 
vigor to potential mates through sexual ornamentation (Hamilton 
& Zuk,  1982). Such ornaments are common, for example, in many 
species of fishes (Barber et al., 2001; Houde & Torio, 1992; Maan 
et al., 2006) and, although more common in males, ornaments are 
also often found in females (Kekäläinen et al., 2010). However, the 
overall evidence linking such inherited features of mother or fa-
ther to the quality of their offspring in fish is unequivocal (Eilertsen 
et al., 2009; Figenschou et al., 2007; Huuskonen et al., 2009; Jacob 
et  al.,  2007; Janhunen et  al.,  2011; Janhunen et  al.,  2011; Polacik 
& Reichard,  2009; Rideout et  al.,  2004; Rudolfsen et  al.,  2005; 
Wedekind et al., 2001, 2008). For example, relatively high maternal 
effects following allocation of resources to eggs are often important 
in this respect (Janhunen et al., 2010; Johnston et al., 2007). Similar 
to other life-history traits, effects of parental genetic background 
on parasite resistance of offspring are also unclear. For example, 
egg survival in whitefish (Coregonus sp.) during bacterial infection 
has been shown to be positively associated with the breeding or-
namentation of the males, suggesting inherited effects (Wedekind 
et  al.,  2001). Further, experimental exposures in the same system 
showed that the importance of the maternal and paternal effects 
depended on the bacterial dosage (von Siebenthal et al., 2009). In 
contrast, male roach (Rutilus rutilus) with lower parasite burdens pro-
duced offspring with lower survival (Kortet et al., 2004) whereas in 
Arctic charr (Salvelinus alpinus) offspring parasite resistance varied 
between females sired by the same male (Kortet et  al.,  2017). In 
the present work, we tested whether parasite resistance differed 
between well-diverged sympatric morphs, and families within the 
morphs, of Arctic charr from Lake Þingvallavatn, Iceland.

Arctic charr is a salmonid fish species, which has colonized a 
number of lakes in the Arctic and Subarctic following the last gla-
cial period. It has become one of the hallmark species of rapid adap-
tive radiation and speciation among freshwater fishes with several 
northern lake systems now harboring two or more sympatric or 
parapatric morphs (Gíslason et al., 1999; Jónsson & Skúlason, 2000; 
Knudsen et al., 1997; Skúlason et al., 1999). These morphs typically 
show specialized morphological and ecological features including 
differences in habitats, feeding, life-history traits, and reproduction 
(Skúlason et  al.,  1999). The largest lake in Iceland, Þingvallavatn, 
currently has four distinct morphs of Arctic charr (Figures 1 and 2), 
each with a specialized habitat and timing of reproduction (Jónsson 
et al., 1988; Malmquist et al., 1992; Sandlund et al., 1992; Skúlason 
et al., 1989). The two benthic morphs, the large and small benthi-
vorous charr (Figures  1 and 2), inhabit littoral zones of the lake 
feeding mainly on benthic invertebrates such as snails (Malmquist 
et al., 1992). The most abundant morph is the pelagic planktivorous 
charr “murta” (Figure 2), which feeds mainly on zooplankton already 
from early age (Sandlund et  al.,  1992). The fourth morph is the 
large piscivorous charr (Figure 1) that after reaching a certain size 
feeds mainly on stickleback, but also to a lesser degree on smaller 
charr (Malmquist et al., 1992). Due to the differences in habitat and 
feeding ecology, these morphs are differentially exposed to para-
sites (Frandsen et al., 1989). For example, parasite communities of 
the benthic morphs are dominated by trematodes transmitted from 
benthic snails. On the other hand, the pelagic morphs harbor fewer 
trematodes, but higher numbers of cestodes, transmitted via zoo-
plankton (Frandsen et al., 1989).

F I G U R E  1   Lake Þingvallavatn in Iceland has four morphs of 
Arctic charr (Salvelinus alpinus), each with a distinct phenotype, 
habitat specialization, and life-history characteristics. The small 
benthivorous morph (top) is found in the littoral zone and feeds 
on benthic invertebrates. The pelagic planktivorous morph, 
“murta” (middle), is the most abundant morph in the lake. Larger 
individuals of the piscivorous morph (bottom) feed on sticklebacks 
and small charr. The fourth morph, the large benthivorous morph 
(Figure 2, bottom), inhabits the littoral zone of the lake and feeds 
predominantly on benthic invertebrates, similar to the small 
benthivorous morph
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Here, we explored whether the resistance profiles differ within 
and between the large benthivorous and the pelagic planktivorous 
charr from Þingvallavatn. We experimentally exposed a number of 
juveniles belonging to different families of both morphs to their com-
mon trematode parasite, Diplostomum baeri. The parasite is transmit-
ted to fish as free-living clonal larvae (cercariae) that are produced 
asexually in the snail intermediate hosts. Cercariae enter the fish and 
migrate to the eye humor, where they develop to metacercariae. We 
were particularly interested if the differences in the degree of expo-
sure between the morphs in the wild (Frandsen et al., 1989) have re-
sulted in differentiation in their resistance to the infection. Further, 
we compared the magnitude of variation in resistance between the 
morphs and among families within morphs and contrasted the para-
site numbers that the parental fish had acquired in the wild to that of 
their offspring in the experimental exposure. We expected (1) that 

the benthivorous charr would show higher resistance to infection 
as it experiences higher infection pressure from this parasite in the 
wild, compared with the planktivorous charr; and (2) that parasite 
numbers of the offspring families would be positively correlated 
with parasite numbers of the parental fish.

2  | MATERIAL S AND METHODS

Wild mature Arctic charr were caught using gill nets in Lake 
Þingvallavatn during the time of spawning. Seven females and five 
males of the large benthivorous charr were caught on the 6th of 
August 2015 at Ólafsdráttur (N 64 13.927 W 021 03.12). Eight fe-
males and five males of the planktivorous charr were caught on the 
9th of October 2015 in the bay North of the Mjóanes peninsula. 
Families were created by mixing eggs and sperm of each morph by 
pairing one female with one male, with some of the males used for 
two females. Fertilized eggs were water hardened in the field before 
transport to Verið, Hólar University rearing facilities in Sauðárkrókur, 
North Iceland. Until first feeding (approximately 5 months from fer-
tilization), embryos were raised in family groups in mesh cages main-
tained in darkness in a vertical shelf incubator, as described in Beck 
et al. (2019). Before the onset of first feeding, offspring were trans-
ferred to 20-L tanks with continuous water flow (5.16°C ± SD 0.4) 
and fed with commercial aquaculture fish food. All tanks received 
water from the same water source and were located in the same 
room. The tanks were rotated regularly and randomly to minimize 
possible tank effects. Fish were maintained in these conditions until 
August 2016, when they were 10–12 months old.

Before the parasite exposure, water temperature in the rearing 
tanks was slowly brought up to 15°C, to ensure infectivity of the 
parasite (Chappell et al., 1994; Karvonen et al., 2006). Cercariae of 
D. baeri were produced from 23 naturally infected Lymnaea peregra 

F I G U R E  2   Pelagic planktivorous (top) and large benthivorous 
(bottom) morphs of Arctic charr (Salvelinus alpinus) from Lake 
Þingvallavatn, investigated for infections of Diplostomum baeri in 
the eye humor in the present study

Morph Family
N fish 
exposed

Mean length 
(mm) ± SE

Range in number 
of parasites

Benthic 116 39 56.28 ± 0.42 11–48

118 40 53.50 ± 0.42 7–40

119 37 45.43 ± 0.50 9–37

122 40 54.80 ± 0.46 13–46

123 37 41.59 ± 0.55 7–44

124 39 48.03 ± 0.53 10–37

128 30 54.37 ± 0.62 8–56

Pelagic 2 15 53.13 ± 0.97 14–32

3 39 49.46 ± 0.34 13–40

4 4 46.25 ± 0.63 22–57

5 40 46.55 ± 0.39 4–40

8 40 51.28 ± 0.40 13–48

9 40 52.78 ± 0.42 8–45

12 6 48.00 ± 1.67 6–29

18 19 48.79 ± 0.59 14–41

TA B L E  1   Number of fish, mean total 
body length (±SE), and range in number 
of parasites (min-max) in families of large 
benthivorous and pelagic planktivorous 
morphs of Arctic charr (Salvelinus alpinus) 
from Lake Þingvallavatn, exposed 
experimentally to the trematode 
Diplostomum baeri



     |  14027KARVONEN et al.

snails collected from nearby lakes. Parasites were initially identified 
from cercarial morphology, and the site of infection in the eye humor 
of fish was confirmed using pre-trial infections. It should be noted, 
however, that “Diplostomum baeri” is a species complex that includes 
several species, identifiable using molecular analysis (Blasco-Costa 
et al., 2014). We used the species name “D. baeri” in this study to 
refer to infections in the eye humor, but recognize that more than 
one species of the species complex may have been present. Snails 
were allowed to produce cercariae for 3 hr at 20°C and the suspen-
sions from the snails were pooled. Cercarial density in the pooled 
suspension was determined from 10  ×  1  ml samples. A maximum 
number of 40 fish from each morph-family combination (Table  1) 
were individually exposed to the parasite for 30 min in containers 
with 0.5 L of water (15°C) and 150 parasite cercariae. After the ex-
posure, fish were maintained in replicated containers for a minimum 
of 24 hr to allow parasite establishment (Louhi et al., 2015). No mor-
tality of fish took place during the temperature increase, or during or 
after the parasite exposure.

All fish were subsequently euthanized with an overdose 
(600 ppm) of 2-phenoxyethanol, measured for total length and dis-
sected for infections in the eye humor. Eyes of all parent fish were 
also dissected for infections in the humor. There were no infections 
in eye lenses in any of the fish. Data on the experimental infection 
were analyzed using a mixed-model ANCOVA with fish morph as 
a fixed factor, family nested under fish morph as a random factor, 
and fish length as a covariate. Parasite numbers of the parents were 
analyzed using GLM with a negative binomial probability distribu-
tion and a log-link function, and fish morph and gender as factors, 
and fish length as a covariate. To contrast infections in the parents 
with those of the offspring, parasite numbers of the planktivorous 
and benthivorous females and males (standardized residuals from 
length) separately were plotted against the predicted mean number 
of parasites in the offspring families (predictions from the ANCOVA 
model), and the anticipated positive relationships were analyzed 
using one-tailed Spearman correlations. Furthermore, to test for 
overall positive pattern across females and males of both morphs, 
Fisher's meta-analysis (Sokal & Rohlf, 1998) was used to combine the 
gender-specific correlations. This analysis sums the ln-transformed 
one-tailed p-values of each correlation (2, 1 per morph; in case of a 
negative correlation, the p-value for a positive association was cal-
culated as 1-p), multiplies it by −2, and compares the resulting value 
to a chi-square distribution with df = 4 (2 × the number of tests). 
All tests were conducted using IBM SPSS 26 package. All experi-
mental procedures conformed to the legislation of Iceland and were 
conducted under permission from the site of research (Verið- Hólar 
University rearing facilities).

3  | RESULTS

The mean number of D. baeri parasites differed among the families of 
the benthivorous and the planktivorous charr following the experi-
mental exposure (nested ANCOVA: F13,449 = 4.336, p <  .001), but 

overall they did not differ between the charr morphs (predicted mean 
number of parasites ± SE = 22.54 ± 0.49 and 25.40 ± 0.79 for the 
benthivorous and planktivorous charr, respectively; F1,16.08 = 2.880, 
p = .109; Figure 3). The effect of fish length was also not significant 
(F1,449 = 2.157, p =  .143). Exclusion of the two planktivorous charr 
families with lower sample sizes (families 4 and 12; Table 1) did not 
change the results. In two of the five pairs of females sired by the 
same male, offspring parasite numbers differed between the fami-
lies (t test: t68 = 3.123, p = .003 (benthivorous charr families 118 and 
128); t42 = 3.745, p <  .001 (planktivorous charr families 4 and 5)), 
suggesting differences in resistance of the offspring of the same 
male depending on the female.

There was a difference in mean parasite numbers between 
the large benthivorous and the planktivorous charr parents (GLM: 
Wald = 8.225, p = .004 (morph)), but no differences between males 
and females (Wald = 0.007, p =  .932 (sex), Wald = 0.002, p =  .967 
(morph × sex)). Mean parasite numbers (±SE) in the eyes of the par-
ent fish were 530.4 ± 82.3 (range 328–819) and 520.8 ± 37.1 (394–
604) for females and males of the benthivorous charr, respectively, 
and 164.1 ± 19.9 (107–271) and 155.8 ± 52.0 (33–323) for the fe-
males and males of the planktivorous charr, respectively.

When contrasting parasite numbers of the parents with those of 
their offspring, the relationship was positive for planktivorous males 
(one-tailed Spearman correlation: r  =  0.691, n  =  8, p  =  .029), and 
positive, but not significant, for benthivorous males (r = 0.291, n = 7, 
p = .263; Figure 4), suggesting that offspring of planktivorous males 
with higher parasite numbers were more susceptible to infection. 
The combined relationship between the morphs, however, was also 
significant (χ2 = 9.75, df = 4, p =  .045), suggesting positive overall 
relationship between parasite numbers of the offspring and those 
of the males. Averaging parasite numbers across families with the 
repeated use of males did not change the direction of the relation-
ships (planktivorous males: r = 0.800, n = 5, p = .052; combined test 

F I G U R E  3   Predicted mean number (±SE) of Diplostomum baeri in 
eye humor of families of large benthivorous (open bars) and pelagic 
planktivorous (filled bars) morphs of Arctic charr (Salvelinus alpinus) 
from Lake Þingvallavatn following an experimental exposure to the 
parasite. Predictions are from an ANCOVA model using fish morph 
as a fixed factor, fish family nested within morph as a random 
factor, and fish length as a covariate
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for a positive relationship: χ2 = 8.24, df = 4, p = .083). However, no 
such positive relationship was observed for females (χ2 = 0.96, df = 
4, p = .916; Figure 4).

4  | DISCUSSION

Ecological differences in habitat use and feeding ecology of freshwa-
ter fishes can result in differences in infection pressures from para-
sites (Karvonen et al., 2018; Knudsen et al., 1997; Maan et al., 2008; 
MacColl,  2009; Raeymaekers et  al.,  2013), which can drive diver-
gent evolution of resistance profiles in host populations (Eizaguirre 
et al., 2012a, 2012b). Typically, this is seen as higher allocation to 
defense in populations experiencing higher infection levels (Kalbe 
& Kurtz,  2006; Piecyk et  al.,  2019; Scharsack et  al.,  2016; Weber 
et  al.,  2017). We investigated resistance in two sympatric morphs 
of Arctic charr from a large Icelandic lake, Þingvallavatn, where the 
morphs experience different levels of infections from their common 

parasite, Diplostomum baeri (Frandsen et al., 1989). We experimen-
tally tested if the anticipated differences in resistance were better 
explained at morph or family level. Contrary to our expectation, we 
found no difference in resistance between the benthic and pelagic 
morphs. Instead, we observed significant variation in resistance 
among the families within the morphs. Furthermore, the results sug-
gest that this variation was positively correlated with the parasite 
numbers of the father, but not the mother, suggesting that offspring 
could benefit from inherited effects from their fathers. This result 
was evident particularly in the planktivorous morph, but also as an 
overall relationship calculated across the morphs.

Differences in feeding ecology of the large benthivorous and 
the planktivorous charr in Þingvallavatn (Malmquist et  al.,  1992) 
are likely the main reasons for their different parasite infections 
(Frandsen et al., 1989). While the benthivorous charr feeds predom-
inately on benthic invertebrates such as snails, the planktivorous 
charr feeds on zooplankton (Malmquist et  al.,  1992). It is the spa-
tial overlap of the benthivorous charr with the snails, intermediate 
hosts of the Diplostomum trematodes, which is likely to result in their 
higher exposure. Indeed, we found a significant difference in num-
bers of Diplostomum in the parental fish, with the benthivorous charr 
harboring, on average, over three times higher numbers compared to 
the planktivorous charr. This is in accordance with the earlier results 
in Frandsen et al. (1989) on parasite fauna in these morphs. However, 
the fact that we did not find a difference in resistance between the 
morphs progeny may be due to the planktivorous charr neverthe-
less becoming exposed to the parasite to a relatively high degree. 
For example, evidence suggesting divergent resistance profiles 
between lake and river ecotypes of threespine stickleback (Kalbe 
& Kurtz,  2006) typically come from systems where differences in 
infections between the ecotypes are substantial, with the river eco-
types showing no or very low infection (Kalbe et al. (2002); see also 
Eizaguirre et al. (2012a); Karvonen et al. (2015)). Thus, it is possible 
that potential divergent evolution in resistance in the present system 
would require stronger differentiation in infection rates, particularly 
so that one of the populations would be nearly free from infection. 
At higher infection levels, on the other hand, possible differences 
in resistance, if any, could be detected on an individual rather than 
population level.

Indeed, we found that the offspring of the less-infected fathers 
tended to have higher parasite resistance, while no such relation-
ship was observed for the mothers. The positive relationship for the 
fathers suggests that the offspring could benefit from resistance 
of their fathers in accordance with the “good genes” hypothesis of 
sexual selection (Hamilton & Zuk, 1982). Overall, the evidence link-
ing male quality and the quality of their offspring in Arctic charr is 
currently equivocal (see Introduction for examples of other sys-
tems). For example, some studies have suggested a positive link be-
tween male quality and characteristics of their offspring (Eilertsen 
et  al.,  2009; Masvaer et  al.,  2004; Pakkasmaa et  al.,  2006), while 
others have not found such a relationship (Figenschou et al., 2007; 
Janhunen, Kekäläinen, et al., 2011; Janhunen, Peuhkuri, et al., 2011). 
Moreover, in a study exploring the effect of parental background 

F I G U R E  4   Relationships between the predicted numbers 
of Diplostomum baeri parasites in the offspring families of large 
benthivorous (open dots) and pelagic planktivorous (filled dots) 
morphs of Arctic charr from Lake Þingvallavatn (y-axis, predictions 
from an ANCOVA model) and the standardized residual parasite 
numbers from length of the wild-caught parent females (a) and 
males (b). The fitted lines (dashed line for benthivorous morph, 
solid line for pelagic morph) are linear regressions indicating the 
direction of the relationships

(a)

15

20

25

30

35

40

45

-1.5 -1 -0.5 0 0.5 1 1.5 2

P
ar

as
ite

s 
in

 o
ffs

pr
in

g

Residual parasite number from length in female

(b)

15

20

25

30

35

40

45

-1.5 -1 -0.5 0 0.5 1 1.5 2

P
ar

as
ite

s 
in

 o
ffs

pr
in

g

Residual parasite number from length in male



     |  14029KARVONEN et al.

on resistance of charr against Diplostomum spp. infecting eye lenses, 
parasite taxa closely related to D. baeri, Kortet et al.  (2017) found 
that resistance at family level was better explained by the female 
than the male effects. However, the study used aquaculture brood 
fish and hence did not explore interactions between parental infec-
tions and those of the offspring.

The present data from offspring of wild parent fish suggest that 
parasite resistance could potentially be influenced by the infection 
status of the father. It should be noted, however, that some families 
of the planktivorous morph had relatively low sample sizes and the 
observed patterns were driven to some extent by such data points. 
Some of the males were also used to fertilize eggs from two females, 
although the direction of the patterns remained after averaging be-
tween these families. Moreover, interindividual differences in para-
site numbers in wild-caught hosts can result from both susceptibility 
and exposure (Karvonen et al., 2004; Shaw & Dobson, 1995), and 
therefore, parasite numbers of the parental fish do not necessarily 
reflect resistance alone. Thus, the present evidence linking parasite 
numbers of the parents and those of the offspring should be inter-
preted as suggestive. Interestingly, in some of the cases where the 
same male was used twice, the resistance of the offspring differed 
between the two families (see also Kortet et  al.  (2017)). This sug-
gests that not all females would benefit from mating with a male with 
a lower level of infection, but the overall resistance could depend on 
the compatibility of the male and female (Huuskonen et al., 2009; 
Kekäläinen et al., 2010). In many of the above examples on Arctic 
charr, male quality is also linked with dominance or brightness of 
their breeding coloration (see also Skarstein and Folstad (1996); 
Johansen et  al.  (2019)). Although we did not score such variables, 
their possible connection with parasite resistance in parents and 
offspring in this system warrants interesting further investigations.
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