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Biomedical research involving nanoparticles has produced 
useful products with medical applications. However, the 
potential toxicity of nanoparticles in biofluids, cells, tissues, 
and organisms is a major challenge. The ‘-omics’ analyses 
provide molecular profiles of multifactorial biological systems 
instead of focusing on a single molecule. The ‘omics’ 
approaches are necessary to evaluate nanotoxicity because 
classical methods for the detection of nanotoxicity have 
limited ability in detecting miniscule variations within a cell 
and do not accurately reflect the actual levels of nanotoxicity. 
In addition, the ‘omics’ approaches allow analyses of in-depth 
changes and compensate for the differences associated with 
high-throughput technologies between actual nanotoxicity and 
results from traditional cytotoxic evaluations. However, 
compared with a single omics approach, integrated omics 
provides precise and sensitive information by integrating 
complex biological conditions. Thus, these technologies 
contribute to extended safety evaluations of nanotoxicity and 
allow the accurate diagnoses of diseases far earlier than was 
once possible in the nanotechnology era. Here, we review a 
novel approach for evaluating nanotoxicity by integrating 
metabolomics with metabolomic profiling and transcriptomics, 
which is termed “metabotranscriptomics”. [BMB Reports 2018; 
51(1): 14-20]

INTRODUCTION

Several recent reports suggest breakthrough applications of 
nanoparticles (NPs) in biomedical and clinical fields (1-4). NPs 

have unique physiochemical properties because of their size 
and large surface area-to-volume ratio, rendering them more 
reactive and thermodynamically unstable than bulk materials 
(5, 6). Moreover, NPs are easily absorbed and readily interact 
with the human body when delivered through inhalation, 
penetration, and ingestion (7, 8). However, issues regarding 
their toxicity and safety due to adverse biological effects have 
led to widespread concerns about the possible negative effects 
of NPs (9, 10). Specifically, NP-induced oxidative stress is 
difficult to evaluate with classical methods (11, 12). The 
practical application of NPs requires studies of biological 
toxicity. However, there are limitations associated with the 
evaluation of nanotoxicity using traditional methods of analysis 
because of the complexities at the nanolevel, underscoring the 
need for advanced omics approaches. 

Omics facilitates the collective characterization and 
quantification of many different molecules, such as DNA, 
RNA, proteins, lipids, and metabolites, in cells, tissues, organs, 
and organisms. The last few decades have produced develop-
ments in high-throughput technologies for omics, which 
enabled comprehensive understanding of processes and novel 
findings in biomedical studies (13-15). Thus, omics approaches 
address the complexity of biological systems via interpretations 
using bioinformatics analyses. Rapid developments in 
nanotechnology and the production of NPs, which are defined 
as engineered materials measuring less than 100 nm in one 
dimension, stress the importance of the potential toxicity of 
NPs (6, 7, 10, 16). The omics approaches including genomics, 
transcriptomics, proteomics, and metabolomics are used to 
evaluate nanotoxicity (17-20). However, a single omics 
approach provides limited insight into the intricate molecular 
pathways and the complex biological events in cells and 
organisms (21-23).

The concept of integrated omics was introduced by Dr. 
Hood, who suggested a systems biology approach based on 
the combination of different omics data to provide a 
comprehensive understanding of the multifactorial origins of 
biological research (24, 25). Palsson et al. suggested many 
approaches to generate multi-omic data sets and reduce the 
possibility of resource allocation for data generation versus 
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data curation and integration (26). Integrated omics has been 
applied to a wide range of complex and intractable problems 
in biological studies. In particular, integrated omics was 
shown to facilitate the determination of cytotoxicity, especially 
nanotoxicity (27, 28) because cytotoxicity induced by NP 
treatment in cells could not be detected with traditional 
methods (29-31). Integrated omics provides a more com-
prehensive overview of the complexities associated with 
nanotoxicity compared with a single omics approach. Thus, 
these technologies contribute to expanding the safety 
evaluation of nanotoxicity and provide accurate diagnoses of 
diseases compared with the simple and fragmented inter-
pretations using single omics approaches. Here, we divide this 
review into three sections as follows: (i) omics approaches for 
nanotoxicity; (ii) recent approaches for metabolomics and 
transcriptomics in nanotoxicity; and (iii) integration of omics 
for the analysis of nanotoxicity. 

OMICS APPROACHES FOR NANOTOXICITY

Omics approaches provide a better understanding of cellular 
events by using large-scale data. In particular, high-throughput 
technologies in omics have enabled the use of large-scale data 
to generate novel findings related to NP toxicity and 
mechanisms of action (17-20). Thus, omics tools prevent the 
use of fragmented data that could lead to inappropriate 
conclusions about nanotoxicity. Although the molecular 
technologies for understanding nanotoxicity, stress responses, 
molecular damage, and varying responses to NPs have 
advanced in parallel with molecular cell biology and in vivo 
assessments, the traditional approaches for the safety 
evaluation of new NPs have limitations regarding their 
potential toxicity. Thus, omics techniques are well suited to 
evaluate nanotoxicity both in vitro and in vivo by providing a 
more comprehensive view than was previously possible.

A systematic understanding of molecular responses in 
biological systems has been emphasized following the growth 
in analytic technologies and bioinformatics. Developments in 
sequencing technologies have allowed researchers to gather 
genomic and transcriptomic data (genotypic features) with 
much higher coverage and cost-effectively. In proteomics and 
metabolomics, advances in NMR and mass spectroscopy 
enable the analysis of a broader range of the proteome or 
metabolome (phenotypic features) with high precision and 
sensitivity (32). However, despite these improvements, single 
omics approaches have a fundamental “blind spot” in 
unraveling complex biological responses. For example, even 
though transcriptomics allows detection of extensive genotypic 
changes, it may not facilitate the interpretation of nucleic acid 
modifications in the genome or address issues concerning 
coverage of repeat-rich regions and low abundance genes, and 
is thoroughly inadequate for the determination of the actual 
phenotype (33, 34). In metabolomics, for which one endpoint 
is the biological phenotype (35), amplification methods are 

unavailable for minor metabolites, and a quantitative analysis 
of a targeted process can only provide a partial representation 
of an entire metabolic pathway (22). In addition, it is 
frequently associated with errors and limitations involving the 
interpretation of causal mechanisms in biological processes 
(36). The integration of two or more omics methods is highly 
recommended for a more comprehensive and holistic 
understanding of biological systems than is possible with a 
single omics approach.

RECENT APPROACHES FOR METABOLOMICS AND 
TRANSCRIPTOMICS IN NANOTOXICITY

In this section, we introduce the main omics approaches: 
metabolomics and transcriptomics and their application to 
nanotoxicity studies. 

Metabolomics
Metabolomics is the comprehensive analysis of chemical 
processes involving metabolites that drive cellular functions, 
such as cellular signaling cascades, homeostatic control, 
energy metabolism, and cell damage (37). Specifically, the 
metabolome represents the complete set of small-molecule 
chemicals found in biological fluids, cells, tissues, organisms, 
and biological samples; the metabolome directly links 
genotype with phenotype and is most related to the phenotype 
(35, 38). In contrast to other omics methods, metabolomics 
has great potential for the analysis and understanding of 
cellular biological mechanisms affected by NPs because 
metabolic changes accurately reflect the characteristic changes 
in biological fluids, cells, and tissues based on the quantitation 
of metabolome (27, 39-41). 

Metabolomic profiling is necessary to evaluate potential 
toxicity using either nuclear magnetic resonance (NMR) or 
mass-spectrometry (MS). NMR is an effective tool for the 
determination of the structure of organic compounds ab initio 
and the quantitative analysis of a broad range of molecules 
(such as metabolic fingerprinting) in a crude extract without 
authentic standards (32, 42). In addition, NMR does not 
depend on hydrophobicity or metabolite dissociation value, 
and the results are comparatively more reproducible than 
those derived from MS (43). However, NMR has a relatively 
low sensitivity (＞ 1 nmol) and resolution and cannot detect 
NMR-inactive molecules (32). Thus, there are limitations for 
the comprehensive analysis of individual constituents within a 
sample (44). MS ionizes chemical species and sorts the ions 
based on their mass-to-charge ratio. It is one of the most 
widely used methods for the ultrasensitive and simultaneous 
detection of metabolites by coupling with gas or liquid 
chromatography (45, 46). Although different types of MS have 
a high sensitivity of detection, the sample preparation process 
is tedious, and the selectivity for different classes of 
metabolites has both advantages and complications (43). In 
particular, metabolomic profiling of the cellular components, 
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Fig. 1. Summary diagram comparing con-
ventional methods and metabotranscrip-
tomics approach for the assessment of 
MNPs@SiO2(RITC)-induced nanotoxicity 
(27, 29-31). MNPs: MNPs@SiO2(RITC), 
IP: Intraperitoneal, TEM: transmission 
electron microscopy.

and target tissue metabolic reactions with gas chroma-
tography-mass chromatography (GC/MS), without targeting a 
single metabolite, provides a better understanding of the 
biofluids, cells, and clinical conditions (28, 47-51). Thus, 
metabolomics has been used in nanotoxicity investigations 
utilizing high-throughput quantitation methods (11, 52). 
However, a limitation of metabolomics is that it provides 
consequential data without identifying the pathways of cellular 
mechanism. However, by integrating it with transcriptomics, a 
better understanding of subtle effects such as nanotoxicity can 
be obtained (27, 28). 

Transcriptomics
Transcriptomics refers to the set of all RNA molecules in a cell 
and involves techniques such as microarray analysis and 
next-generation sequencing (NGS), called RNA-Seq. This 
technique is widely used to screen the toxicity of related RNA 
molecules and to elucidate the toxicity mechanisms (53, 54). 
Biological analytes from environmental, industrial, and 
drug-induced toxic exposures have been analyzed using 
transcriptomics (54-61). Moreover, transcriptomics contributes 
to the comprehensive investigation of cellular responses 
induced by NPs using bioinformatics software (22). Even 
though transcriptomics can provide large data from NP-treated 
cells, they are qualitative and do not establish a direct 

relationship with the pathology. Nanotoxicologists are working 
to overcome these shortcomings of transcriptomics by 
dovetailing the molecular mechanisms using other omics 
methods such as proteomics and metabolomics (27, 62). 
Moreover, metabolomics facilitates the identification of a 
phenotype based on cellular response and provides quantitative 
data, to compensate for the limitations of transcriptomics (27).

INTEGRATION OF OMICS FOR ANAYLSIS OF 
NANOTOXICITY 

Integration of omics
Integration of genomics, transcriptomics, proteomics, and 
metabolomics, facilitates a better understanding of the cellular 
biology because biological systems are dynamic and hetero-
geneous (21). Dr. Hood was a pioneer in terms of integrating 
the different data types and comparing them against a model 
with a focus on interdisciplinary and systems biology (25, 63). 
Compared with single omics approaches, integrated approaches 
provide a large volumet of accurate information related to 
pathophysiology (64-68). Here, we describe the integration of 
transcriptomics with metabolomics in a process called 
“metabotranscriptomics” for the analysis of nanotoxicity, to 
allow a comprehensive analysis of the treatment outcomes 
with NPs.
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Fig. 2. Bioinformatics of ROS generation using ingenuity pathway 
analysis (IPA), (A) metabolomics, (B) transcriptomics, and (C) meta-
botranscriptomics based on a previous report (27). Red and green 
areas indicate up- and downregulated metabolites, respectively, in 
cells treated with MNPs@SiO2(RITC) compared with control cells. 
Differentially regulated metabolites obtained from the metabolic 
profile (more than a ± 20% change) and microarray data (genes 
with a ＞ 3-fold change) are shown. In the representation of the 
genetic networks, the red and green colors indicate up- and 
down-regulated genes, respectively. Network shape indicates 
categorization of molecules and function. Information pertaining to 
the corresponding genes can be found in NCBI (https://www.ncbi. 
nlm.nih.gov/).

Metabotranscriptomics for nanotoxicity analysis
The use of NPs in biomedical research, such as in the 
diagnosis and treatment of diseases, has gained tremendous 
momentum (1, 7, 69). Recent research has shown that inter-
nalized NPs can cause cytotoxicity by inducing reactive 
oxygen species (ROS) and increasing endoplasmic reticulum 
(ER) stress (7, 27, 70, 71). Despite increasing research efforts, 
the underlying mechanisms of NP toxicity are not clearly 
understood because of limited studies and preliminary stages 
of research. 

Magnetic NPs (MNPs) and MNPs coated with biocompatible 
compounds, which are defined as single-dimensional particles 
with magnetic properties, have been investigated in the 
context of novel applications in biochemistry, biology, medicine, 
antibody engineering, cell tracking, and imaging tools (72-75). 
MNPs@SiO2(RITC) are synthesized MNPs that consist of a 
cobalt ferrite core, CoFe2O4, and a silica shell containing 
chemically-bound Rhodamine B isothiocyanate (RITC) for cell 
staining, separation and MRI contrast (76). The cobalt ferrite 
core and RITC contained within the silica shell contribute to 
the stability of MNPs@SiO2(RITC) and prolonged red fluore-
scence at 540 nm without photobleaching. A study into the 
tissue distribution of MNPs@SiO2(RITC) in mice demonstrated 
their ability to cross the blood–brain barrier (BBB) without 
inducing functional deficits. Analyses using hematoxylin and 
eosin (H&E) staining found no abnormal histopathological 
lesions in organs after the intraperitoneal injection (IP) of 
MNPs@SiO2(RITC) into mice (29) (Fig. 1). Moreover, the 
injection did not induce any clinical changes (growth, body 
weight, behavior) or alterations in serum biochemical parameters 
(glucose, cholesterol, creatinine, and the ratio between the 
concentrations of the enzymes aspartate transaminase and 
alanine transaminase). In addition, a few in vitro studies such 
as FACS analysis, MTT assay, chromosome aberration assay, 
and cell cycle assay, failed to detecte any toxicity induced by 
NPs (27, 29-31) (Fig. 1). 

Previous studies were confined to the pathophysiological 
effects of MNPs@SiO2(RITC). Treatment with MNPs@SiO2(RITC) 
yielded 24 metabolites, nine of which were considered to be 
significantly altered. However, assessment using only meta-
bolomics does not yield convincing data and has low 
reliability. Integrating the metabolomic profiling with 
transcriptomics will allow a more sensitive and detailed 
toxicological evaluation of cellular responses to NPs and 
identify novel nanotoxicological biomarkers (27). Metabolic 
profiling of MNPs@SiO2(RITC)-treated human embryonic 
kidney 293 (HEK293) cells revealed that changes in amino 
acids (AAs), organic acids (OAs) and a few metabolites were 
related to ROS generation (27), which triggered mitochondrial 
damage (Fig. 1).

The percent compositions and normalized values of AAs 
and OAs clearly revealed a marked increase in glutamic acid 
and pyruvate levels, and decrease in other AAs, such as 
alanine, valine, leucine, isoleucine, proline, and tyrosine, and 

other OAs, such as α-ketoglutarate, oxaloacetate, fumarate, 
and malate, in the group treated with MNPs@SiO2(RITC) (27). 
However, there is a limitation associated with linking ROS 
generation with metabolic changes (Fig. 2A). For the transcrip-
tome, the expression levels of 45 ROS-generation-related 
genes were altered. Specifically, 26 genes were upregulated 
and 19 genes were downregulated, and these genes were 
found to be connected with direct relationships (Fig. 2B). Thus, 
we combined transcriptomics and metabolomics for these data 
using Ingenuity Pathway Analysis (IPA Ver. 8.5, Ingenuity 
Systems, http://www.ingenuity.com), which is a web-based 
bioinformatics software for the identification of biological 
functions. The datasets of differentially expressed genes and 
metabolites were combined, to elucidate the interactions 
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between differentially expressed genes and altered metabolites 
(Fig. 2C), and determine biological changes related to ROS 
generation. The integration of the metabolic profile and 
transcriptome revealed a direct correlation between the 
metabolites and genes related to ROS generation. These results 
demonstrate the importance of metabotranscriptomics for the 
detailed analyses of nanotoxicity. Although integrated omics 
approaches facilitate a comprehensive analysis of cellular 
pathways in biological systems, several new challenges need 
to be overcome before they can be used in nanotoxicity 
investigations. 

CONCLUSION

Here, we reviewed the cutting-edge metabotranscriptomic 
approaches for nanotoxicity evaluation. The traditional 
methods of detection are limited by their ability to measure 
nanotoxicity. The introduction of advanced tools has led to the 
integration of omics, especially metabolomic profiling and 
transcriptomics, to provide extensive information on biological 
conditions. The technological progress in the molecular 
diagnosticscan pave the way to the development of additional 
omics techniques. In addition to the integration of transcriptomics 
and metabolomics, the combination of transcriptomics, 
genomics, and proteomics in nanotoxicity studies can be used 
to facilitate the analyses of subtle changes in cellular 
physiology and molecular biology. Future studies in 
nanotoxicity will require the integration and multidisciplinary 
use of omics methods. This integration is expected to produce 
major advances in toxicity research and encourage the 
discovery of novel biomarkers for nanotoxicity for a more 
complete understanding of the effects of NPs in biomedical 
studies.
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