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Sexual dimorphism for lifespan (SDL) is widespread, but poorly understood.

A leading hypothesis, which we test here, is that strong SDL can reduce sexual

conflict by allowing each sex to maximize its sex-specific fitness. We used repli-

cated experimental evolution lines of the fruit fly, Drosophila melanogaster,
which had been maintained for over 360 generations on either unpredictable

‘Random’ or predictable ‘Regular’ feeding regimes. This evolutionary manipu-

lation of feeding regime led to robust, enhanced SDL in Random over control,

Regular lines. Enhanced SDL was associated with a significant increase in the

fitness of focal males, tested with wild-type (WT) females. This was due to

sex-specific changes to male life history, manifested as increased early repro-

ductive output and reduced survival. In contrast, focal female fitness, tested

with WT males, did not differ across regimes. Hence increased SDL was

associated with a reduction in sexual conflict, which increased male fitness

and maintained fitness in females. Differences in SDL were not associated

with developmental time or developmental survival. Overall, the results

showed that the expression of enhanced SDL, resulting from experimental

evolution of feeding regimes, was associated with male-specific changes in

life history, leading to increased fitness and reduced sexual conflict.
1. Introduction
In the more than half a century since the major tenets of the evolutionary theory

of ageing were formulated [1–3], a huge body of supporting empirical evidence

has been gathered [4–9]. However, despite this, we still have surprisingly

little understanding of the striking, and seemingly universal, sexual dimorph-

ism for lifespan (SDL). Such differences are widespread across animal taxa

[10–14] and are often associated with variation in mating systems [13,14].

This suggests an explanation relating to sexual selection and associated differ-

ential risks of extrinsic mortality [11,15]. For example, SDL is reported as

elevated in promiscuous systems, but reduced under monogamy. Promiscuity

leads to increased survival costs for males from intensified male–male compe-

tition and a shorter effective breeding period than for females. This is proposed

to reduce selection for mechanisms that increase longevity in males compared

to females, hence increasing SDL [14,16]. Other explanations for sex-specific

variation in lifespan across species include the so-called ‘mother’s curse’ due

to the potential for mutations with deleterious, male-specific effects to be

expressed by maternally-inherited mitochondria [17] and the differential sensi-

tivity of males versus females to the effects of mutations that accumulate on the

sex chromosomes (the ‘unguarded X’ hypothesis [18]). These hypotheses have

gained some empirical support [19,20]. However, it is noted that there is a

general paucity of experimental work in this area [21].
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Within species, significant variation in the magnitude of SDL

expressed is arguably best explained by the degree of sexual

selection and conflict [11,15]. Hence, factors such as nutrition,

which affect the expression of sexual characters, can also be

important in the determination of SDL. For example, within

species, the extent of SDL can show marked plasticity

in response to proximate factors such as diet. In Drosophila
melanogaster, SDL is maximized by a 60% reduction in the stan-

dard dietary yeast and sugar content and minimized or absent

at extreme food concentrations (,30%, or .130% of the standard

dietary yeast and sugar content) [22]. Male-specific hormones

can also reduce male lifespan below that of females, thus enhan-

cing SDL [18,23]. The production of pheromones by one sex can

also directly reduce the lifespan of the other via interaction with

insulin signalling pathways in both flies and worms [24,25].

Exposure to female pheromones reduced male lifespan in Droso-
phila, even in the absence of mating [24]. These findings support

the idea that the interaction between the sexes via sexual selection

and sexual conflict exerts significant influences on the lifespan of

one or both sexes, thus altering the magnitude of SDL [11,15].

Sex-specific variation in longevity may result from sex-

specific patterns of extrinsic mortality, ageing onset and ageing

rate, over the lifetime [14,16]. The causes of such differences

are thought to result from the expression of sex-specific life

histories [21] and hence differential sex-specific optimization of

energy investment or allocation [15,16,26]. SDL may arise from

the sex-specific optimization of trade-offs of lifespan with repro-

ductive, mating or developmental traits, leading to sex-specific

life-history strategies [15,16,21]. Hence, underpinning the

expression of SDL are differences in the magnitude of reproduc-

tive costs [27] and associated sex-specific trade-offs. These may

often differ substantially between males and females. However,

despite numerous theoretical predictions surrounding life-his-

tory trade-offs, relatively little is currently known about the

sex-specific impact of reproductive costs on survival trajectories

in both sexes [28].

Ultimately, the causes and consequences of SDL are still

poorly understood [11,15,20,29]. One leading hypothesis,

which we test here, is that enhanced SDL could be a mechanism

by which sexual conflict is reduced, by allowing females and

males to express sex-specific life histories and hence increase

their sex-specific fitness [11,15,30]. It is known that genetic cor-

relations can constrain the sexes from reaching their optimal

lifespan [31] and that selection on the optimal lifespan in one

sex increases fitness of that sex but reduces fitness of the

other [32]. However, there are as yet no direct empirical tests

of the age-specific fitness consequences associated with

enhanced versus reduced SDL in both sexes. This knowledge

gap has partly arisen from the lack of an appropriate empirical

system in which to test these predictions. We address this omis-

sion by using lines of D. melanogaster fruit flies subjected to

replicated experimental evolution for .360 generations (over

15 years) under divergent random and regular feeding regimes.

In these evolutionary regimes, food is provided either regularly

each week (‘Regular’) or randomly within a 28-day cycle

(‘Random’). The same absolute quantity of diet is provided to

each regime, but Random regime lines experience periods of

nutritional stress and surfeit. The Random lines have evolved

enhanced SDL in relation to controls (see below) offering

an ideal opportunity to test for associated differences in

sex-specific fitness.

We used the Random and Regular feeding lines to test the

prediction that increased SDL, as expressed by Random in
comparison to Regular lines, is associated with decreased

sexual conflict through adoption of sex-specific life histories

that lead to higher fitness for males and females. The overarch-

ing rationale was that the Random lines, in which there was

greater SDL, would show increased sex-specific fitness in com-

parison to lines in which SDL was reduced. We conducted

separate experiments to measure the lifespan and fitness of

focal females and males from the Random and Regular lines

held with non-focal standard wild-type (WT) individuals.
2. Methods
(a) Flies and culturing
Experimental individuals were the second generation of offspring

(F2) originating from eggs laid by grandparents (P1) derived from

the three replicated populations of Regular and Random feeding

regime cages (electronic supplementary material, figure S1). Two

generations of rearing under standard conditions were conducted

to minimize maternal effects. First instar larvae were transferred to

sugar yeast agar (SYA) vials (15 g agar, 50 g sugar, 100 g yeast,

30 ml Nipagin (10% w/v solution and 3 ml propionic acid per

litre) at controlled density of 150 larvae per vial. Adults (F1 gener-

ation) were allowed to emerge and freely mate in their larval vials

for 24 h and then tipped into fresh SYA bottles for another 12–24 h

of free mating. This ensured that all F1s were sexually mature and

aged between 12 and 48 h. A total of 400 F1 females from each of

the six experimental lines were then transferred into a mini-cage

with yeasted purple agar plate and allowed to egg-lay for 6 h.

The short egg laying window allowed for precise measurement

of subsequent developmental timings.
(b) Life-history assay
Adults emerging from F2 larval vials were collected as the F2

generation ‘focal’ flies for the adult fitness experiment. Sample

sizes of 51 adults per sex per line were used for the survival

assay and for weekly matings. A subset of 45 adults per sex

per line was used to assess weekly reproductive output. Virgin

WT Dahomey flies of both sexes (n ¼ 480 per sex) derived from

standard density cultures (150 larvae per vial) were generated

each week for mating with the focal females and focal males in

the experiments. WT flies were collected as virgins and held in

single sex groups of 10 per SYA vial until they were introduced

to the focal flies. Initial matings between virgin focal flies and

virgin WT flies were set up 3 days post-eclosion. Using light

CO2 anaesthesia, three focal adults were placed with three

standard WT adults of the opposite sex per vial for 24 h. Multiple

individuals were housed together to introduce biologically

relevant male–male competition. The mating schedule in the

male and the female experiments was identical. Assays of

mating behaviour were recorded every 20 min for the final 3 h

of each 24 h mating period. This allowed indices of the

proportion of each sex that mated to be determined.

After initial matings, focal females and males were trans-

ferred to single sex vials containing SYA medium at a density

of 3 flies per vial, under light CO2 anaesthesia. Initial egg

counts for both focal sexes were made from this 24 h mating

period. Egg vials were retained to determine egg–adult viability

and frozen 13 days after egg laying, for later counting of the

number of offspring. For the first 2 weeks of the experiment,

twice-weekly matings of focal females and males with WT

mates (standard 3-day-old virgin WTs) were conducted, and

twice-weekly egg counts and offspring counts recorded, to

assess early reproductive output. Weekly matings and reproduc-

tive output counts were then performed for the remainder of the
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experiment. All matings followed the same protocol as the initial

mating.

Every 2–3 days food vials were exchanged and the group-

ings of three focal flies per vial were shuffled, to randomize

the positioning of focals in vials with fewer than three flies

(due to mortalities or censors). The focal sexes were housed in

single sex vials throughout the experiment (except during

weekly matings with WT adults). Focal female and focal male

mortalities were checked daily.

(c) Statistical analyses
All statistical analyses were performed in R v. 3.2.1 [33] using the

base ‘stats’ package, except where otherwise stated.

(i) Development time and developmental viability
Developmental viability was expressed as proportion data and

analysed using a generalized linear model (GLM), with quasi-

binomial errors, to account for overdispersion. Development

time data were tested for normality using the Shapiro–Wilk

test and for equality of variances using the Levene’s test, separ-

ately for each treatment level. Differences in development time

between regimes were analysed using a two sample t-test, as

the normality and equality of variances assumptions were met.

A focal-sex � feeding regime interaction effect on development

time was tested for using a GLM with normal errors.

(ii) Survival
Survival analyses were performed using mixed effects Cox pro-

portional hazards regression on age-specific mortality data.

Prior to analyses, the data were tested for potential violation of

the proportional hazards (PH) assumption using both graphical

and analytical tests. As a further test, parametric survival analy-

sis was performed for a subset of the data with the largest

potential PH violation as follows. A maximum likelihood

approach, implemented in the ‘bbmle’ [34] package, was used

to compare 11 different parametric models and find the best

model fit (adapted from [35]). Subsequent parametric survival

analysis returned comparable results to the mixed effects Cox

model. This, coupled with the finding that the data satisfied

the PH assumption, justified the use of the semi-parametric

Cox PH method for all the main survival analyses, implemented

using the ‘coxme’ package [36]. The models were specified to test

for the effects of the two fixed explanatory factors of interest,

namely sex and feeding regime. We split the dataset in order

to calculate the relevant hazard ratios (HR) for each sex and

regime, where HR indicates the risk of death for two treatments

relative to each other (e.g. if one group died at twice the rate per

unit time as another, the HR would be 2). However, in a com-

bined model, we used the entire dataset to include an

interaction term to directly test for the effect of evolutionary feed-

ing regime on SDL. Each model included a random effect of cage,

which was tested against a simpler model without this term via

likelihood ratio test (LRT). In all models, dropping the random

effect resulted in a worse model fit and justified the retention

of this term. In the first two models, we analysed within-sex

effects of feeding regime on survival. Here, age-specific mortality

was modelled as a response to a single, fixed factor, namely feed-

ing regime, and a random effect of line nested within feeding

regime. The second two models analysed the effect of evolution-

ary feeding regimes on the differences in survival between the

two focal sexes, i.e. SDL. In these, age-specific mortality was

modelled as a response to a single fixed factor, sex and a

random effect of line nested within sex. The final combined

model included age-specific mortality as a response to focal sex

and feeding regime as fixed main factors, as well as a fixed

focal sex � feeding regime interaction and a random effect of

line nested within feeding regime.
(iii) Age-specific reproduction
Age-specific egg count and offspring count data were analysed

with generalized linear mixed effects models (GLMMs), separ-

ately for each sex, using the ‘glmer’ function from the ‘lme4’

package in R [37]. Experimental replicate and the number of

days post-eclosion were fitted as categorical random effects and

feeding regime (Regular or Random) as a fixed effect. No indi-

vidual-level random effect was included in the model, as

individuals were not uniquely identifiable from this experiment

(measures were taken from randomized groupings of three indi-

viduals, at each time point). The data were overdispersed in all

cases. To account for this, an observation-level random effect

was added to each GLMM and a maximum likelihood model

comparison was used to determine best model fit. Egg to adult

viability was calculated as the proportion of eggs laid by

groups of three focal females that hatched as viable offspring,

at each time point. Proportion data were arcsine transformed to

normalize and then analysed with a linear mixed model

(LMM). Initial egg and offspring counts (from 3 days post-

eclosion) were also analysed separately, for both sexes, using

the same approach as for development time data, to determine

whether differences in fitness indices were associated with differ-

ences in initial reproduction counts (as the fitness index, Euler’s r,

is weighted towards early reproduction: for description of fitness

calculation, see below).

(iv) Lifetime reproduction
An index of total lifetime egg production and an index of total life-

time offspring production were calculated separately for each sex

and each treatment population by summing egg or offspring

counts, respectively, across the lifetime. The mean and standard

errors for total lifetime reproduction values, for each feeding

regime (Random and Regular) and each sex, were determined.

Differences in total lifetime egg or offspring production between

regimes were analysed identically to development time data.

(v) Female and male fitness
Female and male fitness indices were calculated as the intrinsic

rate of population growth (the Malthusian parameter, Euler’s

r), using the Euler equation [38,39], separately for each treatment

line. The Euler equation calculates an index of fitness from age-

specific survivorship and age-specific reproduction values; it is

weighted towards early life reproduction and is directly related

to the lambda fitness metric [40,41]. Age-specific egg counts

(per 24 h) were used to calculate ‘potential fitness’, and

age-specific offspring counts (per 24 h) were used to calculate

‘realized fitness’. Offspring counts and egg counts were halved

to account for the genetic contribution of one parent (the mother

or father, respectively) to the offspring generation. Fitness data

were analysed identically to the development time data.

(vi) Mating frequency
An index of the proportion of individuals that mated from each

treatment line population was calculated separately for each focal

sex. For each weekly mating day (n ¼ 10), the total numbers of

matings recorded each 20 min, over the 3 h mating observation,

were summed, to give the total number mated per 3 h mating,

for each line and each focal sex. The total numbers of matings

recorded over lifetime (across all weekly matings) for each

focal sex and line were then calculated and expressed as a pro-

portion of the sum of total number of pairs surviving at each

weekly mating over lifetime. Indices of mean proportion mated

over lifetime per treatment line were analysed, separately for

each sex, using a GLM with binomial errors. Overdispersion

was accounted for by using quasi-binomial errors. A maximal

GLM model including regime, sex and their interaction was

fitted. Stepwise removal of non-significant model terms from



0

su
rv

iv
or

sh
ip

su
rv

iv
or

sh
ip

0

0.2

0.4

0.6

0.8

Random
Regular

1.0

20 40 60 80

0

0

0.2

0.4

0.6

0.8

Random female
Random male

days post-eclosion days post-eclosion

1.0

20 40 60 80 0

0

0.2

0.4

0.6

0.8

Regular female
Regular male

1.0

20 40 60 80

0

0

0.2

0.4

0.6

0.8

Random
Regular

1.0

20 40 60 80

(a) (b)

(c) (d)

Figure 1. Age-specific survivorship against days post-eclosion. Shown are replicates 1 – 3 of Random and Regular feeding regimes: (a) Random versus Regular focal
females; (b) Random versus Regular focal males, (c) Random females versus males and (d ) Regular females versus males.

rspb.royalsocietypublishing.org
Proc.R.Soc.B

284:20170391

4

the maximal model, and likelihood ratio tests, were used to

test for significance of model terms and to derive the minimal

adequate model.
3. Results
We hypothesised, based on the proximate responses of SDL to

diet [22], that SDL would change in these lines. Data from an

initial pilot experiment conducted with once-mated females

and males were consistent with this idea and showed that

lines maintained on a random, unpredictable feeding regime

had evolved significantly enhanced SDL in comparison to con-

trol lines fed according to a regular feeding regime (electronic

supplementary material, figure S2). We then used these

lines to test the prediction that, in fully reproductive flies,

the expression of enhanced SDL would be associated with

increased sex-specific fitness and hence a reduction in sexual

conflict. We measured the survival and reproductive successes

of focal males and focal females, separately, from the Random

and Regular lines. To maintain reproductive activity through-

out life, all flies were given 24 h exposure to WT individuals

of the opposite sex every 7 days. We indicate directionality to

differences in lifespan, where appropriate, on the basis of com-

parisons to the Regular regimes, which replicate the standard

cage culture conditions.
(a) Lifespan and sexual dimorphism for lifespan
We predicted the existence of adaptive sex-specific optimiz-

ation of life-history trade-offs [21] correlated with the
intermittent nutritional stress imposed by the Random feeding

regime. The results supported the predictions. Consistent with

the pilot data (electronic supplementary material, figure S2),

we saw significantly enhanced SDL associated with a speci-

fic change to the life history of the Random males. There

was no significant difference in focal female survival (median

lifespan: Regular ¼ 58 days, Random¼ 60 days; coxme

regression: hazard ratio (HR)(Reg/Rand)¼ 0.76, z ¼ 1.31, p ¼
0.19; figure 1a; electronic supplementary material, table S1).

However, male survival was significantly greater for

Regular (median ¼ 51 days) in comparison to Random

males (median ¼ 47 days; coxme regression: HR(Reg/Rand) ¼

0.61: z ¼ 2.39, p ¼ 0.017; figure 1b). SDL was expressed as a

significant sex difference in survival within the Random

regime (median female lifespan ¼ 60 days, males ¼ 47 days;

coxme regression: HR(Male/Female) ¼ 3.58, z ¼ 4.42, p , 0.001;

figure 1c). SDL was less marked in the Regular regime

(median lifespan females ¼ 58 days, males ¼ 51 days; coxme

regression: HR(Male/Female) ¼ 2.12, z ¼ 4.56, p , 0.001;

figure 1d ). The suggested pattern of SDL showing an inter-

action with sex across regimes was confirmed by the

combined statistical model. This revealed a significant focal

sex � feeding regime interaction effect on survival (coxme

regression: HR(Reg male/Rand male) ¼ 0.68, z ¼ 2.07, p ¼ 0.038),

which confirms significantly greater SDL in Random

compared to Regular regimes.

(b) Focal female reproductive output
There was no significant difference in focal female age-

specific egg or offspring production over time (GLMMs:
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egg production z ¼ 0.28, p ¼ 0.776; offspring z ¼ 0.18, p ¼
0.855; figure 2a,b) and both traits declined significantly with

age across both regimes (GLMMs: eggs z ¼ 71.8, p , 0.001;

offspring z ¼ 71.6, p , 0.001). There was also no significant

difference in egg to adult viability across regime females

(GLMM: t5¼ 0.63, p ¼ 0.480; figure 2c) though again a signifi-

cant effect of age (GLMM: t5¼ 10.19, p , 0.001). There were

no differences in initial egg counts (two sample t-test: t4 ¼

1.57, p ¼ 0.192; mean Random ¼ 64, Regular ¼ 74; figure 2a
inset) or offspring counts (t4 ¼ 0.90, p ¼ 0.420; mean

Random ¼ 54, Regular ¼ 61; figure 2b inset) in the focal

female experiment.

(c) Focal male reproductive output
There was also no significant overall difference in male

age-specific reproductive output (GLMMs egg production: z
¼ 1.09, p ¼ 0.276; offspring: z ¼ 0.97, p ¼ 0.334; figure 3a,b),

and both traits declined significantly with age (GLMMs eggs:

z ¼ 39.1, p , 0.001; offspring: z ¼ 65.7, p , 0.001). There was

no significant difference in male egg to adult viability across

regimes (GLMM: t5¼ 0.35, p ¼ 0.700; figure 3c) though again

a significant decrease with age (GLMM: t5¼ 19.81, p , 0.001).

However, initial offspring counts were significantly higher

for Random than Regular males (t4¼ 4.29, p ¼ 0.0128; mean
Random¼ 66, Regular ¼ 57; figure 3b inset). There was

also a non-significant trend for higher egg production in

Random over Regular males (t4¼ 2.34, p ¼ 0.0797; mean

Random¼ 70, Regular ¼ 62; figure 3a inset).
(d) Focal female and focal male fitness
There was a significant difference between feeding regimes in

male (t4¼ 4.32, p ¼ 0.0124) but not female (t4¼ 0.81, p ¼
0.465) fitness (table 1). Hence Random males showed a sig-

nificant increase in fitness compared to Regular males, even

though their lifespans were significantly shorter. This was

associated with the significantly higher initial offspring pro-

duction in males from the random regime (figure 2b). These

results indicated that experimental evolution of feeding

regimes and enhanced SDL led to sex-specific fitness differ-

ences, with males from the random regime showing

significantly higher fitness.
(e) Mating frequency and developmental traits
A significantly greater proportion of Regular than Random

males mated during the 3 h observations of weekly matings

over the lifetime. There was no difference in the mean propor-

tion of matings observed in focal females (males GLM: z ¼
2.12, p ¼ 0.0338; females GLM: t ¼ 0.01, p ¼ 0.928; electronic

supplementary material, figure S3). There were no differences



Table 1. Index of mean fitness (+1 s.e.) for focal females and males from
Random and Regular regimes, calculated as Euler’s r using age-specific egg
counts (a) or age-specific offspring counts (b). The mean values for each
feeding regime were calculated from the three lines for each regime
(Random 1, Random 2, Random 3, and Regular 1, Regular 2, Regular 3);
n ¼ 45 individuals per line.

(a) fitness (from
egg counts)

(b) fitness (from
offspring counts)

mean s.e. mean s.e.

female

Random 1.154 0.018 1.096 0.020

Regular 1.201 0.026 1.135 0.044

male

Random 1.188 0.012 1.169 0.007

Regular 1.146 0.014 1.122 0.008
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in developmental viability or developmental time across either

regime (electronic supplementary material, figures S4–S6).
4. Discussion
Differences in female and male lifespan are widely documen-

ted across many species [10,12–14]. Much less is known

about the factors that influence the extent of this SDL. Here

we subjected lines to evolutionary manipulation of Random

and Regular (control) feeding regimes and found that this

led to enhanced SDL in the Random regime. This was

driven by a specific reduction in Random relative to Regular

male lifespan. We then measured the life-history conse-

quences of enhanced SDL in both sexes simultaneously. We

tested the prediction that the existence of enhanced SDL

would lead to the opportunity for constraint to be relaxed

and each sex to adopt a sex-specific life history leading to

higher fitness in comparison to the situation in which SDL

was reduced [11,15]. In line with the prediction, enhanced

SDL was associated with increased fitness of Random males,

as predicted under the sexual conflict theory. Random males

compensated for a reduced lifespan through a significantly

elevated early burst of reproductive output. Female fitness

was equivalent across Random and Regular regimes,

suggesting that female life history was relatively independent

of changes to that of males. Hence, the overall level of sexual

conflict was reduced.

Random males achieved higher fitness, despite a signifi-

cantly reduced lifespan, by allocating resources into increased

early reproductive output (progeny production). This suggests

a trade-off between early reproduction and lifespan [42,43].

Increased early productivity was achieved, even though

Random males mated less frequently than Regulars over their

lifetime. The reduced lifespan of Random in comparison to

Regular males was not associated with any between-regime

differences in developmental viability or timing. Random

males and females have significantly smaller body size than

Regular flies (J. Perry, E. Duxbury, T. Chapman 2017, unpub-

lished work). Hence there was no straightforward relationship

between body size and reproductive output or lifespan in this
study. It would be interesting to probe the functional relation-

ships further, by testing for reproductive allocation

differences within the Random and Regular lines. This would

allow tests of whether the life-history fitness advantage of

random males is associated with increased allocation of

resources to reproductive tissues (testes and accessory glands)

per unit body size. Similarly, the lack of differences in female

life history across regimes would predict a lack of such diver-

gence in reproductive allocation. Functional relationships

could be further investigated through the description of sex-

specific gene expression profiles to examine more directly the

genomic changes underlying selection.

The finding of increased fitness for the random SDL-

enhanced males was necessarily based on measures of the

reproductive output of WT females mated to them. This

suggests these males are better at providing direct fitness

benefits to females or less harmful to females. To examine this

further, it would also be very interesting to measure focal

male fitness in competition against WT males. This would

allow a test to rule out the possibility that random males are

more benign but also less competitive in fertilizations.

Sex-specific life-history trade-offs over investment into

reproduction versus survival, as observed here, are posited

as evolutionary explanations for SDL [21]. That is, there may

be differential sex-specific optimization of energy investment

and allocation [15,16,26]. Our work provides empirical evi-

dence to support the existence of sex-specific life-history

trade-offs, which were present in males and absent in females.

A life-history strategy that favours early reproduction by

males over later survival, despite a reduced body size, could

be adaptive following an evolutionary history of unpredictable

(random) food availability [44]. If randomly fed individuals

had an increased ability to readily capitalize on resources

when available, then this would allow them to achieve

increased fitness. Experimental evolution of Drosophila under

high extrinsic mortality (90% mortality induced twice per

week) also led to a similar life-history strategy of reduced

body size, increased early fecundity and reduced lifespan,

when compared with lines selected for low extrinsic mortality

(10% induced mortality, twice per week) [7]. However, impos-

ing increased mortality can also have the opposite result, i.e.

the evolution of increased lifespan, depending upon whether

mortality is condition-dependent rather than random [45,46].

Hence our results suggest that mortality is random, or possibly

that selection for early function is stronger than selection for

stress resistance.

Females, in contrast, did not differ in lifespan, reproduc-

tive output or mating frequency and, unlike males, did not

evolve an altered life-history strategy in response to feeding

regime manipulation. This was not due to a lack of a response

in comparison to lifespan before selection, as the Regular

lines essentially replicate the normal cage cultures. Nor is it

attributable to a lack of raw material, as there is significant

genetic variation in female lifespan [32,47,48]. It is possible

that there was no selection on the female life history,

but given the significant body size differences we observed

between regimes as an outcome of selection this seems unli-

kely. We suggest instead that trade-off changes expressed in

males were absent in females, or that females did not respond

due to the presence of inter- or intralocus genetic correlations.

These possibilities would be interesting to test. Sex-specific

lifespan patterns could be the result of different selection

pressures acting on the sexes [15,49]. We observed no
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significant sex bias in adult emergence (data not shown).

Hence overall there was no evidence of differential develop-

mental selection on either sex, suggesting that sex-specific

selection pressures were more likely to have acted upon

adults.

Experimental evolution studies in the laboratory can be

vulnerable to the effects of inbreeding due to reduction in effec-

tive population size (as discussed in [50]). Recently, an effect of

inbreeding per se on the expression of male versus female life-

span has been observed [20]. We reduced the potential for

inbreeding through maintenance at large population sizes. Sur-

vival and reproduction patterns were broadly consistent

between the three replicate populations for each regime, sup-

porting the conclusion that evolved responses between

regimes arose from selection and adaptation, rather than drift.

Sexual conflict was reduced under enhanced SDL. Some

authors argue that sexual dimorphism can only ever partially

resolve sexual conflict, as the sexes are constrained from reach-

ing their optimal fitness by the majority of their shared

genomes [21,30]. This argument is derived from the obser-

vation that little empirical evidence exists for the presence of

‘modifier’ genes that allow the sex-specific gene expression

required to achieve sufficient sexual dimorphism. The evol-

ution of such genes is also predicted to be slow [51,52].
However, in this study we did observe a reduction of sexual

conflict. This could have been through a putative relaxation

of genetic constraints on shared lifespan and life histories

between the sexes. The reduction of conflict came from specific

shifts in male not female life history. The maintenance of

female fitness under both enhanced and reduced SDL could

reflect that optimal fitness was achieved even in the absence

of enhanced SDL. The sexes may have differed in their absolute

fitness optima, but have achieved the optimum for their

respective sex, under enhanced SDL.
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