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Extracellular vesicles as circulating cancer 
biomarkers: opportunities and challenges
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Abstract 

Extracellular vesicles (EVs) are small, lipid-bound particles containing nucleic acid and protein cargo which are 
excreted from cells under a variety of normal and pathological conditions. EVs have garnered substantial research 
interest in recent years, due to their potential utility as circulating biomarkers for a variety of diseases, including 
numerous types of cancer. The following review will discuss the current understanding of the form and function of 
EVs, their specific role in cancer pathogenesis and their potential for non-invasive disease diagnosis and/or monitor-
ing. This review will also highlight several key issues for this field, including the importance of implementing robust 
and reproducible sample handling protocols, and the challenge of extracting an EV-specific biomarker signal from a 
complex biological background.
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Introduction
Extracellular vesicles (EVs) have garnered much recent 
interest due to their potential utility as circulating bio-
markers for cancer. EVs have been implicated in a diverse 
range of physiological functions due to their capacity to 
convey protein and nucleic acid species from a donor cell 
to a recipient. Tumour-derived EVs have been demon-
strated to carry disease-associated molecular cargo, and 
further, observed to modulate the behaviour of recipient 
cells towards a pro-oncogenic phenotype. The correlation 
between the tumour cell and tumour-EV proteome and 
transcriptome across multiple tumour contexts has high-
lighted the potential for tumour-EVs as candidate mark-
ers for disease diagnosis and monitoring. This review 
summaries the current understanding of EV form and 
function in the context of cancer, highlighting key and 
transformative works in this space. We also discuss some 
of the current limitations in this field, and the challenges 
to address for EV biomarkers to have clinical utility.

Overview of extracellular vesicles (EVs)
Extracellular vesicle is a general term used to describe 
cell-derived sub-micron membranous vesicles which are 
released into the extracellular space. Following release, 
EVs can enter the circulation and have been isolated 
from numerous bodily fluids including blood [1], urine 
[2], saliva [3], ascites [1] and breast milk [4]. This review 
will consider two major EV subclasses: exosomes, which 
are endosomally derived, and microvesicles (MVs, also 
referred to as ectosomes) which bud from the plasma 
membrane surface. Various other terms have been used 
to describe specific subsets of EVs, however, the general 
terms ‘exosome’ and ‘microvesicle’ are the most widely 
recognised within the field.

It is generally understood that most cells release a 
mixture of both exosomes and MVs into the extracellu-
lar space [5, 6]. Given this, it can be difficult to reliably 
associate physical, molecular and functional properties 
with a specific vesicle subclass. This section will provide a 
brief summary of the current understanding of exosome 
and microvesicle formation and release, as illustrated in 
Fig. 1. The subsequent sections will consider both vesicle 
classes together, using the term ‘EVs’ to denote a mixed 
population.
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Exosomes
Endosomally-derived vesicles were first described in the 
early 1980’s during studies of reticulocyte maturation [7, 
8]. This early work demonstrated that transferrin recep-
tor shed from maturing reticulocytes in culture was 
associated with sub-200 nm vesicular structures [7]. Elec-
tron microscopy demonstrated that these vesicles arose 
within a larger endocytic cellular compartment termed a 
multi-vesicular element (MVE) [8, 9]. This MVE was then 
observed to fuse with the plasma membrane of the cell 
and release the small vesicles to the extracellular space [8, 
9]. It was initially hypothesised that vesicle release in this 
manner was a reticulocyte-specific mechanism to shed 
unneeded protein material during maturation [10, 11]. 
Later studies during the 1990’s and early 2000’s, however, 
suggested that this phenomenon occurred across numer-
ous haematic and non-haematic cell types, including 
B cells [12], dendritic cells [13], epithelial cells [14] and 
notably, tumour cells [15].

Exosomes are known to carry protein cargo specific to 
their cell of origin, however, they also appear to carry a 
core set of constituents including cytoskeletal proteins 
(e.g. actin, myosin), heat shock proteins (e.g. HSP70, 
HSP90), tetraspanins, and vesicular transport associated 

proteins (e.g. Rab, Annexin A2, Annexin A5) [16–18]. The 
mechanisms underlying exosomal cargo selection have 
yet to be fully elucidated, and appear to be modulated by 
a range of protein and lipid species. It appears that MVE 
formation and exosome budding is in part modulated by 
the endosomal complex required for transport (ESCRT) 
machinery, a system of five protein complexes involved in 
the reorganisation of cellular membranes [19–21]. Exoso-
mal budding and cargo selection appears to be partially 
mediated by tetraspanins, a class of membrane spanning 
proteins [16, 22]. Certain members of the tetraspanin 
family, including CD9, CD63, CD81 and CD82 are used 
as conventional exosome markers, and are thought to be 
ubiquitously present on vesicles derived from various cel-
lular sources [16, 22]. It is hypothesised that tetraspanin-
enriched membrane microdomains within the MVE may 
facilitate the recruitment of specific protein cargo for 
inclusion in the resultant vesicles [17, 23]. There is also 
some evidence that exosome budding may be mediated 
by the presence and/or abundance of certain lipid spe-
cies, although, this mechanism appears to be cell type 
specific. For example, Trajkovic and colleagues [24] 
reported that in oligodendrocyte precursor cells (Oli-
neu), inhibition of ceramide formation decreased vesicle 
budding, however, this effect was not observed in either 
prostate cancer (PC-3) [25] or melanoma (MNT-1) cell 
lines [20] in separate investigations. In total, it is evident 
that there is specific selection of exosome cargo, and that 
this is regulated by multiple cellular mechanisms. A more 
detailed review of the process of exosome biogenesis and 
release has been presented by Hessvik and Llorente [26].

Microvesicles
Microvesicles (MVs) were first described in the 1960’s 
by the observation that platelets released lipid-rich par-
ticles with pro-coagulant activity from the cell surface 
into their surroundings [27]. It was later discovered that 
this surface shedding, sometimes referred to as ‘ectocy-
tosis’ [28], occurred across numerous cell types includ-
ing monocytes [29], neutrophils [28], oligodendrocytes 
[30] and tumour cells. In the late 1990’s, Heijnen and col-
leagues [31] first observed that release of both microvesi-
cles and endosomally-derived exosomes could arise from 
a single cell.

Microvesicles typically carry some of the plasma mem-
brane components of the cell of origin, which can include 
integrins, selectins and/or tetraspanins [32]. The MV 
proteome, however, does not directly reflect that of the 
cell, implying that some selection of cargo occurs dur-
ing vesiculation [32]. MVs are more physically heterog-
enous than exosomes, and are reported to range in size 
from 0.1 to 1 µm [33]. MVs also appear to carry a diverse 
range of protein cargo, and as such, a ubiquitous set of 

Fig. 1  Schematic of the process of exosome and microvesicle 
secretion. Exosomes are endosomally derived, and bud inside an 
intermediate structure known as a multi-vesicular element (MVE). 
The MVE subsequently fuses with the plasma membrane of the cell, 
releasing the contents. Microvesicles bud directly from the plasma 
membrane surface, preceded by a rearrangement of the membrane 
lipid bilayer and the local cytoskeleton
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specific MV markers have yet to be clearly defined. The 
most commonly used marker is the lipid phosphatidyl-
serine with proteins including integrin-β1, flotillin-1 and 
tissue factor proposed as candidates [33]. The sequence 
of events underlying MV release have been relatively well 
defined. MV release appears to be driven by an increase 
in intracellular Ca2+ levels which triggers a membrane 
rearrangement [34]. There is a simultaneous cytoskel-
etal rearrangement, initiated by transforming protein 
RhoA, and culminating in MV budding [35]. The process 
of budding and release of MVs and their potential role in 
tumorigenesis has been reviewed in detail by Surman and 
colleagues [33].

Physiological roles of EVs
Despite initially being thought of as a mechanism for cel-
lular waste removal, it has subsequently become appar-
ent that EVs, including exosomes and microvesicles, play 
several important roles in normal and pathological physi-
ology. EVs appear to have immunogenic properties, and 
can be involved in antigen presentation to immune effec-
tor cells [12]. Further, EVs have been implicated in cell–
cell communication, and have been observed to transfer 
functional nucleic acids and proteins between cells [36]. 
This function appears to be particularly important in a 
disease context, and may represent a mechanism to pro-
mote tumour growth and metastasis [37]. The following 
section will discuss the current understanding of the key 
physiological functions of EVs. A timeline describing 

some of the most important discoveries in the field of EV 
research is included as Fig. 2.

Immune‑associated roles of EVs
In the mid-1990’s it was reported that EVs secreted 
from antigen presenting cells (APCs) appeared to have 
immunogenic properties. An early study by Raposo 
and colleagues [12] showed that EVs shed by B lympho-
cytes carried major histocompatibility complex class II 
(MHC-II) molecules on their surface, and were capable 
of inducing antigen-specific T helper cell responses. A 
subsequent investigation reported that EVs secreted from 
dendritic cells (DCs) contained both MHC-I and MHC-
II molecules, and were similarly capable of inducing an 
immune response in  vivo [13]. Wolfers and colleagues 
[15] later reported that tumour cells also secrete EVs 
bearing MHC-I molecules. These tumour-derived EVs 
were shown to transfer tumour antigens to DCs, enabling 
a T cell specific anti-tumour response in vivo [15]. In the 
context of infection, macrophages infected with Myco-
bacterium bovis were demonstrated to secrete EVs which 
could activate specific CD4+ and CD8+ T cell responses 
[38]. In total, there is a substantial body of evidence to 
suggest that EVs represent an important mechanism for 
communication between APCs and immune effector 
cells.

These findings stimulated interest in the potential to 
use DC-derived EVs as a component of an autologous 
cancer vaccine. An early study by Zitvogel and colleagues 
[13] using a mouse model demonstrated that DC-derived 

Fig. 2  Timeline of key discoveries in extracellular vesicle research. Microvesicles were first reported in the 1960’s, and exosomes in the 1980’s. The 
physiological role of EVs in antigen presentation and cell–cell communication were first reported in the 1990’s and 2000’s respectively. From the 
late 2000’s onwards, several key works have highlighted the role of tumour EVs in promoting cancer growth and metastasis, and highlighted their 
potential utility as biomarkers
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EVs were capable of inducing an anti-tumour response 
in vivo, slowing tumour growth and in some cases, com-
pletely eradicating an established tumour. Several phase 
I human trials were subsequently run, enrolling patients 
with melanoma [39] and non-small cell lung cancer [40] 
respectively. In both of these trials, EVs were produced 
from patient DCs, pulsed with antigenic peptides and 
injected. These treatments appeared to promote dis-
ease stabilisation in a few patients, however, the efficacy 
of DC-derived EVs has yet to be established for cancer 
immunotherapy [39–41]. The use of EVs as cancer immu-
notherapeutics is reviewed in depth in [41].

EVs in cell–cell communication
In the mid-2000’s, it was postulated that EVs may rep-
resent a mechanism of cell–cell communication beyond 
their immunogenic capacity [42]. In a landmark study, 
Valadi and colleagues [36] demonstrated that EVs iso-
lated from a mouse mast cell line could transfer function-
ally intact mRNA to be translated in human mast cells. 
The investigators also noted that the EVs appeared to 
carry several species of miRNA, and hypothesised these 
could also be transferred between cells [36]. These ini-
tial findings have since been recapitulated in numerous 
studies. For example, Gross et al. reported that EVs from 
Drosophila melanogaster and human cell lines carry Wnt 
proteins, a key class of morphogen, which are capable of 
activating downstream signalling pathways in recipient 
cells [43]. EV-mediated communication has also been 
implicated in several other key developmental processes, 
including early implantation [44], angiogenesis, and 
protection of the fetus and placenta from the maternal 
immune system [45].

EVs in cancer
Despite the diverse roles of EVs in normal physiology, 
arguably the most well studied form EV-mediated com-
munication has been in the context of tumour growth 
and metastasis. Skog and colleagues [37] were amongst 
the first to explore this phenomenon, reporting that EV 
from glioblastoma cells could upregulate angiogenic 
behaviour in normal brain endothelial cells, via the trans-
fer of nucleic acid and protein. This phenomenon has 
since been observed across numerous tumour contexts, 
and several notable examples will be described here. In 
an in  vitro model of hypoxia, Park et  al. [46] observed 
that squamous carcinoma cells secrete proteins and 
EVs which together lead to decreased adhesiveness and 
increased angiogenic behaviour in recipient cells. In a 
later study, EVs secreted from a highly invasive vari-
ant of the HS578T (HS578Ts(i)8) breast cancer cell line 
were demonstrated to upregulate the proliferative, migra-
tory and angiogenic potential of several recipient cell 

lines, including the parent cell line, in  vitro [47]. This 
same phenomenon was later noted in an in  vivo model 
of breast cancer [48]. Further, in contrast to the immu-
nogenic capacity of DC-derived EVs, tumour-EVs appear 
to exert immunosuppressive effects [49]. Tumour-EVs 
have been observed to suppress the activity of natural 
killer cells [50, 51] and T cells [52] and to promote the 
differentiation of myeloid derived suppressor cells [53, 
54]. This is postulated to contribute to immune tolerance 
of the tumour, and therefore inhibition of these tumour-
EV activities has been proposed as a therapeutic strategy 
[53]. In total, these studies provide strong evidence that 
EVs are a mechanism of communication for tumour cells 
to promote proliferation, invasiveness and evasion of the 
host immune system.

In addition to influencing the local tumour environ-
ment, there is also evidence to suggest that EVs may be 
involved in initiating and/or supporting tumour metasta-
sis at distant sites. It has been reported that EVs derived 
from the highly metastatic B16-F10 melanoma cell line 
could recruit bone marrow derived cells (BMDCs) to 
promote the establishment of metastatic lesions [55]. A 
similar mechanism was observed in a model of pancre-
atic ductal adenocarcinoma, whereby tumour-derived 
EVs were found to specifically interact with a subset of 
resident liver cells, inducing fibrosis and the recruitment 
of BMDCs to this site [56]. Another recent and notewor-
thy study examined the potential role of EVs in the phe-
nomenon of metastatic organotrophism across a variety 
of cancer types [57]. This study implicated integrins on 
the EV surface as a key factor determining the establish-
ment of pre-metastatic niche sites in specific organs [57]. 
Taken together, these reports indicate that tumour cells 
may employ EV-mediated communication to facilitate 
metastasis to distant sites.

EVs as cancer biomarkers
There has been considerable interest in exploring the use 
of tumour-EVs for disease diagnosis and monitoring. It is 
generally understood that EVs contain nucleic acid and 
protein cargo representative of the secreting cell, and this 
has been established across a number of tumour contexts 
[58]. The presence of tumour-EVs in circulating bodily 
fluids such as blood, urine and cerebrospinal fluid means 
they represent a readily accessible source of biomarkers. 
This suggests they may have particular utility for longi-
tudinal disease monitoring and early detection of relapse 
[59]. It has also been reported that certain EV-associated 
protein and nucleic acid species may be predictive of 
response to treatment. In total, there is a growing body 
of evidence that suggests EVs could represent a rich and 
accessible source of cancer biomarkers.
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Amongst the first reports exploring the biomarker 
potential of tumour-EVs was a comparison of the con-
tent of glioblastoma EVs to their cells of origin [37]. Skog 
et al. [37] reported that EVs contained tumour-associated 
RNA and protein species that were a ‘snapshot’ of the 
content of the secreting cell. Subsequently, the presence 
of known cancer-associated miRNA [60], mRNA [37, 61], 
lncRNA [62] and post-translational protein modifications 
[63] in tumour-derived EVs has been established across 
numerous investigations. This phenomenon has been 
demonstrated in multiple cancer types, and was exempli-
fied by a recent study by Hurwitz and colleagues profil-
ing sixty cancer cell lines. The EV proteome was found 
to reflect the cellular proteome and transcriptome across 
all samples analysed. This was exemplified by hierarchi-
cal clustering based on the EV proteomic data, where 
samples were found to segregate based on the tissue 
type of the originating cell [58]. The correlation between 
tumour-EV and tumour cell content is particularly valu-
able where the ability to conduct a tissue biopsy is lim-
ited, such as in tumours of the brain and central nervous 
system. For example, studies of glioblastoma multiforme 
have indicated that tumour-EV in the cerebrospinal fluid 
contain elevated levels of miR21 relative to healthy con-
trols, and that EV-miR21 levels reflect tumour burden 
[64, 65]. Prognostically informative tumour-EV miRNA 
signatures have similarly been identified in pancreatic 
cancer [66], colorectal cancer [67] and non-small cell 
lung cancer [68]. Similarly, in a study of Non-Hodgkin’s 
lymphoma patients, Provencio and colleagues [69] iden-
tified that the presence of several candidate mRNAs 
including C-MYC, BCL-6 and PTEN in plasma-derived 
EVs was predictive of progression free survival. These, 
and other reports, have suggested that tumour-EVs may 
therefore have potential for non-invasive longitudinal 
disease monitoring [70].

It has also been suggested that the nature of tumour-
EV release may provide opportunities for early disease 
detection. Melo and colleagues [71] reported that in an 
in vivo model of pancreatic cancer, the level of EVs bear-
ing a candidate marker protein was elevated prior to 
the tumour being detectable by conventional imaging 
techniques. Similarly, in a study of acute myloid leukae-
mia (AML), Hornick et al. [59] observed that AML-EVs 
were detected in the circulation prior to leukaemic 
blasts appearing in the blood. There is also evidence that 
tumour-EVs may have utility in predicting response to 
treatment. Tumour-derived EVs have been implicated in 
resistance to numerous therapeutics by mediating the 
transfer of specific miRNA and/or protein species from 
drug-resistant to drug-sensitive cells. This phenome-
non has been demonstrated across several cancer types 
and therapies including Tamoxifen (anti-estrogen) [72] 

therapies in breast cancer, Cetuximab (anti-EGFR) ther-
apy in colon cancer [73] and Pazopanib (chemotherapy) 
in soft tissue sarcoma [74]. In these studies, exposure 
to EVs from resistant cells was demonstrated to disrupt 
drug-associated signalling pathways in sensitive recipi-
ents, and this is proposed to contribute to the develop-
ment of resistance. Notably, a distinct mechanism has 
also been described for Trastuzumab (anti-HER2) ther-
apy in breast cancer [75]. EV-associated HER2 appears 
to be capable of binding this drug, thereby reducing the 
available concentration and diminishing the therapeutic 
effect [75]. In total, these observations have suggested 
that tumour-EV biomarkers have potential prognostic 
and predictive value.

Current challenges
Whilst tumour-EVs represent a promising class of circu-
lating biomarker, it is worthwhile to note some current 
limitations in this field of research. One major challenge 
for this field is the lack of standardisation of protocols for 
EV enrichment and characterisation. The use of disparate 
EV handling and analysis protocols means that reported 
sample characteristics can vary between studies, and 
this complicates inter-study comparisons. In response to 
this, the EV-TRACK knowledgebase (http://evtra​ck.org) 
[76] was recently established. This resource is designed 
to facilitate inter-study methodological comparisons and 
develop guidelines for experimental design and reporting 
in EV research.

The following section will outline some of the com-
monly used methods for EV enrichment and characteri-
sation, highlighting specific issues associated with each. 
We also present a brief discussion of some of the major 
challenges for translation of tumour-EV biomarkers to 
the clinic.

Isolation and enrichment of EVs
The use of appropriate sample handling methods is of 
particular importance for the biomarker potential of 
tumour-EVs to be realised. There is substantial evidence 
that the method of sample handling can impact the 
apparent physical and molecular characteristics of these 
samples [70]. Variability can be introduced by biases in 
the isolation or detection of certain EV components [77], 
or as contaminating artefacts which are not completely 
removed during sample processing [78]. Moreover, it has 
also been suggested that more thorough reporting of EV 
handling and measurement protocols is warranted, in 
order to facilitate inter-study comparisons and improve 
the reproducibility of results [76, 79, 80].

The main methods used to isolate EVs are differential 
ultracentrifugation, density gradient ultracentrifuga-
tion, polymer-facilitated precipitation (e.g. ExoQuick, 

http://evtrack.org
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Total Exosome Isolation Kit), immunoaffinity isolation 
and, size exclusion chromatography (SEC). The major-
ity of EV investigations employ one or more of these 
methods as part of an isolation workflow. Developing 
an appropriate workflow is dependent on the start-
ing material, required purity of isolates and available 
equipment. The relative advantages and limitations of 
various EV isolation protocols have been the subject 
of several previous reports, and will be briefly summa-
rised here.

Differential ultracentrifugation is arguably the 
‘gold standard’ for EV isolation. This method, ini-
tially described by Théry and colleagues [81], involves 
a series of sequential centrifugation steps designed 
to enrich < 200  nm vesicles. Although widely used, 
there is evidence that ultracentrifugation may induce 
vesicle aggregation [82], and further, that protein 
contaminants may be co-isolated with EVs [83]. A 
theoretical analysis of ultracentrifugation by Livshits 
and colleagues [79] also highlighted that variabil-
ity in the pelleting efficiency of different rotors can 
lead to variable sample recovery using this technique. 
Density gradient ultracentrifugation is an extension 
of this method, where samples are subjected to over-
night centrifugation on a sucrose or iodixanol gradient 
[84]. This method is generally effective at separating 
EVs from other contaminants [85, 86], however, it is 
laborious and may lead to sample loss [87]. Size exclu-
sion chromatography (SEC) methods have also been 
adapted for EV enrichment. Lobb and colleagues [88] 
assessed this method and found it to perform simi-
larly to density gradient ultracentrifugation in terms of 
isolate purity. The use of commercial polymer-based 
reagents such as ExoQuick and Invitrogen Total Exo-
some Isolation Kit expedite the isolation process and 
avoid high speed centrifugation, however, the purity 
of EVs produced by these methods is generally poor 
[89]. Immunoaffinity based methods allow the isola-
tion of EVs bearing specific surface markers, enabling 
the interrogation of EV subpopulations of interest [90]. 
This method generally produces pure and homog-
enous yields [84, 86], however, performance is highly 
dependent on the antibody used for capture.

Ultimately, the most appropriate EV isolation tech-
nique will depend on the sample type, the purpose of 
the investigation, the downstream analyses to be per-
formed and the available equipment and resources. It 
is important for sample handling workflows to be indi-
vidually evaluated and optimised with respect to isolate 
yield and quality. Increased stringency in the evaluation 
and reporting of EV isolation protocols will serve to 
increase experimental reproducibility and better facili-
tate inter-study comparisons.

Physical and molecular characterisation of EVs
The utility of tumour-EV biomarker studies is under-
pinned by the ability to accurately determine sample 
characteristics, including size distribution, concentration 
and the molecular contents. The nature of EV samples, 
however, presents some unique challenges for physi-
cal and molecular characterisation. Physically, EVs exist 
in the sub-100  nm range and are heterogenous in size, 
which limits the applicability of conventional nanoparti-
cle characterisation techniques. Further, molecular char-
acterisation is complicated by the difficulty in isolating a 
highly pure EV population devoid of protein and nucleic 
acids from non-EV sources. The following section will 
discuss some of the specific factors to consider for EV 
characterisation.

Physical characterisation of EVs is considered an 
important experimental step to verify that vesicle size 
distribution and concentration are as expected for the 
sample. Platforms commonly employed for measure-
ment include transmission electron microscopy (TEM), 
dynamic light scattering (DLS), nanoparticle tracking 
analysis (NTA) [91], flow cytometry [92] and tunable 
resistive pulse sensing (TRPS) [92–94]. There are several 
general and platform-specific issues to consider when 
interpreting and reporting EV measurements, which will 
briefly be summarised here. For a more detailed discus-
sion of the various platforms employed for EV charac-
terisation, refer to an investigation by Van der Pol and 
colleagues [95].

TEM is arguably the ‘gold standard’ technique for phys-
ical characterisation of EVs. This technique allows direct 
visualisation of the size and morphology of single vesicles 
with a resolution of ≤ 1 nm [95]. It has been suggested, 
however, that artefacts may be introduced during sample 
preparation and fixing, including vesicle shrinkage [92]. 
To counter this, cryo-electron microscopy (cryo-TEM) 
has become widely used in EV research [96, 97]. Unlike 
conventional TEM, cryo-TEM samples do not require 
staining and fixing [96, 97]. This is thought to better 
preserve vesicle morphology, allowing visualisation of 
native EV structure [98]. Both TEM and cryo-TEM are 
largely qualitative methods, as the number of vesicles 
which can be analysed is limited [99]. Flow cytometry 
is a technique conventionally used for single cell analy-
sis which has been adapted for EV characterisation [100, 
101]. The EV sample is focused into a narrow stream and 
passes through a laser beam, with the light scattering and 
fluorescence profile of each vesicle individually detected 
and recorded [101, 102]. This can be used to determine 
individual EV size and/or verify the presence of fluores-
cently labelled molecules of interest, and has been sug-
gested as a way to interrogate the heterogeneity within 
EV populations [100, 103]. There are, however, currently 
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several practical limitations of this technique. Critically, 
the small size and low refractive index of EVs means they 
generally do not scatter enough light to trigger detec-
tion on a conventional flow cytometer, with only clusters 
of multiple EVs and very large EVs detected [101, 102]. 
Several investigations have demonstrated successful trig-
gering from fluorescence, by uniformly labelling EVs 
with a general membrane or protein dye [103, 104]. Care 
must be taken, however, to remove any unincorporated 
dye which can give a non-specific signal [104]. Further, 
achieving sufficiently bright immunofluorescent labelling 
of EV-associated markers can be challenging as a single 
EV contains a limited number of target molecules [100].

Unlike EM and flow cytometry, DLS, NTA and TRPS 
are all bulk measurement techniques. DLS generates 
size distribution information based on fluctuations in 
the intensity of measured light over time due to Brown-
ian motion [105]. This technique enables rapid and bulk 
sample characterisation, however, there is a propensity 
of this technique to over-represent larger particles in the 
sample as these dominate the light scattering signal [105]. 
This must be taken into consideration when interpret-
ing measurements of physically heterogeneous samples 
such as EVs. NTA builds a size distribution by tracking 
the Brownian motion of individual particles, and is there-
fore less affected by outliers than DLS [91]. It is similarly 
rapid, enabling the measurement of thousands of single 
EVs over a few minutes [106]. It is worthwhile to note, 
however, that it is difficult to determine the lower size 
limit for EVs that are reliably detected and tracked using 
this system. The limit of detection is dependent on both 
the refractive index of the particles and the suspending 
fluid, with previous estimates for EVs ranging between 50 
and 90 nm [91, 92]. Robustly defining the limits of detec-
tion for a system is important to ensure that size and con-
centration information are based on true, confident EV 
detection and not confounded by system noise. TRPS is 
a non-optical measurement technique based on the elec-
trical impedance induced by a particle as it traverses a 
conical nanopore [105]. This system generally requires 
an expert user to operate, as number of user-defined 
parameters must be optimised for each measurement 
[94]. Instrument setup and the limit of detection varies 
between measurements, and can be empirically deter-
mined as described in [94].

Molecular characterisation of EVs is typically achieved 
using conventional nucleic acid and protein analysis 
techniques. For evaluation of RNA, the most commonly 
used methods are reverse transcription PCR (RT-PCR) 
to detect transcripts of interest [61, 72, 107] or RNA and 
miRNA sequencing to obtain the full transcriptome [67, 
108]. Importantly, however, the observed miRNA and 
mRNA profiles have been reported to be influenced by 

the EV extraction method and the RNA isolation proto-
col [77, 109], and inter-sample comparisons should be 
conducted with regards to this. Eldh and colleagues [109] 
observed that due to the differences between cellular and 
EV membranes that cellular RNA extraction protocols 
may require some modification for optimal performance. 
Further, Akers et  al. [64] noted that transcripts conven-
tionally used for normalisation such as the housekeeping 
genes GAPDH and 18S rRNA may not reliably correlate 
with EV RNA yield, and an alternate method of normali-
sation should be employed.

As for RNA, conventional analysis techniques are typi-
cally employed to characterise EV protein cargo. Detec-
tion of a small number of pre-determined protein targets 
is typically achieved by Western blot, using a standard 
sample preparation workflow as described by Choi et al. 
[85]. Where characterisation of the full EV proteome is 
required, such as for biomarker discovery, liquid chro-
matography tandem–mass spectrometry (LC–MS/
MS) methods have been used [110, 111]. There are sev-
eral challenges for characterisation of EVs by LC–MS/
MS, notably the difficulty in depleting the non-vesicular 
protein components from complex samples which mask 
detection of less abundant EV associated proteins [112]. 
This is particularly challenging when working with pro-
tein-rich biological fluids, such as serum or plasma. For 
proteomic studies, therefore, the EV isolation method is 
critically important. A detailed discussion of the issues 
surrounding proteomic analysis of EVs is presented by 
Abramowicz et al. [112].

All of the aforementioned characterisation methods are 
performed on the total EV population, which is likely to 
comprise exosomes, microvesicles and other non-vesic-
ular components. As previously mentioned, EV isolation 
and characterisation techniques do not allow the user 
to concretely distinguish between these and so reliably 
attributing physical and molecular properties to a par-
ticular EV class is difficult. Further, it can be difficult to 
ascertain if identified proteins and nucleic acids are true 
EV cargo [80]. It is important to establish that the mole-
cules of interest are truly contained within EVs to ensure 
that they are reproducibly enriched during EV sample 
processing, as opposed to the stochastic enrichment of 
co-isolates such as serum proteins and circulating nucleic 
acids. In general, selection of the most appropriate char-
acterisation methodologies will depend on the purpose 
of the investigation, as well as the equipment and exper-
tise available.

Translation of EV biomarkers to a clinical setting
There are specific challenges to be addressed before the 
potential of tumour-EV biomarkers can be realised in a 
clinical setting. There are several specific issues related 
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to the collection of circulating EVs from human subjects. 
The level of circulating EVs is known to be influenced by 
numerous factors, including the time of day when the 
sample is collected [113] and by physical activity under-
taken prior to collection [114]. These factors may influ-
ence the subsequent analysis. In addition, György and 
colleagues [115] have observed that after blood collec-
tion, some cells may continue to produce vesicles in vitro. 
They reported that the level of artefactual vesiculation 
was dependent on the type of tube used for blood collec-
tion. In total, Mora and colleagues [116] point out that 
for routine ‘biobanking’ of EVs to be feasible that collec-
tion, isolation and storage protocols would need to be 
thoroughly optimised and standardised. Most EV inves-
tigations to date have centred on in vitro cell line mod-
els of disease, with limited numbers of clinical samples 
subjected to analysis. The feasibility of high throughput 
isolation of tumour-EVs from complex biological fluids 
has therefore yet to be demonstrated. This demonstra-
tion, as well as continued evaluation and improvement 
of EV sample handling and characterisation methods, is 
warranted to continue to progress the use of tumour-EV 
biomarkers towards clinical applications.

Conclusions
It is now apparent that EVs participate in a range of phys-
iological processes and represent an important intercellu-
lar communication mechanism. There is much evidence 
that tumour-EVs carry tumour-associated cargo, and that 
they actively facilitate cancer growth. Their potential as 
readily accessible cancer biomarkers has been explored 
across a number of different contexts. There are, however, 
still several issues to be addressed before tumour-EV 
biomarkers can be considered truly feasible in a clini-
cal setting. Currently, there is a lack of standardisation 
of methods for sample handling and characterisation, 
limiting experimental reproducibility and inter-study 
comparisons. In addition, there are a limited number of 
studies where the processing and characterisation of EVs 
from a large number of complex samples has been dem-
onstrated. Nonetheless, it is evident that tumour-EVs are 
very promising candidate biomarkers and this field of 
research is likely to continue to attract much interest.
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