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Abstract: Changes to somatic sensory pathways caused by peripheral tissue, inflammation or injury
can result in behavioral hypersensitivity and pathological pain, such as hyperalgesia. Resveratrol,
a plant polyphenol found in red wine and various food products, is known to have several beneficial
biological actions. Recent reports indicate that resveratrol can modulate neuronal excitability,
including nociceptive sensory transmission. As such, it is possible that this dietary constituent
could be a complementary alternative medicine (CAM) candidate, specifically a therapeutic agent.
The focus of this review is on the mechanisms underlying the modulatory effects of resveratrol on
nociceptive neuronal activity associated with pain relief. In addition, we discuss the contribution of
resveratrol to the relief of nociceptive and/or pathological pain and its potential role as a functional
food and a CAM.

Keywords: resveratrol; trigeminal system; nociceptive neuron; hyperalgesia; complementary
alternative medicine; trigeminal spinal nucleus; extracellular single unit recording

1. Introduction

Resveratrol (trans-3,4′,5-trihydroxystilbene) is a dietary constituent and a plant polyphenol
found in red wine and various food products [1,2]. It has been reported to have various beneficial
actions, including anti-oxidative, anti-inflammatory, neuroprotective, anticancer, and cardioprotective
effects [2–6]. Complementary and alternative medicines (CAM), such as herbal medicines and
acupuncture, have been used to treat persistent clinical chronic pain [7–9], and considerable research
has focused on the potential effects of diet and dietary supplementation on conditions associated with
pain [10–12]. Resveratrol could be a CAM candidate for the treatment of pain.

Recent studies reported that resveratrol modulates neuronal excitability of the peripheral and
central nervous systems (PNS and CNS, respectively) via various voltage-dependent [13–16] and
ligand-gated [17,18] ion channels, including the sensory information processing system. Because
resveratrol decreases the production of prostaglandin E2 (PGE2) by inhibiting the cyclooxygenase
(COX)-2 cascade, resveratrol is a potent inhibitor of inducible COX-2 [19,20]. In fact, PGE2 is a
well-known proinflammatory mediator and sensitizer of peripheral nociceptors that also acts on the
CNS, including somatosensory neurons in the spinal dorsal horn [21–23]. Previous reports indicated
that resveratrol inhibits inflammation-induced hyperalgesia by suppressing COX-1 and COX-2
activity [20,24,25]. It is well known that the analgesic action of the acidic antipyretic non-steroidal
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anti-inflammatory drugs (NSAIDs) involves the potent and efficient inhibition of COX-2 [26]. Together,
these observations suggest that resveratrol could be used as a potential therapeutic agent for the
prevention of inflammatory hyperalgesia.

The focus of this review is on the mechanism by which resveratrol modulates nociceptive neuronal
activity, and its association with the relief of nociceptive and inflammatory pain. In addition, we
introduce recent data and discuss the potential contribution of resveratrol to the relief of nociceptive
and pathological pain, as well as its development as a functional food and CAM.

2. Trigeminal Pain Pathway and Spinal Trigeminal Nucleus

The trigeminal nervous system is known to have unique structures and functions for the
processing of orofacial nociception as well as non-noxious sensations. The oral mucosal membrane,
tongue, tooth pulp, gum, and temporomandibular joint (TMJ) are innervated by small-diameter
Aδ-fibers and unmyelinated C-fibers that process orofacial nociception [27]. Noxious sensory
information in the area innervated by the trigeminal nerves is relayed from trigeminal afferents to
second-order neurons in the spinal trigeminal nucleus in the brainstem and the upper cervical (C1–C2)
spinal cord [27,28]. The spinal trigeminal nucleus, an important relay station in the transmission
of orofacial sensory information, is functionally subdivided into three nuclei: oralis, interpolaris,
and caudalis [27]. In addition to the C1–C2 dorsal horn, the spinal trigeminal nucleus caudalis
(SpVc) is a relay station for trigeminal nociceptive inputs from inflammation and tissue injury [27,28].
The properties of somatic sensory pathways can be altered by chronic pathological conditions, such as
tissue inflammation, leading to hyperalgesia and allodynia [29]. Information processing in the spinal
trigeminal nucleus or higher centers is altered by changes in the excitability of primary afferent neurons,
which is known as peripheral sensitization [30]. Because it has been reported previously that wide
dynamic range (WDR) neurons in the SpVc play an important role in hyperalgesia, allodynia, and/or
referred pain associated with orofacial pain [31–34], in the following sections we focus on studies of
the SpVc WDR neuronal activity in the trigeminal pain pathway.

3. Potential Role for Resveratrol in Alleviating Nociceptive Pain

3.1. Peripheral Mechanism

There are four general processes involved in nociceptive sensory signaling: (1) transduction
of external stimuli from peripheral terminals; (2) action potential generation; (3) action potential
propagation along axons; and (4) transmission to central terminals that form the presynaptic elements
of the first synapses in sensory pathways in the CNS [28,35]. Resveratrol has been reported to
modulate the excitability of neurons in the PNS by activating voltage-dependent and transient
receptor potential (TRP) channels [13–16,36]. In vitro, mechanical stimuli have been shown to
induce mechanosensitive currents via mechanosensitive channels, such as TRP ankyrin 1 (TRPA1),
triggering mechanotransduction in trigeminal neurons innervating the inner walls of the anterior eye
chamber [37]. In addition, TRPA1 modulates mechanotransduction in primary sensory neurons [38].
Potent inhibition of TRPA1 in vitro and in vivo by resveratrol [36] suggests that resveratrol attenuates
the generator potential and inhibits action potential firing via the mechanical transduction process.
Moreover, resveratrol has been shown to modulate Na+ and K+ currents in dorsal root ganglion
(DRG) neurons associated with action potential generation [13,16], and that resveratrol predominantly
inhibits Na+ currents in acutely dissociated DRG neurons, indicating inhibition of action potential
generation [13].

Recently, the effects of local subcutaneous injection of resveratrol into the receptive field of SpVc
WDR neurons on non-noxious and noxious mechanical stimulation-induced excitability of these
neurons were investigated in vivo [39]. In that study, the mean firing rate of SpVc WDR neurons
in response to both non-noxious and noxious mechanical stimuli was dose-dependently reduced
by resveratrol; this effect was reversible and the mean magnitude of inhibition of the SpVc neuron
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discharge frequency was almost equal between resveratrol and the local anesthetic lidocaine (1%).
These observations suggest that resveratrol injection into the peripheral receptive field suppresses
SpVc neuron excitability, possibly by inhibiting Na+ channels in the nociceptive nerve terminals of
trigeminal ganglion neurons. Thus, it may be that resveratrol inhibits the excitability of peripheral
terminals of the trigeminal nerve by modulating both the noxious mechanical stimulation-induced
generator potential and the initiation of action potential processes (Figure 1).
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Figure 1. Schematic drawing of the possible mechanism underlying the effects of resveratrol in relieving
(a) nociceptive and (b) inflammatory pain. (a) nociceptive pain. When noxious mechanical stimulation
is applied to the skin, mechanosensitive ion channels (e.g., transient receptor potential ankyrin 1
(TRPA1) channels) open, activating the generator potential (depolarization). This depolarization
further opens voltage-dependent sodium and potassium channels, generating action potentials. Action
potentials are discharged through primary afferent fibers (Aδ- and C-fibers) to the central terminal
in nociceptive neurons in the trigeminal spinal nucleus caudalis (SpVc). When action potentials
are conducted to the central terminal of the SpVc, presynaptic voltage-dependent calcium channels
open, leading to the release of neurotransmitters (e.g., glutamate) into the synaptic cleft, which then
bind to post-synaptic (glutamate) receptors, activating excitatory post-synaptic potentials (EPSP).
If the amplitude of EPSPs is over the action potential threshold, a barrage of action potentials is
conducted to higher centers in the pain pathway and pain is perceived. It is possible that resveratrol
suppresses both the excitability of peripheral terminals of the trigeminal nerve (by modulating both
the mechanical transduction and generation of action potentials) and glutaminergic excitatory synaptic
transmission of the SpVc (by inhibiting post-synaptic glutamate receptors and presynaptic Ca2+

channels). R, resveratrol; Nav, voltage-gated sodium channel; Kv, voltage-gated potassium channel; Cav,
voltage-gated calcium channel; Glu, glutamate; WDR, wide dynamic range neurons; (b) Inflammatory
pain. Following peripheral inflammation and/or nerve injury, inflammatory mediators, such as
prostaglandin E2 (PGE2), bind to G-protein-coupled E-type prostanoid (EP) receptors and induce
activation of protein kinases A and C (PKA and PKC, respectively) in nociceptive peripheral terminals,
leading to phosphorylation of mechanosensitive, sodium and potassium ion channels and receptors.
As a result, the activation threshold for transducer channels such as TRPA1 is reduced and the
membrane excitability of the peripheral terminals increases, resulting in a high frequency of action
potentials being conducted to presynaptic central terminals of the SpVc. This results in the release
of a large amount of glutamate into the synaptic cleft, which binds to upregulated post-synaptic
glutamate receptors, augmenting EPSPs, causing a barrage of action potentials to be conducted to higher
centers of pain pathways and creating a state of heightened sensitivity termed peripheral sensitization.
It is possible that chronic administration of resveratrol attenuates inflammation-induced mechanical
inflammatory hyperalgesia, with this effect due primarily to suppression of the hyperexcitability of
SpVc WDR neurons via inhibition of both peripheral and central cyclooxygenase (COX)-2 cascade
signaling pathways. ARA, arachidonic acid. X: Suppression.
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3.2. Central Mechanism

In hippocampal slices, resveratrol has been shown to significantly suppress glutamate-induced
currents in post-synaptic CA1 pyramidal neurons without having any presynaptic effects [17].
In addition, Gao et al. [17] indicated that N-methyl-D-aspartate (NMDA) receptors were more sensitive
to resveratrol than α-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid (AMPA) receptors. It has
also been reported that action potential duration and L-type Ca2+ currents in ventricular myocytes
are reduced by resveratrol [14]. Thus, resveratrol may suppress glutamatergic excitatory synaptic
transmission of the SpVc by inhibiting post-synaptic glutamate receptors and presynaptic Ca2+

channels (Figure 1).
Recently, the effects of acute intravenous administration of resveratrol to rats on the excitability

of nociceptive WDR SpVc neuronal activity in vivo in response to mechanical stimulation were
investigated [40]. In that study, the mean SpVc WDR neuronal firing rate in response to both
non-noxious and noxious mechanical stimuli was dose-dependently inhibited by resveratrol in
a reversible manner, and the relative magnitude of inhibition by resveratrol of the SpVc WDR
neuronal discharge frequency was significantly greater for noxious than non-noxious stimuli. These
findings suggest that, in vivo, trigeminal nociceptive transmission in the SpVc is suppressed by acute
intravenous resveratrol at the level of secondary neurons, in addition to primary neurons.

The dose-dependent antinociceptive effects of systemic resveratrol appear to be mediated via
an opioidergic mechanism, because naloxone pretreatment of rats completely blocked the analgesic
effect of resveratrol [41]. Evoked inhibitory GABAergic pre- and post-synaptic potentials in the
periaqueductal gray (PAG) are partially inhibited by opiates acting via µ-opioid receptors [42].
Neuronal activity in the PAG is increased after blockade of µ-opioid receptors as a result of
GABAergic disinhibition, resulting in the subsequent activation of serotonergic (5-hydroxytrypytamine
(5-HT)) neurons in the nucleus raphe magnus, known as the PAG–nucleus raphe magnus–trigeminal
pathway [43,44]. Resveratrol has been shown to facilitate 5-HT3 receptor-mediated ion currents [18],
and nociceptive stimulation-evoked SpVc/C1 neuron activity is suppressed by conditioning peripheral
nerve stimulation via 5-HT3 receptor-mediated GABAergic inhibition [45,46]. Together, these
observations suggest that resveratrol suppresses excitatory synaptic transmission of the SpVc via 5-HT3

receptor-mediated GABAergic inhibition and/or endogenous opioidergic mechanisms. However,
further studies are needed to elucidate the precise mechanisms involved.

4. Potential Role for Resveratrol in Alleviating Inflammatory Pain

It has been reported that peripheral tissue injury or inflammation of the innervating
trigeminal nerve can alter the properties of trigeminal somatic sensory pathways, causing
behavioral hypersensitivity and resulting in increased responses to pain caused by noxious stimuli
(e.g., hyperalgesia) [29].

Because it has been shown that resveratrol inhibits COX-1 and COX-2 activity [20,24,25],
we recently tested the hypothesis that chronic administration of resveratrol would attenuate
inflammation-induced hyperexcitability of trigeminal nociceptive neuronal activity associated with
hyperalgesia in behavioral and electrophysiological experiments [47]. In that study, the threshold of
escape from mechanical stimulation applied to the orofacial area in inflamed rats was significantly
lower than in naïve rats, and the lowered mechanical threshold in inflamed rats was returned to control
levels following chronic administration of resveratrol. In addition, after resveratrol administration,
the mean discharge frequency of SpVc WDR neurons in inflamed rats was significantly decreased in
response to both non-noxious and noxious mechanical stimuli, and significant decreases were observed
in the inflammation-induced increased spontaneous discharge of SpVc WDR neurons and the frequency
and occurrence of noxious pinch-evoked after discharge [47]. Finally, resveratrol administration
restored the expanded receptive field of inflamed rats to control levels [47]. These results suggest
that chronic administration of resveratrol attenuates inflammation-induced mechanical inflammatory
hyperalgesia and that this effect is due primarily to the suppression of the hyperexcitability of SpVc
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WDR neurons via inhibition of both peripheral and central COX-2 cascade signaling pathways. These
findings support the idea that resveratrol could be used as a potential therapeutic agent, or CAM, for
the prevention of trigeminal inflammatory hyperalgesia.

It is known that PGE2 appears to facilitate the activation of TRP vanilloid 1 (TRPV1) and
tetrodotoxin (TTX)-resistant (TTX-R) Na+ channels [13,29,48], and it has been reported that resveratrol
inhibits both TTX-sensitive (TTX-S) and TTX-R Na+ currents in acutely dissociated DRG neurons.
It appears that TTX-R Na+ channels (e.g., Nav1.8 and Nav1.9) are selectively expressed in small- and
medium-sized DRG neurons [49]. These small DRG neurons are somata that give rise to thinly and
unmyelinated C- and Aδ-fibers, which primarily conduct nociceptive stimuli. These Na+ channels can
be modulated by activation of adenylate cyclase and increases in cAMP, possibly leading to protein
kinase A-dependent phosphorylation of the Na+ channels. In this way, PGE2 produced during an
inflammatory response may significantly increase the excitability of nociceptive fibers (peripheral
sensitization). Because it has been reported that the increased excitability of small-diameter trigeminal
ganglion neurons seen after PGE2 application involves increases in TTX-R Na+ currents [50], it can be
assumed that resveratrol inhibits the excitability of small-diameter trigeminal ganglion neurons by
suppressing TTX-R Na+ currents induced by the increased production of PGE2. It seems reasonable to
speculate that at least part of the peripheral antinociceptive action of resveratrol arises as a result of
the prevention of peripheral sensitization, as is the case for antipyretic analgesics (Figure 1).

Conversely, PGE2 can also act in the CNS, namely in the spinal dorsal horn and SpVc neurons,
to produce hyperalgesia [21]. Inflammation-induced increases in COX-2 mRNA and protein have
been demonstrated in the spinal cord [23,51], where COX-1 and COX-2 are expressed constitutively.
Recent evidence indicates that a major stimulus for the induction of COX-2 is the proinflammatory
cytokine interleukin-1β, which is found in the periphery as well as in the CNS and is produced
in response to inflammation [23,52]. Two possible molecular mechanisms have been proposed
to account for PGE2-induced hyperalgesia via actions in the CNS: (1) PGE2 reduces inhibitory
glycinergic neurotransmission via a post-synaptic mechanism [53]; and (2) direct depolarization
of deep dorsal horn neurons by higher concentrations of PGE2 [22]. Therefore, it is most likely that
systemic administration of resveratrol has central antinociceptive effects by suppressing PGE2-induced
reductions in inhibitory glycinergic neurotransmission and enhanced depolarization of SpVc neurons
through a post-synaptic mechanism. However, further studies are needed to confirm this hypothesis.

5. Functional Significance of Pain Relief by Resveratrol and Future Directions

A widely accepted trigeminal chronic pain model is the complete Freund’s adjuvant (CFA)
inflamed rat model [54,55]. Changes in neuronal properties resulting from tissue injury and
inflammation of the area innervating the orofacial area can lead to pathological pain, including
hyperalgesia and allodynia [33,54]. In a previous study, we reported that TMJ inflammation-induced
hyperexcitability of SpVc WDR neurons innervating the facial skin, contributes to ectopic mechanical
allodynia of this area [32,33]. Moreover, resveratrol restored the increased mean spontaneous discharge
frequency of SpVc WDR neurons in inflamed rats to control levels [47]. Burnstein et al. [56] reported
that an ongoing headache (spontaneous pain) is caused by ongoing activity in the SpVc. The origin of
this ongoing activity in the central neurons that relay sensory information is of considerable clinical
interest, because it has been suggested that it determines the level of post-traumatic injury and chronic
pain [57]. More recently, it was shown that the ongoing activity of WDR neurons in the SpVc is
driven from the periphery, because microinjection of lidocaine into trigeminal ganglia significantly
decreases ongoing activity [58]. Because chronic administration of resveratrol attenuates the
spontaneous activity in inflamed rats, these observations together suggest that resveratrol attenuates
the spontaneous discharge activity (due to peripheral and/or trigeminal ganglion sensitization and
probably contributing to spontaneous pain) of SpVc WDR neurons innervating the facial skin [59].

Although a previous study indicated that dietary grape seed polyphenol extract inhibited TMJ
inflammation-induced pain [60], little is known regarding the mechanism by which polyphenols
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suppress nociceptive neuronal activity. More recently, we reported that in the absence of inflammatory
or neuropathic pain, acute intravenous administration of resveratrol suppresses trigeminal sensory
transmission, including nociception [40], and so resveratrol may contribute to the suite of CAMs
as a therapeutic agent, for the treatment of trigeminal nociceptive pain [7]. In a previous study,
under in vivo conditions, systemic administration of resveratrol attenuated inflammation-induced
hyperexcitability of trigeminal SpVc neurons associated with hyperalgesia in rats [47]. Recently, there
has been increased interest in the use of CAM for the treatment of persistent chronic pain [9,61].
Patients frequently turn to CAM for pain control when other medical treatments are ineffective [8,9].
Recent studies have also focused on the potential effects of diet and dietary supplementation on
conditions associated with pain [10,11,62].

Because surgical incisions cause acute pain, and surgery is a potential cause of chronic
pain [63,64], it is possible that resveratrol could effectively reduce clinical pain, including postoperative
pain [65,66]. In patients with trigeminal neuralgia, local and intravenous administration of lidocaine
has been reported to effectively attenuate pain intensity, including allodynia and hyperalgesia [67–69].
The results of the different studies into resveratrol contribute to the development of analgesic
drugs with fewer side effects for the treatment of pathological pain, including orofacial pain.
In particular, the findings from in vivo studies support the idea that resveratrol is a potential therapeutic
agent that could be used as an alternative to alleviate nociceptive pain and prevent trigeminal
inflammatory hyperalgesia.

6. Concluding Remarks

Recent studies provide evidence that: (1) local resveratrol injection into the peripheral receptive
field suppresses the SpVc neuron excitability, possibly by inhibiting generator and action potentials in
the nociceptive nerve terminals of trigeminal ganglion neurons; (2) trigeminal sensory transmission,
including nociception, is suppressed by acute intravenous resveratrol; and (3) chronic administration of
resveratrol attenuates inflammation-induced mechanical hyperalgesia, and this effect is due primarily
to the suppression of hyperexcitability of SpVc WDR neurons via inhibition of peripheral and central
COX cascade signaling pathways. Together, these findings support the idea that resveratrol may
be a potential therapeutic CAM for the alleviation of nociceptive pain and prevention of trigeminal
inflammatory hyperalgesia. The pain relief afforded by resveratrol appears to involve modulation of
nociceptive neuronal activity.
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