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Abstract

Human bone marrow mesenchymal stem cells (hBMSCs) are widely used cell source for clinical bone regeneration.
Achieving the greatest therapeutic effect is dependent on the osteogenic differentiation potential of the stem cells to be
implanted. However, there are still no practical methods to characterize such potential non-invasively or previously.
Monitoring cellular morphology is a practical and non-invasive approach for evaluating osteogenic potential. Unfortunately,
such image-based approaches had been historically qualitative and requiring experienced interpretation. By combining the
non-invasive attributes of microscopy with the latest technology allowing higher throughput and quantitative imaging
metrics, we studied the applicability of morphometric features to quantitatively predict cellular osteogenic potential. We
applied computational machine learning, combining cell morphology features with their corresponding biochemical
osteogenic assay results, to develop prediction model of osteogenic differentiation. Using a dataset of 9,990 images
automatically acquired by BioStation CT during osteogenic differentiation culture of hBMSCs, 666 morphometric features
were extracted as parameters. Two commonly used osteogenic markers, alkaline phosphatase (ALP) activity and calcium
deposition were measured experimentally, and used as the true biological differentiation status to validate the prediction
accuracy. Using time-course morphological features throughout differentiation culture, the prediction results highly
correlated with the experimentally defined differentiation marker values (R.0.89 for both marker predictions). The clinical
applicability of our morphology-based prediction was further examined with two scenarios: one using only historical cell
images and the other using both historical images together with the patient’s own cell images to predict a new patient’s
cellular potential. The prediction accuracy was found to be greatly enhanced by incorporation of patients’ own cell features
in the modeling, indicating the practical strategy for clinical usage. Consequently, our results provide strong evidence for
the feasibility of using a quantitative time series of phase-contrast cellular morphology for non-invasive cell quality
prediction in regenerative medicine.
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Introduction

Mesenchymal stem cells (MSCs) are a useful cell source for

tissue engineering and regenerative medicine of various tissues

because of their multi-lineage differentiation capacity (e.g.,

osteogenic, chondrogenic, adipogenic, neurogenic, and myogenic)

[1–3]. Although MSCs can be harvested from various tissues,

including adipose tissue and dental pulp, bone marrow derived

MSCs (BMSCs) have a well-described in vivo bone-forming

capacity and are widely used for clinical bone regenerative

therapies [4–6]. Several groups, including ours, have been

successful in clinical bone tissue engineering using human bone

marrow mesenchymal stem cells (hBMSCs) [7–9]. In spite of

documented clinical successes of bone regeneration with hBMSCs,
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robust therapeutic efficacy able to withstand the large variation

among patients remains a challenge. Therefore, practical and

effective cell-quality assurance methods are a necessary approach

to address the unmet need of minimizing variability in patient

outcomes.

Previous works aimed at characterizing BMSC osteogenic

potential have mainly focused on methods that damage cells (e.g.,

staining, gene expression, etc.) [10]. These conventional tech-

niques limit clinical translation in two ways. First, the destructive

nature of the measurements consumes cellular material that would

otherwise be useful for therapy. Second, the sample measurements

are terminal endpoints, in part due to the irreversible damage

incurred by the cells from the measurement procedure. As a result,

repeated measurement on the same cellular sample is not possible

and longitudinal sampling consumes more material.

Currently, the daily monitoring of cellular morphology by

microscopy is combined with minimum sampling for biochemical

markers to serve as the routine cellular quality assessment during

the expansion culture process. Qualitative microscopic examina-

tion and the consumptive nature of the biochemical assays impose

a limit on the predictive control currently available in clinical

practice. A quantitative, non-invasive method for predicting

cellular osteogenic potential and quality is needed to better

anticipate clinical outcomes.

Cellular morphology has historically been used as an important

indicator to characterize present and assess cell quality. Several

reports describe correlations between osteogenic differentiation

potential and cellular morphology. Kelly et al. have reported that

cell geometry is highly correlated with differentiation into

osteogenic lineages [11]. Takagi et al. have also reported that the

cell roundness of hBMSCs is highly correlated with the expression

of osteogenic differentiation marker genes [12]. In addition to the

above examples that match morphology and cell potential, there

are increasing numbers of reports describing image-based cell

assessment methods. The popularity of fluorescence-labeled

imaging methods in high content cellular screening has outpaced

methods with non-labeled image-based assessment; however these

approaches retain some technical drawbacks, which do not

necessarily improve upon the non-labeled methods [13–16].

In this study, we aimed to demonstrate the efficacy of the non-

invasive prediction model, which only uses cellular morphology

features to forecast the osteogenic differentiation potential of

hBMSCs. Specifically, the outcomes of two biochemical osteo-

genic markers were quantitatively forecast by two types of

prediction models: (1) the alkaline phosphatase (ALP) activity

14 days after differentiation, designated as ‘‘D14_ALP model’’,

and (2) the calcium deposition rate 21 days after differentiation,

designated as ‘‘D21_Ca model’’. ALP activity is a BMSC

differentiation marker; however measuring ALP activity alone is

not sufficient for predicting in vivo bone formation. Compared to

ALP, calcium deposition rate is an osteogenic differentiation

marker that highly correlates with in vivo bone formation.

However, since calcium deposition is a late phenotypic marker,

which appears beyond the optimal implantation stage, it is not

commonly applied as a clinically useful marker. Overall, it is

impossible to measure both markers with the same cell sample or

quantitatively predict the measurement results using conventional

methods.

To advance this field, we aimed to investigate whether a

morphology-based prediction model is capable of quantitatively

predicting both ALP activity and calcium deposition rate. Further

on, to demonstrate the clinical feasibility of our resulting

morphology-based prediction models we examined practical

considerations for use in the clinic in order to predict osteogenic

potential for new patients scheduled for cell therapy. Two

simulation scenarios were carefully examined: (Scenario I)

Prediction of osteogenic differentiation potential of a new patient’s

cells by a model trained with historical patient data; (Scenario II)

Prediction of osteogenic differentiation potential of a new patient’s

cells by a combination of historical patient data and partial culture

imaging data from the early stage expansion of the new patient’s

own cells.

Figure 1. Schematic illustration of the experimental scheme for the prediction of osteogenic differentiation potential using
multiple and time-course morphological features. hBMSCs were cultured in non-induction medium in first 4 days, then the medium was
replaced with osteogenic induction medium only for the Induction sample. From day 0 to day 14, cell images were automatically acquired by
BioStation CT every 8 hours. ALP activity and calcium deposition rates were evaluated on days 14 and 21, respectively. Using multiple morphological
features covering 2 weeks culture, two types of hBMSC osteogenic differentiation evaluation results were predicted by individual prediction models.
doi:10.1371/journal.pone.0055082.g001

Morphology-Based Prediction of Differentiation
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Results

Biological/morphological changes during osteogenic
differentiation culture

hBMSCs were either cultured in differentiation induction

medium or in non-induction medium according to the protocol

illustrated in Fig. 1, which was based on the clinical jaw bone

therapy protocol used by our group [7]. Three lots of cells,

passaged three times per lot, were used to assess ‘‘patient-derived

variance’’ and ‘‘processing-derived variance.’’ After the image

acquisition period during differentiation culture, ALP activity was

measured from the same well that the images were acquired. After

an additional week of differentiation culture, calcium deposition

rate was quantified.

All cell lots at all passages in the induction groups showed a

clear increase in ALP activity compared to the control groups

(Fig. 2–A). The calcium deposition rate was also significantly

higher in the induction group than the control group among all

lots and all passages (Fig. 2–B). However, greater variation was

observed in the calcium deposition assays compared to the ALP

assays. This result reflects the fact that ALP activity measurements

add information of osteognic differentiation, but does not qualify

as a marker of further osteogenic maturation potential even in in

vitro.

In contrast to biochemical measurements, which exhibited a

noticeable pattern after several weeks of culture, a signature

pattern using morphological measurements was found within

7 days of differentiation culture (Fig. 3). For all cell lots at the

Figure 2. Experimentally determined biological results after the osteogenic differentiation. A: Experimentally determined ALP activity
rate on day 14 of differentiation. B: Experimentally determined calcium deposition rate on day 21 of differentiation.
doi:10.1371/journal.pone.0055082.g002

Figure 3. Phase contrast raw image from BioStation CT and its
processed image. The images of beginning (day 1), middle (day 3 and
7), and the end (day 13) in the induction period of Lot 1 are indicated as
examples. Raw images were binarized with MetaMorph.
doi:10.1371/journal.pone.0055082.g003

Morphology-Based Prediction of Differentiation
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7 day time point, cell morphology in the induction group was

observed as flat and spread in multiple two dimensional directions,

as compared to the fibroblast-like sharp spindle shape of the

control group. By summarizing the quantitative morphological

changes in all cells under the same culture conditions through

image analysis, an early indication of the cellular phenotype was

apparent. For some morphological features, such as Elliptical form

factor (the ratio of the object’s width to its length) or Fiber breadth

(the width of an object modified as a straight fiber), a statistically

significant difference (p,0.01) between induction and control

groups could be identified at a very early culture stage (Fig. 4).

Elliptical form factor of Lot 1 was significantly different (P,0.001)

from day zero at day three of differentiation culture and then

throughout the differentiation period. Although these types of

morphological differences suggest a relationship to osteogenic

induction, they are insufficient to quantitatively predict the final

cellular state. To improve predictive power, a machine learning

approach was taken to construct a computational model for

quantitative prediction and determine the best combination of

morphological features to use.

Prediction of osteogenic differentiation potential using
multiple and time-course morphological features

Standard practice for bone regeneration therapy is to start by

expanding a new patient’s cell material to a certain yield, then

applies an osteogenic differentiation protocol up until the day of

therapy. Variations in the quality of a new patient’s starting

material can be exacerbated by the stresses of cellular expansion.

For these reasons a model for characterizing the regenerative

capacity of a patient’s cell source, including quality, yield and most

importantly osteogenic potential, would add tremendous value to

current standard practice.

Two scenarios were designed to simulate anticipated clinical

situations available for applying morphology-based prediction

models to assess new patient cellular quality. Scenario I: Prediction

of new patient BMSC osteogenic potential using a model trained

with historical patient data (Fig. 5–A). Scenario II: Prediction of

new patient BMSC osteogenic potential using a model trained

with historical patient data in addition to data derived from the

new patient material (Fig. 5–B). The accuracies of both D14_ALP

and D21_Ca models were evaluated in each scenario. Nine

morphological features were evaluated from 37 time points over

14 days and complied from 666 image-based input features. The

Figure 4. Time series changes of characteristic morphological features. From the 9 morphological features measured, elliptical form factor
(A) and fiber breadth (B) of Lot 1 are indicated as representative examples. The symbols indicate the mean value of each morphological feature from
all cells in one condition (3 wells 65 view fields). Roughly, 4,000 to 40,000 cells were measured for the mean. Standard deviations are shown as error
bars.
doi:10.1371/journal.pone.0055082.g004

Morphology-Based Prediction of Differentiation
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corresponding biochemical differentiation markers from each of

the 54 samples were also evaluated. We selected Ridge regression

as the machine learning modeling method for linking morpholog-

ical features to the biomarker measurement results [17]. This

method was chosen since Ridge regression is a type of standard

regression model that eliminates the multicolinearity problem in

multivariate models [18].

Scenario I: New patient prediction scheme. The new

patient prediction scheme is designed to simulate the clinical

situation where evaluating a new patient’s cell quality can be

accomplished quickly and reliably (Fig. 5–A). With this scheme,

the prediction model can be prepared previously by historical

image data from other patients. This model aspires to require no

previous data from the new patient.

The prediction accuracies of the D14_ALP and the D21_Ca

models are shown in Table 1 and, Fig. 6 (see also Fig. 7 and

Table S1 for detailed data). From both prediction results, the

correlation coefficients indicated that time-course morphological

features of BMSCs during differentiation correlate with the

experimentally obtained osteogenic marker values. The average

Figure 5. Schematic illustration of two scenarios examined to simulate clinical feasibility. A: (Scenario I) New patient prediction scheme:
Trained by historical patient dataset only. Images from all passages of patient 3 were used for prediction. B: (Scenario II) Ongoing patient prediction
scheme: Trained by historical patient datasets and a partial dataset from the new patient. For example, for the prediction of cell potential of patient 3,
Scheme I uses images of patient 1 and 2 only. Scheme II used images of patient 1 and 2, together with some images from patient 3.
doi:10.1371/journal.pone.0055082.g005

Figure 6. Prediction accuracies in the new patient scheme. A: Scatter plot of experimentally determined values versus predicted values in
D14_ALP model, B: Scatter plot of experimentally determined values versus predicted values in D21_Ca model.
doi:10.1371/journal.pone.0055082.g006

Morphology-Based Prediction of Differentiation
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of absolute prediction errors indicates that each prediction model

provides predictions within the error rage of 60.151 with the

D14_ALP model and 60.065 with the D21_Ca model, respec-

tively (Fig. 7). When the variance of all assay data, the result of

manual experimental variance, is normalized as 1.0, the prediction

errors between different assay measurements can be standardized

as 0.194 (D14_ALP) and 0.963 (D21_Ca). This standardized error

provides the interpretation that the prediction values are 5-fold

stable (D14_ALP) or nearly equal (D21_Ca) compared to the

human assay variances.

Figure 7. Detailed prediction results in new patient scheme. A: Prediction results and error range in the D14_ALP model. B: Prediction results
and error range in the D21_Ca model. All the plotted data were rearranged in the order of experimental values.
doi:10.1371/journal.pone.0055082.g007

Table 1. Prediction accuracy of Ridge regression models for osteogenic differentiation status of hBMSCs.

New patient prediction scheme Ongoing patient prediction scheme

Ave. absolute prediction
error* [2] R** [2]

Ave. absolute prediction
error* [2] R** [2]

ALP activity rate prediction 0.151 0.903 0.111 0.950

Calcium deposition rate prediction 0.065 0.526 0.037 0.821

*Ave. absolute prediction error is the average of the differential between experimentally determined rate and predicted rate.
**Correlation coeffecient between experimentaly determined and predicted rate.
doi:10.1371/journal.pone.0055082.t001

Morphology-Based Prediction of Differentiation
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Scenario II: Ongoing patient scheme. The ongoing patient

prediction scheme is designed to simulate the clinical situation of

evaluating a new patient’s cell quality with higher accuracy in

return for additional data acquisition process (Fig. 5–B). With this

scheme, a small sample of the new patient’s cells should be

differentiated for 14 days as a pilot culture in parallel to the

expansion culture. During this pilot culture, cell images are taken

to represent the new patient’s cellular characteristics. The new

patient’s data and previous patients’ historical data are combined

for training the prediction model. Using image data from the next

passage and from the 14 day differentiation culture, a prediction

can be made prior to the cell harvest (Fig. 5–B). The advantage of

this scheme is inclusion of new patient data at the cost of acquiring

and inputting new patient images. Characteristics, which may be

unique to the new patient, can then be incorporated into training

the model with the expectation of a greater predictive value.

The prediction results of the D14_ALP and D21_Ca models are

shown in Table 1 and Fig. 8 (see also Fig. 9 and Table S2 for

detailed data). These results confirm that the morphological

features of hBMSCs observed during differentiation culture highly

correlates with the future osteogenic potential. The error ranges

were tightened to 60.111 with D14_ALP model, and 60.037 with

D21_Ca model (Fig. 9) as compared to using only historical data

to train the model. The standardization of all assay variances to

1.0 results in prediction errors of 0.110 (D14_ALP) and 0.333

(D21_Ca) respectively. Overall, these results suggest that predic-

tion values from Scenario II morphology-based models are nearly

9-fold stable (D14_ALP) or 3-fold stable (D21_Ca) compared to

the human assay variances.

When comparing the two scenarios, the prediction accuracies in

both prediction models (D14_ALP and D21_Ca) greatly improved

in Scenario II, the ongoing patient prediction scheme. These

results indicate that incorporation of morphological characteristics

from the patient’s own cells is extremely important and

informative for predicting an individual’s BMSC osteogenic

potential.

Discussion

Although qualitative cellular morphology is used as a guide for

estimating osteogenic differentiation, a quantitative relationship

between cellular morphology and biochemical osteogenic markers

is not well established. In the present study, we investigated the

possibility of predicting osteogenic differentiation of hBMSCs from

phase contrast images alone. Specifically, a machine learning

algorithm was used to train 14 day cell morphology information

and terminal osteogenic biochemical marker values into a model

used to predict the terminal marker values from a test set of

morphologic data. Our results provide evidence that using this

approach can potentially automate and improve decisions, which

are currently based on conventional destructive assays and

qualitative microscopic assessments.

Using both ALP activity and calcium deposition rates in

assessing cellular quality is important to current standard practices.

Our proposed modeling schemes allow for accurate prediction of

both endpoints. Of particular importance is the accurate

prediction of calcium deposition, which is more closely associated

with in vivo bone formation. For these reasons, constructing

different types of prediction models to allow real-time evaluation

of the same target cells with multiple aspects and add information

for more careful decision making in the culture process. These

attributes of an automated computational approach for assessing

cellular quality support improvement of safety, efficacy and more

rapid and economical scheduling decisions by physicians.

New technology allowing automated image acquisition, which

can currently provide more images with greater quality and fewer

biases, improves our ability to generate more predictive models

based on cellular morphology. In our work, state-of-the art

imaging platform (in this study BioStation CT), is the first

enhancement technology which lead us to provide uniform and

objective data without need for manual optimization of lighting,

focusing, or other systematic errors common to manual image

acquisition. Operator bias for field selection is also greatly reduced

by optimization of the seeding protocol to improve cell distribution

together and optimization of the number of fields to view jointly.

Image processing biases, the thresholding bias to extract cells from

non-cell objects recognized in the images, are also improved by a

new automated threshold determination algorithm (data not

shown). By preparing three different cell lots and three different

passages for cell samples, we aimed to reduce biases of specific

patient.

Figure 8. Prediction accuracies in the ongoing patient scheme. A: Scatter plot of experimentally determined values versus predicted values in
D14_ALP model, B: Scatter plot of experimentally determined values versus predicted values in D21_Ca model.
doi:10.1371/journal.pone.0055082.g008

Morphology-Based Prediction of Differentiation
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Figure 9. Detailed prediction results in ongoing patient scheme. A: prediction results and error range in the D14_ALP model. B: Prediction
results and error range in the D21_Ca model. All the plotted data were rearranged in the order of experimental values.
doi:10.1371/journal.pone.0055082.g009

Table 2. Prediction accuracy of Redge regression models with elimination of each individual features for ALP activity rate.

New patient prediction scheme Ongoing patient prediction scheme

Excluded parameter Ave. prediction error* [2] Standardized error** [2] Ave. prediction error* [2] Standardized error** [2]

Breadth 0.131 0.142 0.078 0.057

Elliptical form factor 0.121 0.124 0.074 0.052

Fiber breadth 0.156 0.197 0.091 0.074

Fiber length 0.136 0.147 0.074 0.051

Hole area 0.141 0.152 0.085 0.060

Inner radius 0.138 0.146 0.088 0.065

Relative hole area 0.134 0.148 0.090 0.065

Shape factor 0.148 0.180 0.108 0.104

Total area 0.136 0.153 0.087 0.064

*Ave. prediction error is the average of the differential between experimentally determined rate and predicted rate.
**Standardized error is calculated by dividing the average of squared errors by variance of all the experimentally evaluated values.
doi:10.1371/journal.pone.0055082.t002

Morphology-Based Prediction of Differentiation
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The second enhancement incorporated into this study is the

incorporation of robust and continuous morphological features. In

this study, it is a key that the morphological features actually used

in our modeling are statistical composites (average and standard

deviation) of features obtained from all cells from a given

condition, which is typically comprised of approximately 4,000–

40,000 cells from 15 images for each condition. Such large

number of technical replicates offers robustness in each parameter,

and effectively enhanced the performance of our prediction model.

The continuous image acquisition with precise timing by

BioStation CT allowed us to obtain both static morphological

features and their dynamic changes throughout the differentiation

process. Since morphological changes during osteogenic induction

are time-dependent events, it is important to analyze morpholog-

ical changes with precise timing.

The third enhancement provided by our work stems from the

examination of two clinically plausible scenarios. Through these

experiments, we found that prediction accuracies of both

osteogenic potential measurements greatly increase when the

model incorporates training information from early images from

the same patient, which reflects individual characteristics in cell

morphology. Carefully considering patient-to-patient morphology

variation exposes limitations in the current practice of experience-

based assessment by culture experts. As indicated in our results,

use of new high-content information databases from images,

where large amounts of data can be computationally organized

and retrieved, is one possible approach for incorporating many

aspects related to patient-to-patient variability. Constructing

predictive models using historical databases and individualizing

new patient predictions by incorporating each new patient’s data

would be a practical approach to mitigating patient variability

while improving the precision of quality assessments.

Comparing the prediction errors of D14_ALP and D21_Ca

models in Table 1, the D14_ALP prediction accuracy was higher.

One possible explanation for the discrepancy between D14_ALP

and D21_Ca predictions is the lack of morphological data during

the calcium deposition period, which requires an additional week

of culture following two weeks of induction culture. We plan to

further investigate ways to enhance predicting this late maturation

marker by accumulating more culture images to accrue a larger

historical data set. However, we were surprised to discover that

without the last seven days of morphology data the D21_Ca model

could still predict the final calcium deposition result with

reasonable accuracy. To our knowledge, no other reports have

been able to accurately estimate the final calcium deposition from

early images.

Previous reports have indicated that morphological parameters,

similar to the ones used in this study such as flatness or polygonal

rate, highly correlate with the osteogenic differentiation potential.

Consistent with these reports, we looked at the contribution of

each parameter to the prediction performance. In regression

analysis, one can examine the effect of each parameter by

examining the regression coefficients. Interestingly, among the

nine parameters introduced into the regression analysis, there were

few sizeable positive or negative coefficients (data not shown). This

suggests that there are few dominant morphological parameters

that simply correlate to the differentiation potential. Furthermore,

when individual features were intentionally eliminated from the

model, no significant deterioration was observed in the prediction

accuracy (Table 2 and 3). These results suggest that correlation of

morphological features and the osteogenic differentiation potential

is so complex that there are various compensatory features.

Therefore, we conclude that to gain the most robust prediction

model for hBMSC osteogenic differentiation potential, all

available morphological features throughout the differentiation

culture should be incorporated, and biased or feeling-based

morphological feature selection should be avoided.

In this work, longitudinal morphological measurements were

used as individual, unconnected features, like snapshots. However,

to improve the accuracy of the D21_Ca model, we examined ways

to incorporate time dependent changes of individual features.

With this idea, the same morphological features were converted to

change rates between sampling times, analogous to measuring the

differences through snapshots. As a result, this morphological

feature transformation reduced the D21_Ca model standardized

error rate from 0.333 to 0.192 (data not shown). We plan to

further investigate the transformation or repeated measurements

into time-based trends and patterns in morphological data to

improve predictive performance. Our next investigation is

designed to further demonstrate applicability and robustness of

our proposed method by evaluating the model’s ability to

characterize ‘‘cellular variances’’, derived from patient diversity,

culture protocol effects, and accumulating stresses throughout

culture. We also plan to further expand the scope of this work to

translate progress made using in vitro models and endpoints for

morphological prediction of osteogenic potential in vivo.

Table 3. Prediction accuracy of Redge regression models with elimination of each individual features for calcium deposition rate.

New patient prediction scheme Ongoing patient prediction scheme

Excluded parameter Ave. prediction error* [2] Standardized error** [2] Ave. prediction error* [2] Standardized error** [2]

Breadth 0.065 0.924 0.028 0.187

Elliptical form factor 0.066 0.972 0.026 0.166

Fiber breadth 0.062 0.870 0.026 0.158

Fiber length 0.065 0.921 0.027 0.164

Hole area 0.065 0.937 0.026 0.138

Inner radius 0.063 0.892 0.028 0.180

Relative hole area 0.060 0.769 0.025 0.146

Shape factor 0.067 0.939 0.029 0.201

Total area 0.067 0.968 0.027 0.160

*Ave. prediction error is the average of the differential between experimentally determined rate and predicted rate.
**Standardized error is calculated by dividing the average of squared errors by variance of all the experimentally evaluated values.
doi:10.1371/journal.pone.0055082.t003

Morphology-Based Prediction of Differentiation
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Figure 10. A: Schematic illustration of cell image processing. The raw images were first pre-processed by background reduction processing

Morphology-Based Prediction of Differentiation

PLOS ONE | www.plosone.org 10 February 2013 | Volume 8 | Issue 2 | e55082



Materials and Methods

Cells and cell culture
Human bone-marrow derived mesenchymal stem cells

(hBMSCs) (Lonza Walkersville, Inc., Maryland, U.S.A.) were

subcultured (passaged) in Dulbecco’s modified Eagles’ medium

(DMEM) containing 10% fetal bovine serum (FBS) (Life Tech-

nologies Japan Ltd., Tokyo, Japan). Three lots of hBMSCs were

designated as Lot 1 (strain number 15000-1, unknown race, Male,

19-year-old), Lot 2 (strain number 17174, Oriental, Male, 20-year-

old), and Lot 3 (strain number 11533, Black, Male, 22-year-old),

respectively. Lot 1 and 2 were cultured to passages 3, 4, and 5, and

Lot 3 was cultured to passages 6, 7, and 8, and cryopreserved for

the start of the image acquisition experiment. Cryopreserved cells

were seeded at a density of 1.06104 cells/well in 12-well plate

(Greiner Bio-One., Frickenhausen, Germany), and the cell-seeding

day was designated as day 0 in the image acquisition experiment.

Fig. 1 illustrates the experimental scheme for hBMSC

osteogenic differentiation culture. From day 0 to 3, cells were

cultured in 10% FBS-containing a-modified Eagle’s medium

(aMEM) (Sigma-Aldrich Co., St. Louis, MO, U.S.A.). From day 4

to 18, cells were divided into two groups: (1) Osteogenic induction

group (Induction, N = 6) and (2) Non-induction group (Control,

N = 6). For the induction group, the medium was switched to

induction medium consisting of 10% FBS-containing aMEM

medium supplemented with 10 nM dexamethasone (Sigma-

Aldrich Co.), 100 mM ascorbic acid (Wako Pure Chemical

Industries, Ltd., Osaka, Japan), and 10 mM glycerol 2-phosphate

sodium salt hydrate (Sigma-Aldrich Co.). For the non-induction

group, supplements were not added to the 10% FBS-containing

aMEM medium. The appropriate medium was changed at day 7

and day 13. For half of the samples in each experimental group

(n = 3), alkaline phosphatase (ALP) activity were quantified on day

18. The remaining samples continued culture until day 25, and

calcium deposition was quantified on day 25.

Image acquisition
Figs. 1 and 10-A illustrates the image acquisition scheme during

hBMSC osteogenic differentiation culture. From day 0 to day 13

(14 days), phase contrast microscopic images of hBMSCs were

obtained using the BioStation CT (Nikon Corporation, Tokyo,

Japan). BioStation CT is an automatic cell maintenance system,

which maintains a stable incubation environment (37uC, 5% CO2,

100% humidity) with scheduled automatic image acquisition. The

number of view fields was optimized to five, which provides the

least error for estimating the correct cell seeding for each well. Five

view fields (center position and four positions 2.2 mm from the

center) of phase contrast images were acquired from each well with

fully automatic focusing. The phase contrast images had the least

noise and background when using the halo-reduction lens. Image

acquisition timing was set to every 8 hours from day 4 to 18

(magnification = 10x). Time points are designated as time 0 to 38,

indicating each of the 8 hour imaging intervals. Data at time 0 was

omitted, since the cells were not fully settled. Data at time 7 and

time 26 were also omitted, since it was concurrent with medium

changes for each well plate, resulting in 36 time-points as a total.

Quantification of ALP activity
Quantitative ALP activity assays were performed as previously

described [9]. After 18 days of culture, cell number was measured

using a cell counting kit-8 (WST-8H; Dojindo Laboratories,

Kumamoto, Japan), and ALP activities were measured with a p-

nitrophenyl phosphate solution (Lab Assay ALPH; Wako Pure

Chemical Industries, Ltd.). Briefly, for cell count, 100 ml of WST-8

was added to each well containing 1 mL of fresh medium,

incubated for 1 hour, and absorbance was read at 450 nm. After

WST-8 analysis, each well was washed twice with phosphate

buffered saline (PBS) and 800 mL of p-nitrophenyl phosphate

solution was added to each well. After 10 min of incubation at

37uC, the conversion to p-nitrophenol was stopped with 800 ml of

3N NaOH and the absorbance of p-nitrophenol was measured at

405 nm. Alkaline phosphatase-specific activity is expressed as p-

nitrophenol absorbance (OD; 405 nm)/WST-8 absorbance (OD;

450 nm).

Calcium deposition quantification
After 25 days of culture, cells were fixed with 70% ethanol for

1 hour, washed, and stained for 10 min with 40 mM alizarin red S

solution (pH: 4.2). After washing with PBS, plates were incubated

with 10% cethylphridinium chloride for 15 min. Thereafter,

supernatants were collected from each well and the absorption of

each supernatant was measured at 405 nm to determine the

amount of calcium deposition.

Cell image processing
All images (.bmp files) were processed by MetaMorph

(Molecular device, CA, U.S.A) with the original combination of

image-processing filter sets (Fig. 10–A). Briefly, the raw images

were pre-processed by open-close filters and binarized by the

optimized threshold. All image data was pre-processed using the

same brightness threshold, which was optimized by 20 randomly

picked image samples. This pre-processing step minimized error

between the manually determined image cell number and the

number of objects determined after pre-processing. After binar-

ization, all individual objects in each image, consisting of cells and

noise (non-cell objects), were measured by the integrated

morphometric analysis function to measure morphological fea-

tures (9 morphological features are: Breadth, Elliptical form factor,

Fiber breadth, Fiber length, Hole area, Inner radius, Relative hole

area, Shape factor, Total) (Fig. 10–B). The morphological features

were carefully selected with the MetaMorph measurement

function by logical selection. Features related to color and

brightness were excluded first. Second, independent features were

selected by hierarchical clustering and highly correlated features

(R.0.85) were excluded. From the data consisting of object ID

and its standardized 9 morphological features (average = 0,

standard deviation = 1), the noise data (non-cell objects) was

automatically cleansed by the original noise-reduction algorithm

by deconvolution and open-close filters. Then, images were binarized by the optimized threshold. The noisy objects were eliminated by particle
deletion filter. B: Schematic illustration of cell morphology measurements and data processing. In all object recognized images, all existing objects
were measured for the 9 morphological features. Since 1 condition was designed to consist of 3 wells 65 view fields, all the corresponding object
measurement results were processed as a same sample. The average and standard deviation within one sample of all morphological features at each
time point were used as the input features for modeling. C: Schematic illustration of prediction model construction. Prediction of differentiation
potential consisted of two steps. First, two types of prediction models (D14_ALP model or D21_Ca model) were constructed with the set of image
data and experimental evaluation. Second, the values of D14_ALP or the D21_Ca were predicted from the input features of the sample targeted for
prediction. The predicted biological rates are compared to the experimentally-determined results to evaluate the accuracy of prediction model.
doi:10.1371/journal.pone.0055082.g010
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prior to the analysis (patent pending). From the pre-processed

data, average (AVE) and standard deviation (SD) from each of the

9 morphological features was calculated from each of the cell

objects covering five view fields from the same well, and used as

the 18 inputs (9 features with AVE and SD) for each sample to be

used in further analysis (Fig. 10–C). The morphological features

and cell number (AVE and SD for 19th and 20th feature) from

each well were then tagged with the target signals, which are

experimentally determined values, resulting in 54 samples ( = 3 lots

62 induction conditions 63 passages 63 wells) tagged with ALP

values, and 54 samples tagged with calcium deposition values. This

process links the ‘‘result’’ (biological measurement) with the

‘‘indication’’ (image-derived morphological feature), to derive a

dataset for further modeling (Fig. 10–D).

Construction and evaluation of prediction model
Prediction of differentiation potential consists of two steps

(Fig. 10–D): one is the construction of a prediction model, and the

other is the evaluation of the constructed model. Using Ridge

regression, two types of prediction models were constructed: (1)

D14_ALP model, and (2) D21_Ca model. For the new patient

scheme, prediction models were trained with 36 samples from 2

lots, and 18 samples from the remaining single lot were predicted.

For the ongoing patient scheme, prediction models were trained

with 42 samples from 2 lots of 3 passages plus the samples from

new lot of 1 or 2 passages were used for training, and 12 samples

from the remaining 1 lot were predicted (Fig. 5). The detailed

modeling process is described in a previous report (See Section 3 in

[18] for details of the Ridge regression method). The performance

of each of the models and datasets were evaluated by the average

accuracy resulting from leave-one-out cross validation.

For the evaluation of our proposed scheme, two evaluation

indices are introduced in our work. One index is the correlation

coefficient (R) of actual assay values and prediction values, which

evaluates the prediction accuracy and its data coverage. The

higher R increases, the more the model is capable of predicting

‘‘differentiation marker values’’ with small error rate. The other

index of evaluation that we introduced is the average of absolute

error. This value is calculated by obtaining absolute values of

(experimentally determined value minus the predicted value). To

compare these errors, we standardized these errors by dividing the

variance of total experimentally determined values in one assay.

Supporting Information

Table S1 * Exp. determined rate is the abbreviation of
the experimentally determined rate.

(XLS)

Table S2 * Exp. determined rate is the abbreviation of
the experimentally determined rate.

(XLSX)
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