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1  | INTRODUC TION

The Pearl River is the third-longest river in China, with an abun-
dance fishery resources and rich fish biodiversity. The river 
supports 385 species of fish, with Cypriniforms being the most 

dominant (Zhou et al., 2018). However, aquatic habitats have been 
degraded dramatically, fishery resources have decreased, and fish 
biodiversity has been continuously threatened over the past few 
decades due to either direct or indirect human activities. It is well 
known that river impoundments and introduction of alien species 
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Abstract
The fragmentation and homogenization of habitats have seriously affected the fish-
ery resources of the Pearl River. To protect the fishery resources, a novel artificial 
habitat, constructed using bamboo and palm slices, was deployed in the Youjiang 
River, a tributary of the Pearl River in China. The results of field and laboratory ex-
periments showed that fish abundance, species richness and Shannon–Wiener diver-
sity index were higher in the artificial habitats than at the control sites. There was no 
significant impact on fish biomass, as the artificial habitats attracted more Cultrinae 
and Gobioninae fish that are of a smaller size. Artificial habitats can serve as spawn-
ing grounds for fish that produce sticky eggs and refuges that improve the survival 
rates of juvenile fishes. This study revealed that this novel artificial habitat created 
suitable habitats and suitable spawning substrate for fish, improved fish richness and 
diversity in the structureless freshwater ecosystem like the Youjiang River.
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may be the main anthropogenic causes of diversity loss of fresh-
water fishes (Allan & Flecker, 1993; Dudgeon et al., 2006; Moyle 
& Light, 1996; Naiman & Turner, 2000; Rahel et al., 2008). From 
the 1950s, more than 96,000 of dams have been constructed in 
the Pearl River. The dams have changed the original hydrological 
conditions of the river, caused river fragmentation, widened out 
the river, and changed the velocity of water. These have led to the 
loss of fish species, decreases in community diversity, and habitat 
destruction/defragmentation (Zeng et al., 2017). Water level fluc-
tuations caused by dam operations are harmful to fish, due to their 
potential of increasing fish interactions, increase fish mortality, 
affect water quality, destroy littoral habitats, and expose fish eggs 
to the air (Yamamoto et al. 2006). Additionally, the Pearl River 
Basin has been invaded by alien fish species, such as Tilapia, a typi-
cal alien species introduced in China for industrialized aquaculture 
in the 1950s that has become firmly established in the Pearl River 
(Tan et al., 2012). Tilapia may feed on the eggs and larvae of other 
fish (Russell et al., 2012). When tilapia enter natural waters, they 
compete for food and habitat with native fish species, leading to 
the reducing or even dying out of native fish populations. In the 
four tributaries (Guijiang, Youjiang, Yujiang, and Zuojiang) of the 
Pearl River, a total of 115 species belonging to eight orders were 
collected from 2013 to 2015, which was a dramatically lower num-
ber than the 166 species belonging to nine orders recorded during 
the 1980s (Zeng et al., 2017). The abundance of native fish was 
lower in the fish harvest, while tilapias were found to be the dom-
inant species. Tilapia accounted for 12.32% of the total harvest in 
the Youjiang River, 13.23% of the Yujiang River, and 14.06% of the 
Zuojiang River (Zeng et al., 2017).

Artificial habitats are constructed to mimic some of the charac-
teristics of a natural habitat in aquatic environments and to increase 
structural complexity for aquatic organisms in systems where nat-
ural habitats are unavailable or absent (Bolding et al., 2004). Many 
types of artificial habitats have been designed and used as con-
servation and management tools in freshwater and marine envi-
ronments, including tree branches, polypropylene ribbons, tyres, 
ceramic, concrete, and PVC (Santos et al., 2008; Santos, Agostinho, 
et al., 2011; Santos, García-Berthou, et al., 2011; Yamamoto 
et al., 2014; Freitas & Petrere, 2001; Čech et al., 2012; Nash 
et al., 1999). Numerous studies have been conducted to elucidate 
the role of artificial habitats for fisheries management all over the 
world, including the use of artificial habitats to attract fish or other 
organisms and increase their abundance (Hellyer et al., 2011; Jones 
& Tonn, 2004; Sherman et al., 2002; Sosa-Cordero et al., 1998; 
Wills et al., 2004), to provide spawning substrates and increase fish 
recruitment (Pickering & Whitmarsh, 1997; Sandström & Karås, 
2002), to offer shelter for juvenile fish (Höjesjö et al., 2015), to 
mediate the effects of introduced species on native species (Rahel 
et al., 2008; Santos, Agostinho, et al., 2011; Santos, García-Berthou, 
et al., 2011; Santos et al., 2008), and to mitigate the drawdown im-
pacts on fishes (Benoit & Legault, 2002; Santos et al., 2008).

The primary objectives of this study are to evaluate the effects 
of artificial habitats on fish diversity, fish composition, and the 

asylum effect on juvenile fish. Fish assemblage surveys were con-
ducted from February 2016 to November 2017 at the Donghong 
Village on the banks of the Youjiang River (a tributary of the Pearl 
River, China).

2  | MATERIAL S AND METHODS

2.1 | Study area

The Youjiang River (a major tributary of the Pearl River) extends for 
727 km and drains an area of 4.02 × 104 km2. The Youjiang River is a 
major tributary of the Xijiang River, which begins in eastern Yunnan 
and joins the Zuojiang River near Nanning to form the Youjiang River 
(Zhou et al., 2018). The Youjiang River is regulated by six cascading 
medium/large sized dams in Wacun, Baise, Dongsun, Naji, Yuliang, 
and Jinjitan. In a research study done on the fish diversity of the 
Youjiang River, 80 fish species being recorded in a research of and 
the dominant species were Hemiculter leucisculus, Toxabramis houde-
meri, Oreochromis niloticus, and Squalidus argentatus with relative 
abundances of 19.55%, 13.56%, 7.71%, and 6.55%, respectively 
(Zhou et al., 2018). The study area (Donghong Village) was located at 
23°46.390′N 106°40.102′E, between the Baise and Naji reservoirs 
(Figure 1), where the width of the river was 100–150 m. The average 
water depth in the study area was 6 m, with a water level fluctua-
tion of about 0.5–1 m daily due to the operation of the reservoir. 
The water level began to rise at about 6 p.m. and fell at 10 a.m. the 
next day.

2.2 | Artificial habitat construction

The structure of the artificial habitat was divided into two parts 
(Figure 2): a bamboo raft on the surface of the water and a columnar 
frame (height: about 4 m; diameter: about 0.5 m) below the surface. 
The bamboo raft was made up of two bamboos (diameter: about 
150 mm) laid side by side to provide buoyancy for artificial habitats 
and was anchored with bricks to fix them in the specific area of water. 
The columnar frame was a structure made of bamboo and meshes 
with a pore size of 50 × 50 mm. The columnar frame was reinforced 
by two symmetrically placed small bamboos inside the frame. The 
top of the column frame was suspended from the bamboo raft, while 
a brick was suspended from the bottom so that it stands vertically 
in the water. The palm slices were laid on bamboo rafts and colum-
nar frames. Each artificial habitat consisted of a larger bamboo raft 
(length: 70 m) with 20 frames suspended at equal intervals, and the 
larger bamboo raft was made up of a series of bamboo rows.

2.3 | Sampling design

Five sites were selected for the deployment of the artificial habi-
tats and five for matching the control. The artificial habitats were 
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deployed in December 2015. All the sites were otherwise struc-
tureless and were composed mainly of a clay and sand substrate. 
To minimize mutual interference, adjacent sites were designed to be 
at least 150 m apart. Fish sampling was conducted every 3 months 
from February 2016 (3 months after deployment of structures) to 
November 2017. All fish were sampled using multimesh gillnets that 

were 18 m long, 1.5 m height with mesh sizes between 6.25 and 
60 mm of the following order: 45, 20, 6.25, 10, 55, 40, 12.5, 25, 15, 
60, 35, and 30 mm (Zhou et al., 2018). Three groups of artificial habi-
tats and three control sites were selected for sampling, and three 
multimesh gillnets were placed in each site. The gillnets were set 
nearby each artificial habitat and control site between 6:30 p.m. and 

F I G U R E  1   Map of the study area in the Youjiang River. The black star symbol represents the study aera (Donghong Village), gray lines 
represents rivers, and black lines represents geographic boundaries

F I G U R E  2   The schematic diagram of artificial habitat
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7:30 p.m. and were hauled out between 6:30 p.m. and 7:30 a.m. the 
following day (Zhou et al., 2018). All fish caught in each multimesh 
gillnet were identified at species level, measured (total length, cm), 
and weighed (g), separately. Then, the fish were returned to the 
water while still alive. The data obtained from each network were 
used as a sample for subsequent data analysis. The study protocols 
concerning the handling of the fish adhered to the requirements of 
the Institutional Animal Care and Use Committee of Sun Yat-sen 
University, P. R. China.

To assess the viability and effectiveness of the artificial habitats 
as spawning substrate for fish, the palm slices were placed on the 
artificial habitats at different depths (0.5, 1.5, 2.5, 3.5, and 4.5 m), 
and during the reproduction period of Cyprinus carpio, the palm 
slices were collected from the different depths of water and the eggs 
clinging to the palm slices were counted.

2.4 | Laboratory trial

Laboratory trials were carried out at the local field workstation. 
Laboratory-scale artificial habitats (used as artificial refuges) used 
were columnar frames (height: 200 mm; diameter: 150 mm), with 
mesh of a pore size of 50 × 50 mm. The palm slices were laid on 
the artificial habitats. In the laboratory trials, the artificial habitats 
were hung on wooden sticks, which were placed on both sides of 
the tank. The artificial habitats were fixed at a depth of 100 mm 
underwater. The size of the tank was 600 mm (height) × 800 mm 
(length) × 500 mm (width). The water used in the laboratory tri-
als was taken from the river. The average water temperature was 
26.5°C, and the water depth was 350 mm, while the photoperiod 
was set at 14-hr light and 10-hr dark to simulate summer conditions. 
An oxygenator was used in each tank for aeration.

The juvenile tilapia and  Squalidus argentatus were captured from 
the study area using a cage net, and total length (TL) was measured 
to the nearest mm (12.2 ± 0.39 mm and 17.1 ± 1.4 mm, respectively, 
mean ± SE). The conditions simulated were as follows: (a) 30 juvenile 
tilapias × a predator (Clarias gariepinus) with an artificial refuge both 
present and absent, (b) 30 juvenile S. argentatus × a predator with an 
artificial refuge both present and absent, and (c) 15 juvenile tilapia, 
15 juvenile S. argentatus × a predator with an artificial refuge both 
present and absent. Each treatment replicated three times.

In these trials, juvenile tilapias, S. argentatus, and the predator were re-
leased into each tank and allowed to acclimatize to laboratory conditions 
for 30 min, and the juvenile fish and the predator were separated using 
a baffle placed at the center of the tank. The number of juvenile fish that 
survived was recorded at 1, 2, 4, 12, 24, and 48 hr. Mean C. gariepinus 
size (total length) were kept constant for each trial (1,489.6 ± 35.8 mm).

2.5 | Data analysis

Generalized estimating equations (GEEs) in SPSS 21.0 (SPSS Inc.) 
were used to test the impact of habitat type, sampling time, and their 

impact on abundance, biomass, fish size, richness (species number), 
and Shannon–Wiener diversity index. GEEs are an extension of the 
generalized linear model (GLM) in that they allow for the adjusting 
of correlations between observations (Ziegler & Vens, 2010). GEEs 
were used as available in the SPSS 22 software package, by apply-
ing a normal distribution and identity link functions for all analyses. 
Then, pairwise comparisons were performed to test for differences 
between artificial structures and control sites per month. When 
p < 0.05, a statistically significant difference is considered.

3  | RESULTS

3.1 | Fish assemblages and composition

In total, 3,276 individual fish of 35 fish species, representing four 
orders and nine families, were recorded in the natural and arti-
ficial habitats. Overall, 2,251 individual fish of 33 species (be-
sides Pseudorasvora parva and Clonorchis sinensis) were found at 
artificial habitats, while 1,025 individual fish of 29 species (be-
sides Clarias gariepinus, Aristichthys nobilis, Pelteobagrus fulvidraco, 
Ancherythroculter lini, Schistura fasciolata, Odontobutis sinensis) were 
caught at the control sites. In terms of fish abundance, two species 
of tilapia (Oreochromis mossambicus and Oreochromis niloticus) and 
four species of cyprinidae (Toxabramis houdemeri, Hemiculter leucis-
culus, Rhodeus ocellatus, and Huigobio chinssuensis) were dominant at 
both the artificial habitats and control sites.

During the formation of fish communities, the artificial habitats 
were primarily colonized by omnivorous fishes, such as T. houdemeri, 
H. leucisculus, Squalidus argentatus, and tilapia (O. mossambicus and 
O. niloticus), and these species settled in artificial habitats throughout 
the study period. Subsequently, other omnivorous species, such as 
H. chinssuensis, Squalidus wolterstorffi, R. ocellatus, and Rhinogobius gi-
urinus, migrated into artificial habitats. Eighteen months later, benthic 
fishes, such as Mastacembelus armatus, P. fulvidraco, Pelteobagrus vach-
elli, C.gariepinus and O. sinensis, were recorded at artificial habitats. 
Additionally, during the breeding season, Cyprinus carpio, Carassius 
auratus and Osteocheilus salsburyi appeared at artificial habitats.

Fish richness (number of species) (GEE: Wald chi-square = 17.962, 
df = 1, p < 0.01), fish abundance (GEE: Wald chi-square = 35.479, 
df = 1, p < 0.01), and biomass (GEE: Wald chi-square = 5.431, df = 1, 
p = 0.02) varied significantly between artificial habitat and control 
site, but not for diversity (GEE: Wald Chi-Square = 0.827, df = 1, 
p = 0.363) (Figure 6). Fish richness and abundance were higher in 
the artificial habitats than at the control sites (Table 1, Figure 3). 
However, a similar trend was not found for fish biomass, because 
cichlids were dominant at the control sites and accounted for most 
of the total biomass, with the average weight of the tilapias being 
higher than that of other fish. Fish richness (number of species) 
(GEE: Wald chi-square = 33.715, df = 7, p < 0.01), fish abundance 
(GEE: Wald chi-square = 26.827, df = 7, p < 0.01), biomass (GEE: Wald 
chi-square = 20.589, df = 7, p = 0.004), and diversity (GEE: Wald 
chi-square = 29.472, df = 7, p < 0.01) varied significantly with time. 
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There were no significant habitat × time interaction in fish abun-
dance (GEE: Wald chi-square = 8.222, df = 7, p = 0.313), biomass 
(GEE: Wald chi-square = 6.669, df = 7, p = 0.464), richness (GEE: Wald 
chi-square = 5.686, df = 7, p = 0.557), and diversity (GEE: Wald chi-
square = 10.422, df = 7, p = 0.166) (Table 1).

For the dominant species (Table 1, Figure 4, Figure 5), the abun-
dance and size of the dominant species also showed significant 
variation among habitat and time. The abundance of H. leucisculus 
(GEE: Wald chi-square = 33.263, df = 7, p < 0.01), R. ocellatus (GEE: 
Wald chi-square = 18.322, df = 7, p = 0.011), H. chinssuensis (GEE: 
Wald chi-square = 27.769, df = 7, p = 0.166), and tilapia (GEE: Wald 
chi-square = 21.887, df = 7, p = 0.003) varied significantly with 
time. R. ocellatus (GEE: Wald chi-square = 11.75, df = 1, p = 0.001), 
T. houdemeri (GEE: Wald chi-square = 21.793, df = 1, p < 0.01), and 
H. chinssuensiss (GEE: Wald chi-square = 8.108, df = 1, p = 0.004) 
were significantly more abundant in artificial habitats than at control 
sites.

The abundance of H. leucisculus, S. argentatus, and tilapia was 
not significant between habitats. However, it is worth to note that 
the abundance of tilapia was higher in artificial habitats than at the 
control sites until February 2017, but thereafter, the abundance 
of tilapia was higher at control sites than in the artificial habitats. 
The abundance of the six dominant species was not significant 
for the habitat × time interaction. The size of H. leucisculus (GEE: 
Wald chi-square = 4.943, df = 1, p = 0.026), R. ocellatus (GEE: Wald 
chi-square = 4.192, df = 1, p = 0.041), and T. houdemeri (GEE: Wald 
chi-square = 6.997, df = 1, p = 0.008) varied significantly between 
habitats, while the three other species showed no significant vari-
ation. The size of H. chinssuensis (GEE: Wald chi-square = 22.651, 
df = 7, p = 0.002) and tilapia (GEE: Wald chi-square = 17.377, df = 7, 

TA B L E  1   Habitat and temporal variations of community attributes (a), and species abundance (b), and size of the fishes (c)

Time Habitat Time × Habitat

Wald 
Chi-Square df p

Wald 
Chi-Square df p

Wald 
Chi-Square df p

(a) Community attributes

Abundance 26.827 7 <0.01 35.479 1 <0.01 8.222 7 0.313

Biomass 20.589 7 0.004 5.431 1 0.02 6.669 7 0.464

Richness 33.715 7 <0.01 17.962 1 <0.01 5.686 7 0.557

Diversity 29.472 7 <0.01 0.827 1 0.363 10.422 7 0.166

(b) Abundance

H. leucisculus 33.263 7 <0.01 3.650 1 0.056 4.717 7 0.694

R. ocellatus 18.322 7 0.011 11.75 1 0.001 11.562 7 0.116

T. houdemeri 13.955 7 0.052 21.793 1 <0.01 7.639 7 0.365

H. chinssuensis 27.769 7 <0.01 8.108 1 0.004 5.886 7 0.553

S. argentatus 12.394 7 0.088 0.003 1 0.955 10.462 7 0.164

Tilapia 21.887 7 0.003 1.223 1 0.269 6.754 7 0.455

(c) Size

H. leucisculus 11.247 7 0.128 4.943 1 0.026 16.633 7 0.02

R. ocellatus 10.639 7 0.155 4.192 1 0.041 9.712 7 0.205

T. houdemeri 7.599 7 0.369 6.977 1 0.008 1.287 7 0.989

H. chinssuensis 22.651 7 0.002 1.056 1 0.304 6.014 7 0.538

S. argentatus 13.718 7 0.056 0.162 1 0.687 8.897 7 0.26

Tilapia 17.377 7 0.015 2.429 1 0.119 4.174 7 0.76

Note: F values, degrees of freedom, and significance of generalized estimating equations (GEEs) are shown.

F I G U R E  3   Mean species richness, abundance, biomass at the 
artificial habitats (gray bars), and the control sites (white bars). 
Data were expressed as mean ± SD, **significant between artificial 
habitats and control sites at the 0.05 level
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p = 0.015) changed significantly along with time. Only the size 
of H. leucisculus (GEE: Wald chi-square = 16.633, df = 7, p = 0.02) 
showed a habitat × time interaction.

3.2 | Impacts on the survival of juvenile fish

In the treatment groups without the artificial habitat, all the juvenile 
(tilapia or S. argentatus) were preyed by C. gariepinus within 2 hr. When 

the artificial habitat was present, the survival rates of the juvenile tila-
pia and S. argentatus greatly improved. The S. argentatus with C. garie-
pinus was on average 25.56%, while the 48-hr survival rate for tilapia 
was on average 18.89% (Figure 7). In treatments without the artificial 
habitat, juvenile tilapia, and S. argentatus together with C. gariepinus, 
all juvenile fish were preyed upon by the C. gariepinus within 2 hr. 
However, the survival rates of the juvenile tilapia and S. argentatus 
were 8.89% and 15.56%, respectively, in the presence of the artificial 
habitats (Figure 7). The results of the laboratory trials indicated that 

F I G U R E  4   Mean abundance of 
the dominant species at the artificial 
habitats (gray bars) and the control sites 
(white bars). Data were expressed as 
mean ± SD. (a-H. leucisculus, b-R. ocellatus, 
c-T. houdemeri, d-tilapia, e-H. chinssuensis, 
f-S. argentatus)

F I G U R E  5   Mean size of the dominant 
species at the artificial habitats (gray 
bars) and the control sites (white bars). 
Data were expressed as mean ± SD. (a-
H. leucisculus, b-R. ocellatus, c-T. houdemeri, 
d-tilapia, e-H. chinssuensis, f-S. argentatus)
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the deployment of the artificial habitat could effectively protect juve-
nile fish from predators.

3.3 | Artificial habitats as spawning grounds

The palm slices placed in the artificial habitats was designed to act as 
a substrate for fish spawning. In March 2107, during the reproduc-
tion period of C. carpio, the palm slices were collected from different 

depths of water and the number of eggs clinging to each palm slice 
was counted. Fish eggs were identified as C. carpio after hatching. 
The number of eggs on each palm slice was 46–571 individuals, 
and the number decreased as water depth increased. There were 
no aquatic plants to serve as spawning grounds for fish at the con-
trol sites, and no eggs were collected. The mean number of eggs on 
each palm slices at different depths of water demonstrated that palm 
slices placed between 0.5 m and 1.5 m were most useful for fish to 
lay their eggs (Figure 8).

F I G U R E  6   Box plot of fish Shannon 
diversity index at artificial habitats and 
control sites

F I G U R E  7   Mean number of surviving juvenile fish in treatments 
with artificial habitats and the predator (C. gariepinus)

F I G U R E  8   Mean number of eggs per palm slice at different 
water depth
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4  | DISCUSSION

4.1 | Influence of artificial habitats on fish diversity

Artificial habitats can function as fish attractors, improving fish spe-
cies richness and enhancing fish biomass (Powers et al., 2003). The 
results in this study showed that fish preferentially selected the ar-
tificial habitats over the natural habitats, as revealed by differences 
in fish species richness and abundance. The species richness, the 
number of total abundance, and diversity were higher in the artificial 
habitats than that at control sites. Other research studies carried out 
at other areas (Freitas & Petrere, 2001; Freitas et al., 2002, 2005; 
Gois et al., 2012; Huang et al., 2017; Santos, Agostinho, et al., 2011; 
Santos, García-Berthou, et al., 2011; Santos et al., 2008) have re-
ported similar results. For example, Santos, Agostinho, et al. (2011) 
and Santos, García-Berthou, et al. (2011) used large macrophytes 
as artificial habitats in a Mediterranean reservoir, and the results 
showed that the abundances of Perca fluviatilis, Rutilus rutilus, and 
Abramis brama in the artificial habitats were significantly higher than 
that of the control sites, and artificial habitats were able to allevi-
ate the negative impacts of reservoir water level fluctuations on fish 
communities.

The fish in the artificial habitats were affected by the availability 
of habitat, the composition of the fish assemblage, and their abun-
dance (Bolding et al., 2004). T. houdemeri, H. leucisculus, S. argentatus, 
and tilapia (O. mossambicus and O. niloticus) were dominate at most 
rivers in the Pearl River Basin, and they were primarily colonized in 
the artificial habitats. As mentioned above, dam construction had 
caused serious problems of simplifying and homogenizing the hab-
itat structure of the Pearl River Basin. In our study, there were no 
macrophytes in the study areas, so the higher level of heterogeneity 
found at the artificial habitats could be a key factor that may explain 
the comparatively richer and more balanced fish assemblages ob-
served, as habitats with increased complexity may induce the forma-
tion and maintenance of richer communities (Freitas & Petrere, 2001; 
Meerhoff et al., 2007). In this study, the artificial habitats were 
designed to be more physically complex than the natural habitats 
(structureless with no hydrophytes), since the palm slices that were 
hung on the frames acted as artificial submerged plants that pro-
vided extra habitats for the fish. The cylindrical frameworks of the 
artificial habitats were deployed vertically into the water, forming a 
semi-enclosed space in the mid-water, which afforded a more phys-
ically complex space for fish, and was more effective in holding fish. 
In addition, the periphyton that had grown on the frameworks and 
palm slices provided more food, compared with control sites from 
which hydrophytes were absent (Santos et al., 2008). This was also 
an important factor for the accumulation of fish in the artificial 
habitats.

Artificial habitats can alleviate competition between alien 
species and indigenous fish and contribute to the coexistence 
of different fish species (Sandström & Karås, 2002; Westhoff 
et al., 2013). Currently, tilapia has been widely distributed in the 
Pearl River (Tan et al., 2012). Tilapias are tolerant of wide levels 

of fluctuations in salinity, dissolved oxygen, temperature (Avella 
et al., 1993; Farmer & Beamish, 1969; Febry & Lutz, 1987; Zale 
& Gregory, 1989), and have high rates of fecundity (Duponchelle 
et al., 1998), rapid growth rates (Liti et al., 2005), and omnivorous 
feeding habits (ElSayed, 1999). These characteristics have made 
tilapia popular in aquaculture, but at the same time have allowed 
tilapia to successfully invade aquatic ecosystems worldwide and 
proliferate in these areas (Costapierce, 2003; Courtenay, 1997; 
Crutchfield, 1995; Faunce & Paperno, 1999; Peterson et al., 2004, 
2006), and have altered the native community habitat, even to the 
point of causing species extinctions (Martin et al., 2010; Mccrary 
et al., 2007; Russell et al., 2012). In this research study, tilapias 
accounted for 34.05% of the total catch in control sites and more 
than 22.61% in artificial habitats. The relative abundance of tila-
pias in the control sites was higher throughout the study period. In 
the artificial habitat, the relative abundance of tilapias was higher 
in the early and middle stage of the study, but decreased in the 
late stage. This may be because the artificial habitats were able to 
alleviate competition for food and habitat between the tilapias and 
species of Cyprinidae.

Yamamoto et al. (2014) revealed that artificial habitats may pro-
vide habitat for some rare species. They found that 26 species of 
fish, which were rare species in the area, were recorded only in arti-
ficial habitats; the artificial habitats could provide shelter for these 
species during drought periods and reduce their risk of predation 
(Yamamoto et al., 2014). In our study, C. gariepinus, A. nobilis, P. ful-
vidraco, A. lini, S. fasciolata, and M. fukiensis, which have relatively low 
abundances in the Pearl River, were recorded only in the artificial 
habitats. This result indicates that the novel artificial habitats used in 
our study could provide habitats for these rare species.

4.2 | Artificial habitats form multifarious habitats 
for fish

Artificial habitats have been widely used for fishery resource con-
servation worldwide, but the materials, types, sizes, and deployment 
positions of the habitats were found to have different effects on fish 
communities (Bolding et al., 2004; Jaxionharm & Szedlmayer, 2015; 
Lindberg et al., 2006; Lingo & Szedlmayer, 2006; Santos et al., 2008). 
For example, Lindberg et al. (2006) found that larger reefs showed 
greater densities and abundance of fish. Santos et al. (2008) used 
polypropylene wire bundles as artificial habitats to assess the ef-
fect of artificial habitats in a new tropical reservoir in Brazil. The 
results revealed that the density of the habitat and its location in the 
water layer were key factors that affected fish utilization efficiency. 
Some researchers have used different materials, such as tiles and 
branches, as spawning substrates for fish, to make up for the lack of 
suitable substrates in natural habitats (Nash et al., 1999). Sandström 
and Karås (2002) used structures made of spruce bundles that were 
covered with nets as nursery habitat for young fish, and the results 
showed that the artificial refuges generally attracted young fish by 
reducing predation risk.
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The study area used in this research is located between the 
Baise and Naji reservoirs. After the construction of the reservoir, 
the water level of the river frequently rises, due to the operation of 
the reservoir, with a water level fluctuation of about 0.5–1 m daily. 
Previous studies have shown that river impoundments may be one of 
the main anthropogenic causes of diversity loss in freshwater fishes 
(Agostinho et al., 1999; Beklioglu et al., 2006; Dudgeon et al., 2006). 
When the water level rises, the vegetation on the littoral zone of 
the river increases shelter and food availability and improves repro-
ductive success, while drawdowns often heighten biotic interactions 
and may increase fish mortality, through impairment of water qual-
ity, destruction of littoral habitats, and exposure of eggs to desic-
cation (Santos et al., 2004; Sutela et al., 2002). On the other hand, 
the invasion of tilapias exacerbated the decline of fishery resources. 
As mentioned above, tilapias have become the dominant species in 
most tributaries of the Pearl River. Tilapias are usually omnivorous 
and devour eggs and juveniles of other fish species. In particular, 
tilapia larvae may feed on smaller fish species (Russell et al., 2012). 
Once tilapias have invaded natural waters, they gain an advantage 
in competing for food and habitats with indigenous fish, resulting in 
the rapid decline or even extinction of indigenous fish species (Kolar 
& Lodge, 2002; Martin et al., 2010; Mccrary et al., 2007; Peterson 
et al., 2006).

Considering the fluctuations of the water level and the effects of 
tilapia invasion, we designed artificial habitats that can automatically 
be adjusted based on water level changes using bamboo rafts laid on 
the surface of the river, so that the artificial habitats remain in the 
same relative position. The cylindrical bamboo frames attached to 
the bamboo rafts were vertically placed in the water. The palm slices 
laid on the bamboo rafts and the cylindrical frames acted as hydro-
phytes and a spawning substrate for fish. The bamboo cylindrical 
frames with meshes on the surface increased the complexity of the 
artificial habitats, allowing them to more effectively serve as refuges 
for fish by enhancing the complexity and availability of habitats.

Westhoff et al. (2013) reported that the construction of artificial 
habitats can improve the heterogeneity of fish habitats, and they 
found using laboratory experiments that artificial habitats could 
provide shelter for Fundulus julisia juveniles and improve their sur-
vival rate. In this research study, we also achieved similar results. 
The results of the laboratory trials indicated that the deployment of 
artificial habitats could protect juvenile fish from predators with the 
largest positive effect being on juvenile S. argentatus. The presence 
of artificial habitats delayed juvenile tilapia and S. argentatus mor-
tality in the laboratory trials and improved the survival rates of the 
juvenile. This result also proved that artificial habitats can alleviate 
the effects of alien species (tilapia) on indigenous fish (Sandström & 
Karås, 2002; Westhoff et al., 2013).

Artificial habitats can provide spawning substrates and increase 
fish recruitment (Pickering & Whitmarsh, 1997; Sandström & Karås, 
2002). For example, Nash et al. used tree branches as spawning sub-
strates for local fish, making up for the lack of fish spawning ma-
trices in the natural environment, and significantly increased the 
hatching rate of fish eggs (Nash et al., 1999). In this study, during 

the reproduction period of C. carpio, the palm slices were collected 
from different depths of water and the number of eggs on each 
was counted. The results showed that the number of eggs on each 
palm slice ranged from 46 to 571 individuals and decreased as water 
depth increased.

For a long time, in China, artificial habitats have been only used 
for fish spawning in freshwater, and these artificial habitats have 
mostly been deployed on the surface of the water. Additionally, the 
structure and the function of artificial habitats have not been able 
to meet the needs of fish that feed at different water layers and dif-
ferent life stages at the same time. The artificial habitats designed 
in this research study were semiclosed and spread throughout dif-
ferent layers of the water. This design could increase the spatial het-
erogeneity of the habitat and meet the needs of different life stages 
of fish, by increasing the spawning, foraging, and predation avoiding 
ability of the fish. All the above results showed that the artificial hab-
itats were effective for use as shelters and spawning grounds.

4.3 | Implications for conservation and management

The biodiversity of freshwater ecosystems has been threatened for 
a long time, such as habitat loss and degradation, caused by anthro-
pogenic activities (Chen et al., 2012; Dudgeon et al., 2006; Fiedler & 
Truxa, 2012). As IPBES reports: Inland waters and freshwater eco-
systems have the highest rates of decline due to land-use change, 
water extraction, exploitation, pollution, climate change, and inva-
sive species. By 2000, the size of wetlands was only 13% of what it 
was in 1,700, and it declined even more rapidly from 1970 to 2008 
(by 0.8% per year). The establishment of dams for water storage and 
tilapia invasion maybe the two main reasons for the decline of fish-
ery resources in the Youjiang River. Fluctuations in the water level 
have caused damage to aquatic vegetation, and habitats become 
unavailable to aquatic organisms (Santos, Agostinho, et al., 2011; 
Santos, García-Berthou, et al., 2011), resulting in the decrease of 
fish biodiversity. Additionally, the invasion of tilapia has aggravated 
changes to fish community structure. In China, for many years stock 
enhancement has been used to compensate for the decline of fish-
ery resources in freshwater. However, the fish species of stock en-
hancement were limited, and its proliferation did not fundamentally 
solve the problem of diversity decline and habitat degradation. As 
an effective fishery management measure, artificial habitat has been 
widely used all over the world (Santos, Agostinho, et al., 2011; Santos, 
García-Berthou, et al., 2011; Yamamoto et al., 2014). Benefiting from 
the bamboo rafts, the artificial habitats used in our research were 
able to self-adjust to the variation of water level as the “stereoscopic 
artificial floating wetlands” (Huang et al., 2017) and can be used to 
compensate for the destruction of habitats. On the one hand, the 
bamboo cylindrical frames increased the complexity of habitat just 
like the artificial habitats made of “large woody debris” (Yamamoto 
et al. 2006) and thus increased the density of fish; on the other hand, 
the meshes on the surface of the frame formed many small intersti-
tial spaces played a similar role with the artificial structure made of 
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spruce bundles with surrounding nets (Sandström & Karås, 2002), 
which acted as “protective devices” for young fish that increased the 
refuge capacity by reducing predation risk. Imitations of hydrophyte, 
such as brushwood bundles (Nash et al., 1999), were often used to 
provide spawning substrates for fish. The palm slices laid on bamboo 
rafts and columnar frames played the same role in our study. Our 
experiments demonstrate that the deployment of artificial habitats 
may be an effective measure for the restoration of fish habitats in 
the Youjiang River and other freshwater ecosystems where natural 
habitats have been damaged.
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