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The cardinal role of microtubules in cell mitosis makes them interesting drug targets for

many pharmacological treatments, including those against cancer. Moreover, different

expression patterns between cell types for several tubulin isotypes represent a great

opportunity to improve the selectivity and specificity of the employed drugs and to

design novel compounds with higher activity only on cells of interest. In this context,

tubulin isotype βIII represents an excellent target for anti-tumoral therapies since it is

overexpressed in most cancer cells and correlated with drug resistance. Colchicine is

a well-known antimitotic agent, which is able to bind the tubulin dimer and to halt the

mitotic process. However, it shows high toxicity also on normal cells and it is not specific

for isotype βIII. In this context, the search for colchicine derivatives is a matter of great

importance in cancer research. In this study, homology modeling techniques, molecular

docking, and molecular dynamics simulations have been employed to characterize

the interaction between 55 new promising colchicine derivatives and tubulin isotype

βIII. These compounds were screened and ranked based on their binding affinity and

conformational stability in the colchicine binding site of tubulin βIII. Results from this study

point the attention on an amide of 4-chlorine thiocolchicine. This colchicine-derivative

is characterized by a unique mode of interaction with tubulin, compared to all other

compounds considered, which is primarily characterized by the involvement of the α-T5

loop, a key player in the colchicine binding site. Information provided by the present study

may be particularly important in the rational design of colchicine-derivatives targeting

drug resistant cancer phenotypes.
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INTRODUCTION

The pivotal role of microtubules (MTs) in the mitotic process
make them important targets for anticancer therapies since
cancerous cells proliferate by unregulated cell division (Gajewski
et al., 2013). By either stabilizing MTs or enhancing their
depolymerization, it is possible to halt the mitotic process and
eventually lead cells to apoptosis (Nettles et al., 2002). Among
antimitotic agents, colchicine is able to block cell division
(Bhattacharyya et al., 2008) by destabilizingMT assembly kinetics
and dynamics. In particular, when colchicine binds in its specific
binding site (located at the interface between tubulin α and β

monomers) the structural conformation of the tubulin dimer is
affected in such a way that tubulin integration into the MT lattice
is hampered.

However, one of the main drawbacks of colchicine is its
general toxicity (Wallace, 1974; Finkelstein et al., 2010). Several
studies in the past have proposed less toxic colchicine derivatives
as an alternative to colchicine (Lu et al., 2012; Wang et al.,
2016; Johnson et al., 2017; Majcher et al., 2018a,b; Klejborowska
et al., 2019). Moreover, these novel colchicine derivatives may be
designed to show high specificity only for tubulin isotypes, which
are over-expressed in cancer, in order to maximize their effect
only on tumor cells and reduce side effects of the drug due to its
toxicity on normal cells (Lu and Luduena, 1994; Luduena et al.,
1995).

Differing in point or restricted sequence variations, several
tubulin isotypes (Leandro-García et al., 2010) are differently
expressed by cells under both physiological and pathological
conditions. For example, tubulin isotype αβIII is considered as
an excellent target for anti-tumoral therapies because it is over-
expressed in tumoral cells and it is less widespread than other
isotypes, such as αβI, αβII and αβIV, in normal cells (Ferlini
et al., 2007; Tseng et al., 2010). Moreover, an over-expression of
tubulin isotype αβIII by cancer cells is considered as one among
several known drug resistance mechanisms (Derry et al., 1997;
Ludueña, 1998; Katsetos et al., 2003; Kamath et al., 2005; Seve,
2005; Ferlini et al., 2007; Sève and Dumontet, 2008; Tseng et al.,
2010). Thereby, it is of primary importance to identify specific
compounds, which selectively target isotype αβIII.

In this context, computational molecular modeling
techniques, such as molecular dynamics (MD) and molecular
docking, represent powerful tools to shed light on the molecular
mechanisms concerning protein functions and their interaction
between different ligands and a specific receptor (Lepre et al.,
2017; Omar et al., 2018; Brogi, 2019; Sirous et al., 2019).
These computational methods can be applied to investigate
the action of different ligands on tubulin dimers (Mitra and
Sept, 2008; Natarajan and Senapati, 2012; Gajewski et al.,
2013; Kumbhar et al., 2016). Computational drug discovery
may help to accelerate and economize the drug discovery
process as a complementary tool for experimental research of
novel inhibitors.

In this work, ensemble molecular docking, molecular
dynamics simulations, and binding energy estimation methods
have been employed to characterize the binding of 55 novel
colchicine derivatives to the βIII tubulin isotype. We have

identified an interesting 4-chlorine thiocolchicine derivative
characterized by similar affinity but a different mode of binding
to tubulin with respect to its parent compound, colchicine.
The main findings of our study indicate this ligand as a
promising candidate to overcome colchicine drawbacks and
provide information for further developments in designing more
selected and specific colchicine derivatives with an intended use
as cancer chemotherapy agents.

MATERIALS AND METHODS

Atomic Models of Investigated Compounds
Several series of novel colchicine derivatives (Majcher et al.,
2018a,b; Klejborowska et al., 2019) were considered in this work.
All 55 compounds have shown in vitro anti-proliferative effects
on normal and cancer cells. In particular, they were tested on
human lung adenocarcinoma, human breast adenocarcinoma,
human colon adenocarcinoma cell lines and a doxorubicin-
resistant subline (Majcher et al., 2018a,b; Klejborowska et al.,
2019).

These compounds can be divided into five classes: 4-Br-
Amides (10 compounds), 4-Cl-Amides (10 compounds),
DT-and-4I-Amides (19 compounds), 4-Cl-Carbamates (8
compounds) and 4-I-Carbamates (8 compounds). The chemical
structures of colchicine (C01) and its derivatives (C02-C56) are
summarized in Figure 1.

The 2D structures of the colchicine derivatives have been
drawn using ChemDraw 12.0, whereas their 3D structure was
designed by AVOGADRO (Hanwell et al., 2012).

Human αβIII Tubulin Modeling and
Conformational Dynamics
The atomic structures of human βIII tubulin isotype were
obtained by homology modeling, starting from the Protein Data
Bank (PDB) entry 4O2B model (Prota et al., 2014) as a template.
This structure was chosen due to its high resolution (2.3 Å) and
a low number of missing residues (Aryapour et al., 2017). First,
from the starting template the information concerning tubulin
αβ, GTP, GDP, Mg2+ ion and colchicine was extracted. Missing
residues in β tubulin (from 276 to 281) were added byMODELER
9.20 (Šali and Blundell, 1993) where the best model was selected
on the basis of the obtained DOPE (Discrete optimized protein
energy) score. Then, the Fasta sequences Q71U36 and Q13509
were selected from the Uniprot website, respectively, for the
α and β subunits. The above-mentioned amino acid sequences
pertain to the isotype αβIII (Gajewski et al., 2013; Kumbhar et al.,
2016). Homology modeling was then employed by MODELER
9.20 to generate a 3D structure of the αβIII sequence using the
4O2B model. The quality and the reliability of the generated
model were evaluated using PROCHECK (Laskowski et al.,
1993), VERIFY3D (Colovos and Yeates, 1993) and ERRAT
(Bowie et al., 1991), as reported in previous literature in this area
(Huzil et al., 2006; Deriu et al., 2007; Mane et al., 2008; Kumbhar
et al., 2016).

Two systems were subsequently considered: (I) tubulin, GTP,
GDP, and Mg2+ ion and (II) tubulin, GTP, GDP, Mg2+ ion and
colchicine bound to tubulin. Information on colchicine binding
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FIGURE 1 | Colchicine and its derivatives considered in this work.

was taken from the 4O2B model. The AMBER ff99SB-ILDN
forcefield (Lindorff-Larsen et al., 2010) was used to describe
protein, water and ion topology. GTP, GDP, and ligands were
described by the General Amber Force Field (GAFF) (Wang et al.,
2004) and AM1-BCC charge method (Jakalian et al., 2002), as
applied in many previous studies (Gajewski et al., 2013; Kumbhar
et al., 2016; Klejborowska et al., 2019; Sahakyan et al., 2019).

Each of the above mentioned protein systems (I and II) was
then inserted in a dodecahedron box filled with TIP3P explicit
water molecules (Mark and Nilsson, 2001), sodium and chlorine
ions (150mM). Particle-mesh Ewald (PME) method (Darden
et al., 1993) was used to treat electrostatics (cut-off = 1.0 nm)
whereas Van der Waals (VdW) interactions were treated by a
plain cut-off at 1 nm (Natarajan and Senapati, 2012; Natarajan
et al., 2013; Bueno et al., 2018). Each system was then energy
minimized by the steepest descent algorithm for 1,000 steps
with a maximum force of 100 kJmol−1nm−1. All systems were
simulated in an NVT and NPT ensemble with position restraints
applied on protein and ligand atoms. In detail, a 100 ps position
restrained MD simulation in the NVT ensemble (Bussi et al.,
2007), was followed by a 300 ps position restrained MD in the
NPT (T = 300K, P = 1 bar) ensemble (Berendsen et al., 1984;
Bussi et al., 2007).

Temperature and pressure were controlled by weak coupling
algorithms (Berendsen et al., 1984; Bussi et al., 2007).

Finally, production MD simulations (without restraints)
were carried out for 100 ns in presence and in absence
of colchicine, respectively. Ten configurations of each system
were extracted as representative of structural equilibrium. The
above-mentioned system configurations were then used for
ensemble docking procedure.

Ensemble Docking and Binding Energy
Refinement
Ensemble docking was performed using AUTODOCK VINA
1.1.2 (Trott and Olson, 2010). The center of the search space was
defined by taking, from the 4O2B model, the relative position
of the colchicine in its binding site. The docking was performed
using a grid space 2 × 2 × 2 nm around the center of the search
space and an exhaustiveness equal to 64 was set. Each compound
was docked to the ten different isotype configurations extracted
from the production MD, as explained above.

Then, for each VINA pose, the binding energy refinement
was performed by running short 1 ns MD simulations on
the ligand-protein complex starting from the VINA best
pose for each considered ligand. Each complex was followed
by solvation, neutralization, energy minimization, position
restrained MD, and short production MD. Simulation set up
was the same as described in the previous section. On the
last 100 ps of MD production the ligand-protein binding
was evaluated using two criteria. Firstly, the binding energy
was quantified by the Molecular Mechanics Generalized Born
Surface Area (MMGBSA) method (Genheden and Ryde, 2015).
The parameters were set according to the previous literature
(Nguyen et al., 2013, 2015; Su et al., 2015). Secondly, the ligand
conformational displacement in the binding site was quantified
by calculating the RootMean Square Deviation (RMSD) of ligand
carbon rings (a common feature of all considered compounds
with colchicine). In particular, for each ligand, the MD protein
trajectory was fitted on a reference structure (the starting
configuration of the colchicine-protein complex). In this way,
the RMSD quantifies the relative deviation of each ligand with
respect to the colchicine starting position throughout the overall
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MD trajectory. Based on the above-mentioned criteria, the best
colchicine derivative and colchicine, both bound to the βIII
isotype, were simulated for 100 ns in order to highlight binding
conformational differences at equilibrium.

All MD simulations were carried out using GROMACS 2018.3
(Abraham et al., 2015). The Visual Molecular Dynamics (VMD)
package was employed for the visual inspection of the simulated
systems (Humphrey et al., 1996). Dedicated GROMACS tools
were used for a quantitative analysis in terms of Root-Mean-
Square Deviation (RMSD), Root-Mean-Square Fluctuation
(RMSF), and clustering, while analysis of the secondary structure
was performed by applying the STRuctural IDEntification
(STRIDE) algorithm (Heinig and Frishman, 2004).

RESULTS

Human αβIII Tubulin Model Development
and Conformational Dynamics
The Ramachandran plot (see also Figure S1) obtained by
PROCHECK highlighted the 95.6% of residues in most
favored regions, 4.2% in additional allowed regions, and 0.1%
in generously allowed regions. No residues were found in
disallowed regions. Since a good quality model is expected to
have at least 90% of the residues in the most favored regions
(Santoshi and Naik, 2014), the built model was considered
reliable. Moreover, the Overall Quality Factor obtained by the
ERRAT tool for the isotype αβIII was 80.29 for the α and
84.73 for the β tubulin monomer model. It is worth mentioning
that the generally accepted range is higher than 50 for a high
quality model (Messaoudi et al., 2013). Finally, the VERIFY3D
confirmed that 98.15% of residues showed an averaged 3D-1D
score higher than 0.2 (Messaoudi et al., 2013).

First, the backbone RMSD was calculated for isotype βIII
both in presence and in absence of colchicine during the overall
MD simulation (100 ns): all the simulated structures reached
structural equilibrium, with values under 0.3 nm (see also
Figure S2). Moreover, the cluster analysis on the last 50 ns of the
simulations highlighted only one cluster using an RMSD cut-off
of 0.15 nm, indicating a strong stability of the simulated systems.
Moreover, the cluster analysis indicated that the colchicine
presence did not modify significantly the conformation of the
interaction site.

Ensemble Docking and Binding Energy
Calculation
The 55 colchicine derivatives were docked to ten different
configurations of βIII tubulin, extracted from the last 50 ns of
the MD simulation described above. Only the best ligand pose
in terms of binding affinity was considered (see also Figure S3).
In order to take into account also the dynamic nature of the
binding process, we have performed a MD simulation of 1 ns
for each ligand-receptor complex. Throughout the quick MD
run, the binding energy was quantified by means of the MM-
GBSA method (Huzil et al., 2010; Gajewski et al., 2013; Kumbhar
et al., 2016). Moreover, the ligand displacement in the binding
site was quantified by the RMSD calculated as described in

Materials and Methods. It is worth mentioning that low RMSD
values indicate a compound which is stable in a spot close
to the starting colchicine position, whereas high RMSD values
identify a compound moving further apart (Figure 2). Most
compounds showed RMSD lower than 0.2 nm, suggesting that
the derivatives investigated here behaves similarly to colchicine
(highly stable in its binding site during the short MD run). The
only exception found is represented by compound C19 which
displays high variation from the colchicine starting position
(RMSD= 0.47 nm).

Our binding energy analysis highlights four specific
compounds (C19, C20, C29, and C48) as possible hits. In
fact, they exhibit similar values of their binding energy for βIII
tubulin compared to colchicine. All binding energy values are
reported in Supporting Information text (see also Figure S4).
In order to better describe differences between investigated
compounds, we have merged RMSD and binding energy
information in a single plot (Figure 3).

Interestingly, compound C19 features a peculiar behavior,
i.e., it exhibits a large deviation from the colchicine starting
position in the binding site (high RMSD value), with a significant
difference to all the other compounds. It is also characterized by
binding energy values comparable to colchicine and higher than
most other derivatives. This result points the attention on the
compound C19 as a promising candidate able to bind strongly to
βIII human tubulin with a different mode of action with respect
to colchicine.

Conformational Dynamics of Colchicine
and C19 Bound to βIII Human Tubulin
Conformational dynamics of the C19-tubulin complex has been
investigated by a 100 ns long MD simulation. For comparison, a
100 ns-long MD was also carried out on the colchicine-tubulin
complex. Systems were replicated to confirm the consistency of
the data (Figures S5, S7).

Structural modifications of the colchicine binding site were
first analyzed by computing the RMSD of the tubulin binding
cleft, i.e., residues within 1 nm from the ligand, from its starting

FIGURE 2 | Representative snapshots of ligand conformational displacements

in the colchicine binding site. Colchicine is represented in green, whereas two

different derivatives with low (A) and high (B) RMSD with respect to the

colchicine starting pose are depicted orange and red, respectively.
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FIGURE 3 | Polar scatter plot representing ligands’ RMSD from the colchicine

starting pose (radial coordinate) in nm and their binding energy (angular

coordinate) in kJ/mol; the diamond marker represents the C19 compound.

position and the secondary structure probability during the
last 50 ns of the simulation (Figure 4). A second replica was
performed to ensure the repeatability of the results (see also
Figure S5). The binding site was characterized by a structural
stability throughout the overall MD, exhibiting low RMSD values
(lower than 0.18 nm) and highly conserved secondary structures.
The only noteworthy difference is represented by the α-T5 loop,
which exhibits tendency to rearrange in a more structured shape
only in the presence of C19.

The binding energy was estimated by the MM-GBSA
approach in order to compare the binding affinities of the
analyzed compounds at the structural equilibrium: again,
compound C19 and colchicine showed similar binding energy for
isotype αβIII, respectively,−229.98± 22.26 kJ/mol and−223.70
± 22.31 kJ/mol (see also Figure S6). Nevertheless, the energy
decomposition over the tubulin binding cleft residues reveals that
the compound C19 shows a higher binding energy compared to
the colchicine for residues 178–180 of the α tubulin, which belong
to the αT5 loop (Figure 5).

In light of these results, the ligands’ behavior in the binding
site and their interaction with the αT5 loop were investigated in
more depth (Figure 6). First, ligand RMSD (used to quantify the
ligand movement in the binding site throughout the simulation)
showed that compound C19 has a more marked tendency than
colchicine to move apart, reaching a more favorable pose for the
interaction with the αT5 loop (Figure 6A and see also Figure S7).
Second, the interaction surface between each ligand and the αT5
loop, which quantifies the available area for their binding, is
higher for C19 than colchicine (Figure 6B). Figures 6C1,C2 and

FIGURE 4 | (A) RMSD of the colchicine binding site from its starting position

when colchicine (black) or compound C19 (gray) are bound to the tubulin

dimer. (B) Secondary structure probability of residues in the colchicine binding

site when colchicine (B1) or compound C19 (B2) are bound to the tubulin

dimer.

6D represent ligand structures and their relative position in the
tubulin binding cleft (see alsoMovies S1, S2).

In conclusion, compound C19 was shown to be stable in
the tubulin binding site with a relative position differing from
the colchicine site. Specifically, C19 is predicted to be mostly
stabilized by its interaction with the αT5 loop.

DISCUSSION

In this study, 55 colchicine derivatives were screened for
their binding properties to tubulin isotype βIII. The research
work was aimed at identifying alternative compounds able
to overcome colchicine’s well-known limitations. After the
docking of all compounds to the target isotype of tubulin, a
molecular dynamics simulation of 1 ns was performed on each
generated receptor-ligand complex. The obtained trajectories
were analyzed considering the deviations of the compounds from
the colchicine’s starting pose, using the RMSD, and the binding
energy evaluated with the MM-GBSA method. All compounds
were characterized by low RMSD values, except for compound
C19, which showed high deviations (RMSD = 0.47 nm). This
evidence suggests a different particular pose for this derivative.
From the affinity analysis we found out that the binding energies
for compounds C19, C20, C29, and C48 are similar to that for
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FIGURE 5 | Binding Energy decomposition over the residues of the colchicine binding site (only residues with the highest energies are reported). Compound C19 has

a significantly higher affinity than colchicine for the αT5 loop.

FIGURE 6 | (A) Ligands’ RMSD from their starting position (colchicine in black, C19 in red). (B) Probability density function of the buried surface between the ligands

and the αT5 loop (colchicine in black, C19 in red), averaged between two replicas during the last 20 ns of simulation. (C) Chemical structures of colchicine (C1) and

compound C19 (C2). (D) representative snapshot of the simulation, which shows that compound C19 (red) is closer to αT5 loop (yellow) than colchicine (green).

colchicine and higher than those found for most other ligands.
These results indicate that C19 is a promising compound to
be further investigated and experimentally validated. Its specific
binding to tubulin is characterized by a different conformational
organization and dynamics in the tubulin binding site with
high affinity. RMSD analysis indicates that C19 is able to be
accommodated in the binding site by moving toward more
favorable poses for interaction with the αT5 loop. This feature
is less pronounced by colchicine. Moreover, the buried surface
between C19 and the tubulin isotype βIII, which measures
the available area for the binding, is greater than the one
exhibited with colchicine, confirming a higher stability of
C19 in the binding site. Finally, the ligand binding to the

αT5 loop may affect its secondary structure toward a more
structured arrangement. Therefore, a compound able to influence
the αT5 loop structure could affect the dynamics of the
entire microtubule.

The above mentioned evidences might be of a significant
interest given that the αT5 loop is a key player region in the
colchicine binding site and for intra-dimer contacts (Ravelli
et al., 2004). Nonetheless, previous literature (Bueno et al., 2018)
already highlighted the importance of the αT5 loop, identified
as relevant for the binding of a promising anti-proliferative
compound (Bueno et al., 2018).

In conclusion, our study clarifies some features characterizing
the βIII tubulin binding mode of a promising novel 4-chlorine
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thiocolchicine derivative, which differs profoundly from that
known for colchicine. The specific interaction of compound
C19 with the αT5 loop is a promising feature that could
be related to an increased destabilizing activity of the ligand
with respect to microtubule dynamics. Moreover, this unique
behavior exhibited in complex with the βIII tubulin isotype
is of primary importance since this isotype is overexpressed
in cancer cells, while very insignificantly represented in most
normal cells and also implicated in drug resistance (Katsetos
et al., 2003; Kamath et al., 2005; Seve, 2005; Sève and Dumontet,
2008; Leandro-García et al., 2010). In light of these results,
C19 or similar compounds, as promising candidates able to
possibly overcome some colchicine’s drawbacks, deserve further
investigations, including biological toxicity assessment and
cancer cell cytotoxicity experiments to prove its specificity and
selectivity for βIII isotype of tubulin.
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