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Dying by fire: noncanonical functions of autophagy 
proteins in neuroinflammation and neurodegeneration
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Abstract  
Neuroinflammation and neurodegeneration are key components in the establishment and 
progression of neurodegenerative diseases including Alzheimer’s Disease (AD). Over the 
past decade increasing evidence is emerging for the use of components of the canonical 
autophagy machinery in pathways that are characterized by LC3 lipidation yet are distinct 
from traditional macro-autophagy. One such pathway that utilizes components of the 
autophagy machinery to target LC3 to endosomes, a process termed LC3-associated 
endocytosis (LANDO), has recently been identified and regulates neuroinflammation. 
Abrogation of LANDO in microglia cells results in a propensity for elevated 
neuroinflammatory cytokine production. Using the well-established 5xFAD model of AD 
to interrogate neuroinflammatory regulation, impairment of LANDO through deletion 
of a key upstream regulator Rubicon or other downstream autophagy components, 
exacerbated disease onset and severity, while deletion of microglial autophagy alone 
had no measurable effect. Mice presented with robust deposition of the neurotoxic AD 
protein β-amyloid (Aβ), microglial activation and inflammatory cytokine production, 
tau phosphorylation, and aggressive neurodegeneration culminating in severe memory 
impairment. LANDO-deficiency impaired recycling of receptors that recognize Aβ, including 
TLR4 and TREM2. LANDO-deficiency alone through deletion of the WD-domain of the 
autophagy protein ATG16L, revealed a role for LANDO in the spontaneous establishment 
of age-associated AD. LANDO-deficient mice aged to 2 years presented with advanced AD-
like disease and pathology correlative to that observed in human AD patients. Together, 
these studies illustrate an important role for microglial LANDO in regulating CNS immune 
activation and protection against neurodegeneration. New evidence is emerging that 
demonstrates a putative linkage between pathways such as LANDO and cell death 
regulation via apoptosis and possibly necroptosis. Herein, we provide a review of the use 
of the autophagy machinery in non-canonical mechanisms that alter immune regulation 
and could have significant impact in furthering our understanding of not only CNS diseases 
like AD, but likely beyond.  
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Introduction 
Macro-autophagy (autophagy henceforth) has been shown 
to be a contributing pathway to the regulation of immune 
responses and inflammation with primary roles in modulating 
metabolic and cellular homeostasis. In this canonical form 
of autophagy, double-membraned vacuoles known as 
autophagosomes are responsible for the collection and 
deliverance of various intracellular materials to the lysosome 
for degradation as a response to stressors, such as starvation 
and nutrient deprivation (Dikic and Elazar, 2018). Additionally, 
autophagy has been shown to participate in the regulation 
of various immune pathways, including in the regulation of 
the type-I interferon response, which in turn helps combat 
viral infections more effectively (Martin et al., 2018; Jin, 2019; 
Tian et al., 2019). Likewise, autophagy has been implicated 
in regulating pro-inflammatory cytokine signaling including 

interleukin (IL)-1β secretion by targeting the IL-1β precursor, 
pro-IL-1β for degradation (Zhang et al., 2015; Claude-Taupin 
et al., 2018; Iula et al., 2018). Much investigation has led to 
the identification of multiple regulatory genes and proteins 
that govern the orchestrated processing and conjugation 
of the microtubule-associated protein light-chain 3 (LC3) to 
phosphatidylethanolamine residues within the developing 
autophagosome membrane following autophagic activation, 
newer evidence is revealing distinct roles for the autophagy 
machinery in alternate pathways including LC3-associated 
phagocytosis (LAP) (Kim et al., 2013; Martinez et al., 2015; 
Martinez et al., 2016; Heckmann et al., 2017; Heckmann 
and Green, 2019), and LC3-associated endocytosis (LANDO) 
(Heckmann et al., 2019; Birgisdottir and Johansen, 2020). We 
often described these, and similar pathways as “non-canonical 
functions of the autophagy machinery”.
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Search Strategy and Selection Criteria 
Studies cited in this review published from 2010 to 2020 
were searched on the PudMed database using the following 
keywords: autophagy, neuroinflammation, Alzheimer ’s 
disease, neurodegeneration, neuronal cell death, LC3-
associated endocytosis, LC3-associated phagocytosis, LAP, 
LANDO, inflammation, beta-amyloid, inflammasome, NLRP3, 
Parkinson’s disease, amyotrophic lateral sclerosis, Huntington’s 
disease, CNS pathologies, IL-1beta, TNF-alpha, tau pathology.

Role of the Autophagy Machinery outside of 
Autophagy 
Interestingly, although quite similar at a genetic level; 
autophagy, LAP, and LANDO are distinct cellular entities. A 
large share of the machinery found in the canonical autophagy 
pathway is needed for both LAP and LANDO, however 
components of the autophagy initiation complex including 
FIP200 and ULK1 are dispensable for LAP and LANDO, whereas 
the run-domain containing protein Rubicon, long held as an 
autophagic inhibitor is obligatory for LAP and LANDO and as 
shown previously is expendable for autophagy (Martinez et 
al., 2015). In the context of the central nervous system (CNS), 
canonical autophagy has been shown to play significant roles 
in both neuronal development and homeostatic maintenance 
in adult organisms (Sumpter and Levine, 2011; Andres-
Alonso et al., 2020; Fleming and Rubinsztein, 2020; Kuijpers 
et al., 2020). Moreover, autophagic dysregulation in neurons 
has been identified in a number of CNS diseases including 
Huntington’s and Amyotrophic Lateral Sclerosis. Autophagic 
induction has therefore been proposed as a putative 
therapeutic avenue in these and other diseases of the brain 
(Cheon et al., 2019; Djajadikerta et al., 2020).

Similar to autophagy in neurons, the non-canonical functions 
of the autophagy machinery in LANDO have been shown to be 
key in preventing exacerbated β-amyloid accumulation and in 
mitigating β-amyloid induced neuroinflammation in a model of 
Alzheimer’s disease (AD). AD is the leading form of dementia 
globally and is one of the most prevalent neurodegenerative 
disorders without viable therapy. β-Amyloid deposition is 
one of the earliest hallmark features of AD in humans and 
has long been thought to be the major driver of disease 
pathology (Murphy and LeVine, 2010). Over the past decade 
it has been well demonstrated that a primary component of 
AD pathology is robust and pervasive neuroinflammation. In 
particular, inflammatory cytokines including IL-1β and tumor 
necrosis factor alpha (TNFα) have been shown to be elevated 
in the brains of AD patients compared to healthy age-matched 
counterparts (Kinney et al., 2018). In the brain, cytokines 
such as IL-1β and TNFα are predominately produced by the 
resident innate macrophage-like immune cell, the microglia. 
In addition to localized cytokine production by microglia, 
peripheral cytokines have been shown to contribute in AD, 
especially as permeability of the blood-brain barrier increases 
concurrent with disease progression (Kinney et al., 2018).

Noncanonical Uses of the Autophagy Machinery 
in Neurodegeneration
In a previous study, we identified a role for LANDO in the 
recognition and clearance of β-amyloid in a murine AD model 
(Heckmann et al., 2020a). We found that abrogation of 
LANDO in microglia, through genetic deletion of Rubicon led 
to an increase in extracellular β-amyloid deposition, a robust 
increase in microglial activation and neuroinflammation, as 
well as exacerbated tau pathology and neurodegeneration. 
In vitro analysis in cultured microglia clearly revealed that 
LANDO-deficiency alters the activation and inflammatory 
cytokine production following exposure to neurotoxic 
β-amyloid. In vivo studies were performed in mice on the 

5xFAD background, a humanized transgenic model that leads 
to β-amyloid pathology (Heckmann et al., 2020a). Abrogation 
of LANDO greatly worsened the severity of disease and 
hastened the onset of pathology. Interestingly, we found that 
inhibition of canonical autophagy alone in microglia through 
deletion of FIP200 had little to no effect on the establishment 
of AD-l ike pathology when compared to autophagy-
sufficient 5xFAD mice (Heckmann et al., 2019). Additionally, 
and as illustrated in Figure 1, we identified that a primary 
contributing factor to the decreased processing of internalized 
β-amyloid by LANDO-deficient microglia was not due to a 
defect in degradation, as is often seen in LAP-deficiency 
(Martinez et al., 2015; Martinez et al., 2016), but was rather 
caused by an impaired recycling of receptors that recognize 
β-amyloid, including TLR4 and TREM2 (Heckmann et al., 2019). 
Moreover, inflammatory cytokine production in response to 
β-amyloid paralleled the status of receptor recycling (Figure 1) 
(Heckmann et al., 2019). The role of the autophagy machinery 
in inflammatory pathways will be further described below. 

Impaired Noncanonical Functions of the 
Autophagy Machinery is Enough to Drive 
Alzheimer’s Disease
Since the AD phenotype associated with LANDO-deficiency was 
so greatly exacerbated, we decided to ask if LANDO-deficiency 
alone could drive AD-like pathology in mice in the absence 
of a humanized transgene(s). Elegant studies evaluating 
the WD-domain of the autophagy protein ATG16L and the 
binding regions required for interaction of ATG16L with the 
autophagy regulator WIPI2, led to the novel identification of a 
deletion mutant of ATG16L WD-domain that was sufficient for 
canonical autophagy but had an impairment of non-canonical 
pathways including LAP (Fletcher et al., 2018; Rai et al., 2019). 
We found that primary microglia lacking the WD-domain of 
ATG16L were likewise deficient in LANDO and presented with a 
severe impairment in the recycling of TREM2, TLR4, and CD36 
(Heckmann et al., 2020b). Furthermore, those microglia had 
a decreased capacity for the continued uptake of extracellular 
β-amyloid (Heckmann et al., 2020b).

Evaluation of ATG16L WD-domain deficient mice that had 
been aged to 2 years revealed a deposition of endogenous 
murine β-amyloid in the hippocampus and cortex, consisting 
of neurotoxic β-amyloid 1–40 and 1–42 species (Heckmann 
et al., 2020b). When compared to β-amyloid deposits from 
LANDO-deficient mice on the 5xFAD background or human 
plaques, the deposits observed in the ATG16L WD-domain 
deficient mice were non-aggregated and more diffuse in 
morphology, consistent with the inherent biochemical and 
biophysical differences between mouse and human β-amyloid 
as reported previously (Lv et al., 2013). Nevertheless, these 
deposits of β-amyloid were neurotoxic and sufficient to drive 
downstream pathology including; tau hyperphosphorylation, 
reactive microgliosis and neuroinflammation, as well as active 
neurodegeneration (Heckmann et al., 2020b). Consistent with 
upstream markers of pathology, mice presented with severe 
memory and behavioral impairment.

Regulation of Inflammation by the Autophagy 
Machinery
While microglial LANDO suppresses neuroinflammation in 
response to β-amyloid, the role for other non-canonical uses 
of the autophagy machinery in the CNS in pathways such as 
LAP is less well defined. Currently, it is difficult to delineate 
LAP from LANDO at the genetic level (Martinez et al., 2015; 
Heckmann et al., 2017, 2019; Heckmann and Green, 2019). In 
pathologies characterized by neurodegeneration such as AD, 
LAP likely functions to prevent inflammation in response to 
the removal of dying neurons, a process called efferocytosis 



248  ｜NEURAL REGENERATION RESEARCH｜Vol 17｜No. 2｜February 2022

Figure 1 ｜ LANDO sufficiency or deficiency in microglia. 
(A) LANDO-sufficient microglia internalize β-amyloid through a clathrin-associated endocytic process and the Rubicon containing PI3-kinase complex in LANDO 
initiates the downstream processing and lipidation of LC3 to the endosome. The LC3 ligation machinery is shared between canonical autophagy and LANDO, 
consisting of ATG5, ATG12, ATG16L, ATG7 and ATG4 as reviewed previously (Heckmann et al., 2017; Heckmann and Green, 2019), and no unique components 
that alter the function of the complex in LANDO compared to autophagy have yet to be identified. The Rab GTPases including Rab7 and Rab5 are required for 
endocytic trafficking and are present on LC3+ endosomes. LC3 conjugation facilitates the trafficking of the β-amyloid containing endosome towards recycling 
or degradation, by mechanisms which have not been fully elucidated. LANDO promotes the recycling of β-amyloid receptors including TREM2, TLR4, and 
CD36. LANDO suppresses inflammation following β-amyloid stimulation by currently unknown mechanisms, although putative hypotheses linking LANDO 
to inflammatory suppression include restriction of NLRP3 inflammasome assembly, decreases in signaling time of activated receptors by facilitating vesicle 
trafficking, and possible interactions between the LANDO machinery and inflammatory cytokines. B) LANDO-deficient microglia through deletion of Rubicon or 
ATG16L WD-domain fail to lipidate LC3 on endosomes and subsequently there is an impairment in the recycling of β-amyloid receptors leading to extracellular 
accumulation of β-amyloid, as continued uptake and degradation is decreased due to reduced receptor recycling. Consequently, there is an increase in 
inflammatory cytokine production from LANDO-deficient cells. ATG: Autophagy related genes; CD36: CLUSTER of differentiation 36; LANDO: LC3-associated 
endocytosis; LC3: microtubule-associated protein 1A/1B-light chain 3; NLRP3: NOD-, LRR- and pyrin domain-containing protein 3; Rab: Rab GTPase family; TLR4:  
Toll-like receptor 4; TREM2: triggering receptor expressed on myeloid cells 2.

(Boada-Romero et al., 2020; Doran et al., 2020). Ongoing 
studies are directed at the genetic delineation of LAP, LANDO, 
and other non-canonical pathways. Having the ability to 
differentiate LAP and LANDO will allow for future studies that 
are directed at the contribution of each pathway to immune 
function and microglial responses to perturbations such as 
β-amyloid.

Peripheral to the CNS, non-canonical functions of the 
autophagy machinery have been shown to regulate 
inflammatory polarization of macrophages in response to 
a variety of cargoes (Heckmann et al., 2017; Heckmann 
and Green, 2019). A substantial amount of effort has been 
directed at understanding how the autophagy machinery in 
LAP suppresses inflammatory activation in response to dead 
or dying cells (Green et al., 2016; Asare et al., 2020; Boada-
Romero et al., 2020). Signals that promote the identification 
of dead cells, often referred to as “Find-me” signals as well 
as signals promoting the engulfment of dead cells, “Eat-me” 
signals, have been shown to help shape the macrophage 
response to dead cell cargo as reviewed previously (Heckmann 
et al., 2017; Heckmann and Green, 2019; Boada-Romero 
et al., 2020). In addition, components of the autophagy 
machinery that are required for pathways like LAP and LANDO, 
such as ATG16L, have been shown to directly regulate anti-
inflammatory signaling (Martinez et al., 2015; Heckmann et 
al., 2019, 2020b). The WD-domain of ATG16L interacts directly 
with cytokine receptors including IL-10RB and IL-2Rγ and 
exhibits WD-domain dependent LC3 lipidation (Serramito-
Gomez et al., 2020). Cells deficient in the WD-domain of 
ATG16L have decreased anti-inflammatory signaling due to 
delayed endocytosis and insufficient trafficking of IL-10/IL-10R 
complexes leading to pro-inflammatory activation (Sorbara et 
al., 2013; Serramito-Gomez et al., 2020; Wang et al., 2021). 
Consistent with data on ATG16L, loss of Rubicon likewise 
alters IL-10 production and signaling (Martinez et al., 2016; 
Cunha et al., 2018). Whether Rubicon functions through 
downstream ATG16L or independently of the downstream 

components of LAP in regulating IL-10 biology remains 
unknown, although phenotypically, loss of either protein 
results in consistent changes to inflammatory polarization 
of macrophages. Moreover, stimuli that initiate these 
processes appear to be quite diverse, ranging from amyloids 
and extracellular aggregates to bacteria, viruses, and other 
pathogens (Heckmann et al., 2017; Heckmann and Green, 
2019). In all scenarios the non-canonical use of the autophagy 
machinery is functioning to suppress inflammation. Once loss 
of components required for LAP and LANDO occurs, it seems 
cells subsequently are primed towards the production of 
inflammatory cytokines.  

Exploiting Neuroinflammation as a Therapeutic 
Avenue in Alzheimer’s Disease
One aspect we observed in the brains of the ATG16L 
WD-domain deficient aged mice was high levels of the 
inflammatory cytokine IL-1β in addition to TNFα, again 
paralleling human disease and consistent with inflammatory 
signaling described above. Over the past few years, there has 
been an accumulating interest in the possibility of targeting 
neuroinflammation as a therapeutic avenue for a variety 
of neurodegenerative conditions including AD. Targeting 
inflammatory cytokine production and/or signaling for 
mediators including IL-1β, TNFɑ, and IL-6 have been proposed 
(Camargo et al., 2015; Wu et al., 2015; Bronzuoli et al., 2016; 
Kinney et al., 2018; Lonnemann et al., 2020). In particular, IL-
1β has proven to be an intriguing, albeit challenging target 
for putative therapy. Previous studies have demonstrated 
that compounds which modulate the activity of the NLRP3 
inflammasome, the complex required for the production 
of IL-1β (Coll et al., 2019; Swanson et al., 2019; Jiang et al., 
2020; Jiao et al., 2020), are efficacious and can readily cross 
the blood-brain barrier. Using our novel age-associated 
spontaneous AD model, we treated ATG16L WD-domain 
deficient mice with established AD-like disease for 8-weeks 
with the NLRP3 inhibitor MCC950 to reduce IL-1β production.

A B
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Following therapeutic intervention, MCC950 treated mice 
had comparable levels of β-amyloid to those observed in 
vehicle treated animals (Heckmann et al., 2020b). However, 
there were robust decreases in microglia activation, 
neuroinflammation, tau phosphorylation, and prominent 
decreases in activate neuronal apoptosis (Heckmann et al., 
2020b). Although optimistic, we were surprised to find that 
MCC950 treatment led to an approximate 80–90% restoration 
in behavior and memory capacity as evaluated by Y-maze and 
novel object recognition analyses compared to mice treated 
with vehicle, which continued to have a decline in memory 
from the onset of therapy (Heckmann et al., 2020b). Together, 
these findings suggest that neuroinflammation is upstream of 
neurodegeneration and is leading to neuronal death by “fire” 
or as a consequence of inflammatory activation. Our results 
suggest that by alleviating inflammatory processes in the AD 
brain, there is the potential to overcome neuronal loss and 
have a positive impact on memory and reduction in disease 
progression. Moreover, these findings confirm that targeting 
neuroinflammatory mediators such as IL-1β in an established 
disease model is a promising therapeutic approach.

The Path Ahead
Superficially our findings reiterate the importance of 
neuroinflammation to disease processes in AD and that 
neuroinflammation is central to disease establishment and 
progression. As such, neuroinflammation is an attractive 
therapeutic target not only in AD but in a plethora of other 
CNS pathologies including Huntington’s disease, Parkinson’s 
disease (PD), and amyotrophic lateral sclerosis (Rizzo et al., 
2014; Liu and Wang, 2017; Kwon and Koh, 2020). In particular, 
neuroinflammatory modulation has been proposed in 
amyotrophic lateral sclerosis and PD with promising efficacy 
(Lu and Hu, 2012; Guan and Han, 2020), The role of LANDO or 
other non-canonical pathways using the autophagy machinery 
in these diseases has to date not been evaluated, although 
changes in receptor recycling in diseases such as PD hint at 
a plausible role for LANDO (Kim et al., 2013; Ferguson and 
Green, 2014; Martinez et al., 2016; Muniz-Feliciano et al., 
2017). Our results have further led to more in-depth biological 
questions, including how is LANDO-deficiency altering the 
neuroimmune architecture and by what mechanism(s)? 
Additionally, as hinted earlier, targeting IL-1β through 
inflammasome inhibition has proven more challenging in 
humans, with many compounds including MCC950 having 
deleterious side effects including hepatotoxicity. Similarly, 
targeting other inflammatory mediators such as TNFɑ which 
is also elevated in models of AD has proven less efficacious 
in human patients (Chang et al., 2017; Ekert et al., 2018). 
Would targeting non-canonical functions of the autophagy 
machinery in pathways such as LANDO prove less detrimental 
to peripheral systems while not sacrificing therapeutic 
efficacy? We can take hints from the role of pathways such 
as LAP in regulating inflammation in peripheral macrophages 
where the function appears to be fully independent of 
canonical autophagy (Martinez et al., 2015, 2016; Heckmann 
et al., 2017; Heckmann and Green, 2019), and as described 
above. A complete delineation from canonical autophagy 
would be ideal, as it allows for more targeted approaches to 
be applied to pathways such as LAP and LANDO. Previously, 
we have shown that abrogation of microglial autophagy in 
the 5xFAD model appears to have little to no effect on disease 
pathology and outcome (Heckmann et al., 2019). These data 
suggest that there is distinct regulation of LAP and LANDO 
compared to canonical autophagy and that each pathway 
likely is functioning independent of the others, although 
further investigation will be necessary to fully characterize 
these hypotheses.

Along those lines, we as well as others have shown that 
there is a consistent downregulation of components of the 

autophagy machinery and LANDO with age and further 
decreases in expression observed in the AD brain. Moreover, 
the suppression of pathways such as LANDO may prime 
the brain towards chronic neuroinflammatory activation, 
putatively “seeding” the brain for disease as one ages. With 
advances in genetic therapies and CRISPR technology, it is no 
longer unimaginable that we will soon have the capability of 
targeting these upstream regulators and associated pathways 
in human patients.

In summary, our prior work illustrates an important role for 
the autophagy machinery in non-canonical functions including 
LC3-associated endocytosis. Moreover, it is clear that LANDO 
is important for protection against neuroinflammation and 
downstream pathology in response to β-amyloid. Further 
studies are certainly required to unravel the exciting questions 
that are raised following the discovery of LANDO and its 
initial characterization in mitigating neuroinflammation and 
neurodegeneration, at both the cellular and molecular levels.
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Retraction: Valproic acid protects neurons 
and promotes neuronal regeneration after 
brachial plexus avulsion
https://doi.org/10.4103/1673-5374.317993
Concerns have been raised about the western 
blot bands presented in Figures 2A and 4A 
of this article (Li et al., 2013; doi: 10.3969/
j.issn.1673-5374.2013.30.006). 

• Figure 2A appears to include splicing between 
lanes 1 and 2 in Bcl-2 blots in the valproic acid 
group.

• Figure 4A appears to include splicing between 
lanes 1 and 2, 4 and 5, 5 and 6 in c-Jun blots in 
the injury group.

The corresponding author has stated there was 
an error in the selection of blot images used for 
Figures 2A and 4A. 

The Neural Regeneration Research Editors 
have been unable to verify the accuracy and 
reliability of the western blot data presented 
in the paper. In light of the extent of the 

unavailability of the underlying original western 
blot  data and the unresolved concerns 
regarding the accuracy and reliability of the 
figures, the Neural Regeneration Research 
Editors retract this article.
All authors agreed with the retraction.
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