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Abstract
The concept of a Sheffer operation known for Boolean algebras and orthomodular lattices is extended to arbitrary directed
relational systems with involution. It is proved that to every such relational system, there can be assigned a Sheffer groupoid
and also, conversely, every Sheffer groupoid induces a directed relational system with involution. Hence, investigations of
these relational systems can be transformed to the treatment of special groupoids which form a variety of algebras. If the
Sheffer operation is also commutative, then the induced binary relation is antisymmetric. Moreover, commutative Sheffer
groupoids form a congruence distributive variety. We characterize symmetry, antisymmetry and transitivity of binary relations
by identities and quasi-identities satisfied by an assigned Sheffer operation. The concepts of twist products of relational
systems and of Kleene relational systems are introduced. We prove that every directed relational system can be embedded into
a directed relational system with involution via the twist product construction. If the relation in question is even transitive,
then the directed relational system can be embedded into a Kleene relational system. Any Sheffer operation assigned to a
directed relational system A with involution induces a Sheffer operation assigned to the twist product of A.

Keywords Relational system · Directed relational system · Involution · Sheffer operation · Sheffer groupoid · Twist product ·
Kleene relational system

1 Introduction

Relational systems form one of the most general mathemati-
cal structures. Almost all structures appearing in algebra can
be considered as relational structures. Such structures were
studied for a long lime, see the pioneering work by Riguet
(1948) containing elementary properties and constructions
with binary relations and the paper by Fraissé (1954). On
the other hand, in contrast to publications in algebra, not so
many of papers are devoted to relational systems. One of the
reasons is that there are not so powerful tools for investigat-
ing relations as there are for algebras. This is also the reason
why relational systems do not appear so often in applications
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both in mathematics and outside. One important application
of relational systems are, e.g., Kripke systems used in the
formalization of several non-classical logical systems.

The authors introduced formerly several methods where
relational systems are connected with various accompany-
ing algebras, and hence their properties can be transformed
into algebraic language, and the problems are solved by tools
developed in general algebra. Let us mention, e.g., Chajda
and Länger (2013) and Chajda and Länger (2016a) where
certain groupoids similar to directoids are assigned to a rela-
tional system. In Chajda and Länger (2016b) and Chajda
et al. (2015), this approach is applied to relational systems
equipped with a unary operation. For ternary relations, such
an approach was used in Chajda et al. (2013). In Bonzio
and Chajda (2018), relational systems are treated similarly
as residuated posets. This is important because residuated
posets serve as an algebraic semantics of a certain kind of
substructural logic, see (Chajda andLänger 2021), and hence
also the considered relational systems can play a similar role
in a more general setting.

In the present paper, we extend this list of used tools by
the so-called Sheffer operation. Remember that the Sheffer
operation introduced by Sheffer (1913) was used in Boolean
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algebras as a very successful tool since this operation can
replace all other Boolean operations. Namely, every Boolean
operation, both basic or derived, can be expressed by repeat-
edly using the Sheffer operation, see e.g., (Birkhoff 1979). In
today terminology, the clone of Boolean functions is gener-
ated by the Sheffer operation. This has a surprising and very
successful application in technology because in switching
circles in particular in computer processors, it suffices to use
only one binary operation, namely the Sheffer one. Then the
technology of production of such chips is much easier and
cheaper than it was in the beginning of computer era when
several parts of the computer were composed by at least two
different kinds of diodes (e.g., one for conjunction and the
other one for negation). As it was shown by the first author
in Chajda (2005), a Sheffer operation can be introduced not
only in Boolean algebras but also in orthomodular lattices or
even in ortholattices (see Birkhoff 1979 for these concepts).
These algebras form an algebraic semantics of the logic of
quantum mechanics, see e.g., Birkhoff and von Neumann
(1936) or Husimi (1937). However, it turns out that such
lattices may not model this propositional calculus precisely,
see e.g., (Finch 1970). The reason is that in these logics, dis-
junction does not necessarily exist for all elements, i.e., that
supremum of two elements need not exist if these elements
are not orthogonal, see Chajda and Kolařík (2014) and Finch
(1970). Hence, the so-called orthomodular posets and ortho-
posets were introduced. This was the reason why the concept
of Sheffer operation was transferred from ortholattices to
orthomodular posets and orthoposets, or, more generally, to
posets with an involution or a complementation, see Chajda
and Kolařík (2021).

The next natural step is to extend this method from posets
to more general relational systems. In order to avoid difficul-
ties with not everywhere defined operations and some other
drawbacks, we consider so-called directed relational systems
where the relation is reflexive and equippedwith a unary invo-
lution operation. The authors show that also in this case, a
kind of Sheffer operation can be introduced and the corre-
sponding groupoid characterizes the given relational system.
At first, we show that similarly as for Boolean algebras, using
an assigned Sheffer operation, we can conversely recover not
only the involution, but also the given binary relation.

The goals and benefits of our approach are as follows:

• At first, we show that similarly as for Boolean algebras
where all the operations can be recovered by means of
the Sheffer operation, also here the unary operation and
the given binary relation can be reconstructed by means
of only one specific Sheffer operation.

• We show that some basic properties of binary relations
can be characterized by means of identities and quasi-
identities in this Sheffer operation and hence one can use
a purely algebraic approach to these relational systems.

• Since the class of Sheffer groupoids assigned to the class
of relational systems with antitone involution forms a
variety, also some important congruence properties can
be investigated for relational systems.

• We describe connections between homomorphisms of
Sheffer groupoids and homomorphisms of assigned rela-
tional systems.

• We derive Kleene relational systems by using the twist
product construction and introduce a Sheffer operation
on them in order to be able to apply the above-mentioned
tools and results.

2 Basic concepts

The Sheffer operation was introduced by Sheffer (1913) in
Boolean algebras. IfB = (B,∨,∧, ′, 0, 1) is a Boolean alge-
bra and one defines

x |y := x ′ ∨ y′,

then | is just the Sheffer operation on B. At first, we intro-
duce the concept of Sheffer operation in a general setting as
follows.

In the following, the notation t1(x1, . . . , xn) ≈ t2(x1, . . . ,
xn) means that t1(x1, . . . , xn) = t2(x1, . . . , xn) holds for all
x1, . . . , xn of the corresponding base set.

Definition 2.1 A Sheffer operation on a non-void set A is a
binary operation | on A satisfying the following identities:

(x |y)|(x |x) ≈ x, (1)

(x |y)|(y|y) ≈ y. (2)

A groupoid is an algebra of type (2). A Sheffer groupoid is a
groupoid (A, |) where | is a Sheffer operation on A.

Hence, the class of Sheffer groupoids is determined by
identities, i.e., it forms a variety.

Example 2.2 If A := {a, b, c, d} and the binary operation |
on A is defined by

| a b c d
a a c d c
b c b d c
c a b d c
d a b d c,

then (A, |) is a Sheffer groupoid.
It is worth noticing that the Sheffer operation in a Boolean

algebra satisfies the identities (1) and (2), and hence our new
concept is sound.

An antitone involution on a lattice (L,∨,∧) is a unary
operation ′ on L satisfying
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(i) x ′′ ≈ x ,
(ii) x ≤ y implies y′ ≤ x ′

for all x, y ∈ L .
It is worth noticing that a Sheffer operation need not be

unique, see Lemma 2.3.
The following lemma was shown for ortholattices in

Chajda (2005), but it holds also for lattices with antitone
involution.

Lemma 2.3 Let (L,∨,∧, ′) be a lattice with antitone invo-
lution. Then, (i) and (ii) hold:

(i) If x |y := x ′ ∨ y′ for all x, y ∈ L, then (L, |) is a Sheffer
groupoid.

(ii) If x |y := x ′ ∧ y′ for all x, y ∈ L, then (L, |) is a Sheffer
groupoid.

Proof (i) Since x |x ≈ x ′ ∨ x ′ ≈ x ′, (1) and (2) are equiva-
lent to

(x ′ ∨ y′)′ ∨ x ′′ ≈ x,

(x ′ ∨ y′)′ ∨ y′′ ≈ y,

respectively.
(ii) Since x |x ≈ x ′ ∧ x ′ ≈ x ′, (1) and (2) are equivalent to

(x ′ ∧ y′)′ ∧ x ′′ ≈ x,

(x ′ ∧ y′)′ ∧ y′′ ≈ y,

respectively.
�	

The question whether one of the identities (1) and (2)
implies the other one is answered in the negative by the fol-
lowing lemma.

Lemma 2.4 Axioms (1) and (2) are independent.

Proof If A := {a, b} and the binary operation | on A is
defined by x |y := x for all x, y ∈ A, then | satisfies (1), but
not (2) since (a|b)|(b|b) = a|b = a 
= b. If A := {a, b, c}
and the binary operation | on A is defined by

| a b c
a a b c
b c b c
c a a c,

then | satisfies (2), but not (1) since (a|b)|(a|a) = b|a = c 
=
a. �	

Let us recall some concepts from theory of relations.

Let A be a non-void set, a, b ∈ A, R a binary relation on
A and ′ a unary operation on A. We define

U (a, b) := {x ∈ A | (a, x), (b, x) ∈ R},
L(a, b) := {x ∈ A | (x, a), (x, b) ∈ R}

and call these sets the upper cone and lower cone of a and
b with respect to R, respectively. The relational system A =
(A, R) is called directed ifU (x, y) 
= ∅ and L(x, y) 
= ∅ for
all x, y ∈ A. The operation ′ is called antitone if (x, y) ∈ R
implies (y′, x ′) ∈ R and an involution on A if it is antitone
and if it satisfies the identity x ′′ ≈ x . The relational system
(B, S) is called a subsystem of A if B ⊆ A and S = R ∩ B2.

Lemma 2.5 Let (A, R, ′) be a relational system with involu-
tion and assume U (x, y) 
= ∅ for all x, y ∈ A. Then, (A, R)
is directed.

Proof We have L(x, y) 
= ∅ for all x, y ∈ A since L(x, y) ≈
(U (x ′, y′))′, where B ′ := {b′ | b ∈ B} for every subset B of
A. �	
Definition 2.6 A directed relational system with involution
is an ordered triple (A, R, ′) consisting of a non-void set A, a
binary relation R on A and a unary operation ′ on A satisfying
the following conditions:

R is reflexive, (3)

(A, R) is directed, (4)
′ is an involution on (A, R). (5)

3 Representation of relational systems by
Sheffer groupoids

The following result shows how a Sheffer groupoid is con-
nected with a directed relational system with involution.

For every Sheffer groupoid A = (A, |) put R(A) :=
(A, R, ′) where

x ′ := x |x for all x ∈ A,

R := {(x, y) ∈ A2 | x ′|y′ = y}.

Theorem 3.1 Let A = (A, |) be a Sheffer groupoid. Then,
R(A) is a directed relational system with involution, the so-
called directed relational system with involution induced by
A.

Proof Let a, b ∈ A. (1) implies x ′′ ≈ x and that R
is reflexive. (1) and (2) can be written in the equiva-
lent form (x |y)|x ′ ≈ x and (x |y)|y′ ≈ y, respectively.
If (a, b) ∈ R, then a′|b′ = b, and hence b|a =
(a′|b′)|a = a′, i.e., (b′, a′) ∈ R showing that ′ is an invo-
lution on (A, R). Since (a′|b′)|a = a′ and (a′|b′)|b =
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b′, we have ((a′|b′)′, a′), ((a′|b′)′, b′) ∈ R, and hence
(a, a′|b′), (b, a′|b′) ∈ R, i.e., a′|b′ ∈ U (a, b) which shows
U (a, b) 
= ∅. According to Lemma 2.5, (A, R) is directed.

�	
Example 3.2 Put A := {a, b, c, d} and define a unary opera-
tion ′ on A by

x a b c d
x ′ a b d c

Then, (A, A2 \ {(a, b), (b, a)}, ′) is the directed relational
system induced by the Sheffer groupoidA fromExample 2.2.

In the following, we show that also conversely, to every
directed relational systemwith involution, a Sheffer groupoid
can be assigned.

Let A = (A, R, ′) be a directed relational system with
involution. Define a binary operation | on A as follows: if
(x ′, y′) ∈ R, then x |y := y′, and take x |y as an arbitrary
element of U (x ′, y′), otherwise (x, y ∈ A). Then, | will be
called an operation assigned to A.

Lemma 3.3 LetA = (A, R, ′) be a directed relational system
with involution and | a binary operation on A. Then, | is
assigned to A if and only if

(i) (x, y) ∈ R if and only if x ′|y′ = y,
(ii) x |y ∈ U (x ′, y′) for all x, y ∈ A.

Proof Let a, b ∈ A. First assume | to be assigned to A. If
(a, b) ∈ R, then (a′′, b′′) ∈ R, and hence a′|b′ = b′′ = b.
Conversely, assume a′|b′ = b. Then, (a, b) /∈ Rwould imply
(a′′, b′′) /∈ R, and hence b = a′|b′ ∈ U (a′′, b′′) = U (a, b)
and hence (a, b) ∈ R, a contradiction. Hence, (a, b) ∈ R.
This shows (i). If (a′, b′) ∈ R, then a|b = b′ ∈ U (a′, b′).
Otherwise, a|b ∈ U (a′, b′), too. This shows (ii). Conversely,
if | satisfies (i) and (ii), then clearly | is assigned to A. �	

The following lemma follows easily.

Lemma 3.4 If (A, R, ′) is a directed relational system with
involution and | an assigned operation, then condition (ii) of
Lemma 3.3 is equivalent to

(x |y)|(x |y) ∈ L(x, y) for all x, y ∈ A.

In the following, we will often use this lemma. Now, we
prove the converse of Theorem 3.1.

Let A = (A, R, ′) be a directed relational system with
involution. Then, G(A) := (A, |), where | is an operation
assigned to A.

Theorem 3.5 Let A = (A, R, ′) be a directed relational
system with involution. Then, G(A) = (A, |) is a Sheffer
groupoid, a so-called Sheffer groupoid assigned to A, and |
is called a Sheffer operation assigned to A.

Proof Let G(A) = (A, |). We show that (A, |) satisfies
equations (1) and (2) and hence is a Sheffer groupoid.
Let a, b ∈ A. Since (x ′, x ′) ∈ R, we have x |x ≈ x ′.
If (a′, b′) ∈ R, then (b, a) ∈ R, and hence (a|b)|a′ =
b′|a′ = a and (a|b)|b′ = b′|b′ = b. If (a′, b′) /∈ R, then
a|b ∈ U (a′, b′), and hence (a′, a|b), (b′, a|b) ∈ R which
implies ((a|b)′, a), ((a|b)′, b) ∈ R, i.e., (a|b)|a′ = a and
(a|b)|b′ = b. �	

Remark 3.6 In general, G(A) is not uniquely defined. How-
ever, it contains all the information on the directed relational
system A with involution. In other words, the given directed
relational system with involution can be completely recov-
ered from an assigned Sheffer groupoid, see the following
result.

Theorem 3.7 Let A = (A, R, ′) be a directed relational sys-
tem with involution. Then, R(G(A)) = A.

Proof If

G(A) = (A, |),
R(G(A)) = (A, S, ∗),

then according to Lemma 3.3,

S = {(x, y) ∈ A2 | x ′|y′ = y}
= {(x, y) ∈ A2 | (x, y) ∈ R} = R,

x∗ ≈ x |x ≈ x ′. �	

On the other hand, we can show for which pairs of ele-
ments a Sheffer operation ◦ assigned to R(A, |) coincides
with theSheffer operation |of a givenSheffer groupoid (A, |).

Theorem 3.8 Let A = (A, |) be a Sheffer groupoid and
G(R(A)) = (A, ◦). Then, x ◦ y = x |y if x |y = y|y.

Proof If R(A) = (A, R, ′), then any of the following asser-
tions implies the next one:

x |y = y|y,
x |y = y′,

(x ′, y′) ∈ R,

x ◦ y = y′,
x ◦ y = x |y.

�	

In fact, ◦ need not coincide with | as can be seen by the
following example.
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Example 3.9 If | is the Sheffer operation from Example 2.2,
then ◦ has the operation table

◦ a b c d
a a x d c
b y b d c
c a b d c
d a b d c,

where x, y ∈ {c, d} since U (a, b) = {c, d} in the induced
relational system. Hence, if we take x = d or y = d, then ◦
differs from |.

Theorem 3.7 shows that if we start with a directed rela-
tional system A with involution, we consider a Sheffer
groupoidG assigned toA, andwe construct the directed rela-
tional system B with involution induced by G, then B = A.
Hence, the Sheffer operation substitutes both the binary rela-
tion and the unary operation analogously to the situation for
Boolean algebras where the Sheffer operation substitutes all
other fundamental operations of the Boolean algebra.

4 Elementary properties of relations

In the following, we characterize properties of the relation
R of a directed relational system A = (A, R, ′) with involu-
tion by means of identities and quasi-identities for a Sheffer
operation assigned to A.

Theorem 4.1 Let A = (A, R, ′) be a directed relational sys-
tem with involution and | an assigned Sheffer operation.
Then, R is symmetric if and only if | satisfies the identity

((x |y)|(x |y))|x ≈ x |x . (6)

Proof If R is symmetric, then any of the following assertions
implies the next one:

x |y ∈ U (x ′, y′),
(x ′, x |y) ∈ R,

(x |y, x ′) ∈ R,

(x |y)′|x ≈ x ′,
((x |y)|(x |y))|x ≈ x |x .

If, conversely, | satisfies identity (6), then any of the following
assertions implies the next one:

(x, y) ∈ R,

x ′|y′ = y,

y′|x ′ = (x ′|y′)′|x ′ = x,

(y, x) ∈ R. �	

Another important property of a binary relation is anti-
symmetry. Recall that a binary relation R is antisymmetric
if (x, y), (y, x) ∈ R implies x = y.

Theorem 4.2 Let A = (A, R, ′) be a directed relational sys-
tem with involution and | a Sheffer operation assigned to it.
Then, the following holds:

(i) R is antisymmetric if and only if x |y = y′ and y|x = x ′
imply x = y.

(ii) If x |y ≈ y|x, then R is antisymmetric.

Proof (i) Immediate by (i) of Lemma 3.3.
(ii) This follows from (i), since x |y ≈ y|x , x |y = y′ and

y|x = x ′ imply x = (y|x)′ = (x |y)′ = y.
�	

Transitivity of a binary relation can be expressed by an
identity for an assigned Sheffer operation as follows.

Theorem 4.3 Let A = (A, R, ′) be a directed relational sys-
tem with involution and | an assigned Sheffer operation.
Then, R is transitive if and only if | satisfies the identity

x |(((((x |y)|(x |y))|z)|(((x |y)|(x |y))|z)) ≈ ((x |y)|(x |y))|z.
(7)

Proof If R is transitive, then any of the following assertions
implies the next one:

x |y ∈ U (x ′, y′) and (x |y)′|z ∈ U (x |y, z′),
(x ′, x |y), (x |y, (x |y)′|z) ∈ R,

(x ′, (x |y)′|z) ∈ R,

x |((x |y)′|z)′ ≈ (x |y)′|z,
x |(((((x |y)|(x |y))|z)|(((x |y)|(x |y))|z)) ≈ ((x |y)|(x |y))|z.

If, conversely, | satisfies identity (7), then any of the following
assertions implies the next one:

(x, y), (y, z) ∈ R,

x ′|y′ = y and y′|z′ = z,

x ′|z′ = x ′|(y′|z′)′ = x ′|((x ′|y′)′|z′)′
= (x ′|y′)′|z′ = y′|z′ = z,

(x, z) ∈ R.
�	

Let us introduce the following concepts. A bounded rela-
tional system with involution is an ordered quintuple A =
(A, R, ′, 0, 1) such that (A, R, ′) is a directed relational sys-
tem with involution, 0, 1 ∈ A and (0, x), (x, 1) ∈ R hold
for all x ∈ A. A is called complemented if it is bounded
and if U (x, x ′) ≈ 1 ≈ 0′. In such a case, L(x, x ′) ≈ 0.
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Also these properties of relational systems can be character-
ized by identities and quasi-identities for an assigned Sheffer
operation.

Theorem 4.4 Let (A, R, ′) be a directed relational system
with involution and | a Sheffer operation assigned to it.More-
over, let 0, 1 ∈ A and put A := (A, R, ′, 0, 1). Then, the
following holds:

(i) A is bounded if and only if it satisfies the identities
(0|0)|x ≈ x |x and x |(1|1) ≈ 1.

(ii) A is complemented if it is bounded, 0|0 ≈ 1 and if for
every x, y ∈ A,

x |(y|y) = (x |x)|(y|y) = y implies y = 1.

Proof (i) The assertions (0, x ′) ∈ R and (x ′, 1) ∈ R are
equivalent to 0′|x ≈ x ′ and x |1′ ≈ 1, respectively.

(ii) The following are equivalent:

y ∈ U (x, x ′),
(x, y), (x ′, y) ∈ R,

x |y′ = x ′|y′ = y,

x |(y|y) = (x |x)|(y|y) = y.

�	
As mentioned in Section 2, the class of Sheffer groupoids

forms a variety S. We can ask one more condition, namely
commutativity of |. As shown in Theorems 3.7 and 4.2, the
directed relational systems with involution induced by com-
mutative Sheffer groupoids will have antisymmetric binary
relations. We present a subvariety of the variety S containing
all commutative Sheffer groupoids which has an important
congruence property.

We recall that a variety V of algebras is called congruence
distributive if every member of V has a distributive congru-
ence lattice.

Theorem 4.5 The variety T of Sheffer groupoids (A, |) sat-
isfying the identities

(x |y)|(x |x) ≈ (x |x)|(x |y), (8)

(x |y)|(y|y) ≈ (y|y)|(x |y) (9)

is congruence distributive.

Proof We show that the variety T possesses a majority term,
i.e., a ternary term m satisfying

m(x, x, y) ≈ m(x, y, x) ≈ m(y, x, x) ≈ x

which implies the congruence distributivity of T . If

x ′ := x |x and m(x, y, z) := ((x |y)|(x |z))′|(y|z),

then

m(x, x, y) ≈ ((x |x)|(x |y))′|(x |y) ≈ x ′|(x |y) ≈ x by (8)

and (1),

m(x, y, x) ≈ ((x |y)|(x |x))′|(y|x) ≈ x ′|(y|x) ≈ x by (1),

(9) and (2),

m(y, x, x) ≈ ((y|x)|(y|x))′|(x |x) ≈ (y|x)|x ′ ≈ x by (2).

�	

5 Kleene relational systems and twist
products

At first, we show how homomorphisms of Sheffer groupoids
are related with homomorphisms of induced directed rela-
tional systemswith involution. Because in the literature there
are different concepts of homomorphism of relational sys-
tems, we recall the following one.

Let (A, R) and (B, S) be relational systems. A mapping
f : A → B is called a homomorphism from (A, R) to (B, S)
if

(x, y) ∈ R implies ( f (x), f (y)) ∈ S.

A homomorphism f is called strong if

(x, y) ∈ R if and only if ( f (x), f (y)) ∈ S.

If (A, R, ′) and (B, S,∗ ) are relational systems with unary
operation, then f is a homomorphism from (A, R, ′) to
(B, S,∗ ) if it is a homomorphism from (A, R) to (B, S) sat-
isfying

f (x ′) = ( f (x))∗ for all x ∈ A.

Theorem 5.1 Let A = (A, |A) and B = (B, |B) be Sheffer
groupoids and f a homomorphism from A to B. Then, f
is a homomorphism between the induced directed relational
systems R(A) and R(B) with involution.

Proof Let a, b ∈ A, R(A) = (A, R, ′) and R(B) =
(B, S, ∗). We have f (x ′) ≈ f (x |Ax) ≈ f (x)|B f (x) ≈
( f (x))∗ and hence any of the following assertions implies
the next one:

(a, b) ∈ R,

a′|Ab′ = b,

f (a′|Ab′) = f (b),

f (a′)|B f (b′) = f (b),

( f (a))∗|B( f (b))∗ = f (b),

( f (a), f (b)) ∈ S. �	
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Sheffer operation in relational systems 95

For the converse direction, we firstly mention the follow-
ing result for bounded relational systems.

Lemma 5.2 Let (A, R, ′, 0A, 1A) and (B, S,∗ , 0B, 1B) be
bounded relational systems with involution and f a strong
homomorphism from A = (A, R, ′) to B = (B, S,∗ ). Fur-
ther assume that f (1A) = 1B. Define binary operations |A
and |B on A and B, respectively, by

x |Ay :=
{
y′ if (x ′, y′) ∈ R,
1A otherwise

x |B y :=
{
y∗ if (x∗, y∗) ∈ S,
1B otherwise

Then, (A, |A) and (B, |B) are Sheffer groupoids assigned to
A andB, respectively, and f is a homomorphism from (A, |A)
to (B, |B).
Proof Let a, b ∈ A. Obviously, (A, |A) and (B, |B) are Shef-
fer groupoids. If (a′, b′) ∈ R, then (( f (a))∗, ( f (b))∗) =
( f (a′), f (b′)) ∈ S, and hence f (a|Ab) = f (b′) =
( f (b))∗ = f (a)|B f (b). If (a′, b′) /∈ R, then (( f (a))∗,
( f (b))∗) = ( f (a′), f (b′)) /∈ S, and hence f (a|Ab) =
f (1A) = 1B = f (a)|B f (b). �	
We are going to determine conditions under which the

converse of Theorem 5.1 holds.

Theorem 5.3 Let A = (A, R, ′) and B = (B, S, ∗) be
directed relational systemswith involution, f a strong surjec-
tive homomorphism from A to B and |A a Sheffer operation
assigned to A. Further, assume that the equivalence relation
ker f on A is a congruence on (A, |A). Then, there exists a
Sheffer operation |B on B such that f is a homomorphism
from (A, |A) to (B, |B) and |B is assigned to B.

Proof Define f (x)|B f (y) := f (x |Ay) for all x, y ∈ A.
Since ker f ∈ Con(A, |A) and f is surjective, |B is well-
defined. Let a, b ∈ A. Then, any of the following assertions
implies the next one:

(( f (a))∗, ( f (b))∗) ∈ S,

( f (a′), f (b′)) ∈ S,

(a′, b′) ∈ R,

a|Ab = b′,
f (a|Ab) = f (b′),

f (a)|B f (b) = ( f (b))∗.

Moreover, any of the following assertions implies the next
one:

(( f (a))∗, ( f (b))∗) /∈ S,

( f (a′), f (b′)) /∈ S,

(a′, b′) /∈ R,

a|Ab ∈ U (a′, b′),

f (a|Ab) ∈ U ( f (a′), f (b′)),
f (a)|B f (b) ∈ U (( f (a))∗, ( f (b))∗).

This shows that |B is a Sheffer operation on B assigned to
B. According to the definition of |B , we have f (x |Ay) =
f (x)|B f (y) for all x, y ∈ A, whence f is a homomorphism
from (A, |A) to (B, |B). The proof is settled. �	

For a lattice L = (L,∨,∧), its twist product (L2,	,�) is
defined by

(x, y) 	 (z, v) := (x ∨ z, v ∧ y),

(x, y) � (z, v) := (x ∧ z, v ∨ y)

for all (x, y), (z, v) ∈ L2. We extend this concept to rela-
tional systems as follows.

Let A be a non-void set and R a binary relation on A.
Then, (A2, S, ∗) with

S := {((x, y), (z, v)) ∈ (A2)2 | (x, z), (v, y) ∈ R},
(x, y)∗ := (y, x)

for all (x, y) ∈ A2 will be called the twist product of (A, R).
Recall that an embedding of a relational system A into

a relational system B is an injective strong homomorphism
from A to B.

The importance of twist products is pointed out by the
next result.

Theorem 5.4 Let A = (A, R) be a relational system, a ∈
A and B = (A2, S, ∗), the twist product of A. Then, the
following holds:

(i) If A is directed, then B is a directed relational system
with involution ∗,

(ii) the mapping x �→ (x, a) is an embedding of A into
(A2, S).

Proof Let a, b, c, d ∈ A.

(i) AssumeA to be directed. Because ofU ((a, b), (c, d)) =
U (a, c)×L(b, d), (A2, S) is directed.Moreover, (x, y)∗∗
≈ (y, x)∗ ≈ (x, y), and the following are equivalent:

((a, b), (c, d)) ∈ S,

(a, c), (d, b) ∈ R,

(d, b), (a, c) ∈ R,

((d, c), (b, a)) ∈ S,

((c, d)∗, (a, b)∗) ∈ S.

Hence, ∗ is an involution on (A2, S).
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(ii) The mapping x �→ (x, a) is injective. Moreover,
((b, a), (c, a)) ∈ S if and only if (b, c) ∈ R. �	

Hence, every directed relational system can be embedded
into a directed relational system with involution.

The question arises whether a Sheffer operation assigned
to the twist product of a directed relational system A with
involution can be derived from a Sheffer operation assigned
to A. We give a positive answer in the following theorem.

Theorem 5.5 Let (A, R, ′) be a directed relational system
with involution, |A an assigned Sheffer operation on A and
define

(x, y)|B(z, v) := (y′|Av′, (x |Az)′)

for all (x, y), (z, v) ∈ A2. Then, |B is a Sheffer operation on
A2 assigned to the twist product of (A, R).

Proof For a, b, c, d ∈ A, the following are equivalent:

((a, b)∗, (c, d)∗) ∈ S,

((b, a), (d, c)) ∈ S,

(b, d), (c, a) ∈ R,

(b′′, d ′′), (a′, c′) ∈ R,

(b′|Ad ′, a|Ac) = (d ′′, c′),
(b′|Ad ′, (a|Ac)′) = (d, c),

(a, b)|B(c, d) = (d, c),

(a, b)|B(c, d) = (c, d)∗

and the following are equivalent:

(b′|Ad ′, a|Ac) ∈ U (b′′, d ′′) ×U (a′, c′),
(b′|Ad ′, (a|Ac)′) ∈ U (b, d) × L(a, c),

(b′|Ad ′, (a|Ac)′) ∈ U ((b, a), (d, c)),

(a, b)|B(c, d) ∈ U ((a, b)∗, (c, d)∗). �	
In order to simplify notation, we extend binary relations

between elements of a non-void set A to relations between
subsets of A.

Let A be a non-void set, b, c be elements of A, B,C be
subsets of A and R be a binary relation on A.We say (B,C) ∈
R if B × C ⊆ R. Instead of ({b},C) ∈ R and (B, {c}) ∈ R,
we shortly write (b,C) ∈ R and (B, c) ∈ R, respectively.

The concept of a Kleene lattice was introduced by
J. A. Kalman in Kalman (1958). Recall that a distributive
lattice (L,∨,∧, ′)with antitone involution is called aKleene
lattice if it satisfies the so-called normality condition, i.e. the
identity

x ∧ x ′ ≤ y ∨ y′ for all x, y ∈ L.

These lattices are used in logic in order to formalize certain
De Morgan propositional logics. For posets with involution,
this notion was already generalized by Chajda and Länger
(to appear in Miskolc Math Notes), in the following way. A
distributive poset (P,≤, ′)with involution is called a Kleene
poset if

L(x, x ′) ≤ U (y, y′) for all x, y ∈ P

which means that z ≤ v for all x, y ∈ P and all (z, v) ∈
L(x, x ′) ×U (y, y′).

Definition 5.6 (i) A Kleene relational system is a relational
system (A, R, ′) with antitone involution satisfying

(L(x, x ′),U (y, y′)) ∈ R for all x, y ∈ A.

(ii) If A = (A, R) is a relational system, a ∈ A and (A2, S,
∗) the twist product of A, then we define the following
subset of A2:

Pa(A) := {(x, y) ∈ A2 | (L(x, y), a), (a,U (x, y)) ∈ R}.

It is worth noticing that Kleene lattices and Kleene posets
are Kleene relational systems according to our previous def-
inition.

Using the above-defined subset of the twist product, we
can show that every directed relational system with a transi-
tive relation canbe embedded into aKleene relational system.

Theorem 5.7 Let A = (A, R) be a relational system, a ∈ A,
(A2, S, ∗) the twist product of A and T := S ∩ (Pa(A))2.
Then, the following holds:

(i) If R is transitive then (Pa(A), T , ∗) is a relational system
with involution which is a Kleene relational system,

(ii) the mapping x �→ (x, a) is an embedding of A into
(Pa(A), T ).

Proof Let (b, c), (d, e) ∈ Pa(A).

(i) Put B := (Pa(A), T , ∗). From (b, c) ∈ Pa(A), we
conclude (L(b, c), a), (a,U (b, c)) ∈ R and hence
(L(c, b), a), (a,U (c, b)) ∈ R, i.e. (b, c)∗ = (c, b) ∈
Pa(A) which shows that Pa(A) is closed with respect to
∗. Because of

(L((b, c), (c, b)), (a, a)) = (L(b, c) ×U (b, c), (a, a)) ∈ S,

((a, a),U (d, e) × L(d, e)) = ((a, a),U ((d, e), (e, d))) ∈ S,

we have (L((b, c), (c, b)),U ((d, e), (e, d))) ∈ S due to
transitivity of S (which follows from the transitivity of
R), and hence B is a Kleene relational system.
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(ii) For all x ∈ A, we have (L(x, a), a), (a,U (x, a)) ∈
R, and hence (x, a) ∈ Pa(A). The rest follows from
Theorem 5.4. �	

It should be remarked that if R is transitive, then
(Pa(A), T , ∗) is a relational subsystem of the twist product
(A2, S, ∗) of A.

6 Conclusion

We have shown that to every directed relational system
A = (A, R, ′) with involution, there can be assigned a Shef-
fer operation | on A such that the given system A can be
reconstructed from the groupoid (A, |). Hence, investiga-
tions of these relational systems can be transferred to Sheffer
groupoids, i.e., algebras forming a variety S defined by two
simple identitieswhich contains a non-trivial congruence dis-
tributive subvariety. Hence, properties of the binary relation
R can be characterized by means of identities and quasi-
identities of the assigned Sheffer groupoid. This is important
because tools of general algebra are more developed than
those of the theory of relations. Moreover, we have shown
how every relational system (A, R) can be converted into
a Kleene relational system by using the twist product con-
struction. Remember that Kleene relational systems play an
important role in substructural logics. If the Kleene relational
system is constructed from a relational system with invo-
lution, then we showed how the Sheffer operation can be
constructed. This research should go on in a purely algebraic
way since we can study, e.g., subdirectly irreducible mem-
bers or free algebras of the variety S by using the famous
Jónsson’s Lemma and the corresponding relational systems.
However, these are topics for future research.
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