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ABSTRACT

SARS-CoV-2 has exploded throughout the human
population. To facilitate efforts to gain insights into
SARS-CoV-2 biology and to target the virus thera-
peutically, it is essential to have a roadmap of likely
functional regions embedded in its RNA genome.
In this report, we used a bioinformatics approach,
ScanFold, to deduce the local RNA structural land-
scape of the SARS-CoV-2 genome with the high-
est likelihood of being functional. We recapitulate
previously-known elements of RNA structure and
provide a model for the folding of an essential
frameshift signal. Our results find that SARS-CoV-
2 is greatly enriched in unusually stable and likely
evolutionarily ordered RNA structure, which pro-
vides a large reservoir of potential drug targets for
RNA-binding small molecules. Results are enhanced
via the re-analyses of publicly-available genome-
wide biochemical structure probing datasets that
are broadly in agreement with our models. Addition-
ally, ScanFold was updated to incorporate experi-
mental data as constraints in the analysis to facili-
tate comparisons between ScanFold and other RNA
modelling approaches. Ultimately, ScanFold was
able to identify eight highly structured/conserved
motifs in SARS-CoV-2 that agree with experimen-
tal data, without explicitly using these data. All re-
sults are made available via a public database (the
RNAStructuromeDB: https://structurome.bb.iastate.
edu/sars-cov-2) and model comparisons are readily
viewable at https://structurome.bb.iastate.edu/sars-
cov-2-global-model-comparisons.

INTRODUCTION

SARS-CoV-2 is the infectious agent responsible for
COVID-19, a globally distributed disease that has upended
human civilization. This recent outbreak has massively reit-
erated the need for research on potential human pathogens

and focused attention on the importance of RNA biology
to this understanding. SARS-CoV-2 is a roughly 30 kb,
positive sense (i.e. translation competent), 5′ capped single-
stranded RNA molecule, which utilizes RNA throughout
its biology. RNA structural elements have been described in
the original SARS-CoV (1,2) and each is broadly conserved
within the SARS-CoV-2 genome (see several Rfam (3–10)
entries at https://rfam.xfam.org/covid-19), presumably per-
forming essential functions. For example, translation of es-
sential regions of the SARS-CoV genome (e.g. the RNA
dependent RNA polymerase) depends on a process of –1
programmed ribosomal frameshifting (–1 PRF) that makes
use of a highly-structured frameshift stimulatory element
(FSE), which impedes ribosomes allowing for ‘slippage’ to a
new reading frame. This FSE was previously studied exten-
sively (11) and even targeted with small molecules to inhibit
–1 PRF (12) for potential therapeutic discovery. The homol-
ogous region in SARS-CoV-2 is similar in sequence and is
capable of forming a near-identical pseudoknot structure
(Rfam ID# RF00507) that has become a target of intensive
structural analysis (13): indeed, it was recently character-
ized in 3D using cryo-EM (14).

A sequence region upstream of the pseudoknot in the
FSE is presumed to function as an attenuator for –1 PRF
and is less well conserved in sequence (13). Our prelim-
inary structural analyses of SARS-CoV-2 provided evi-
dence for this attenuator having highly stable and ordered
secondary structure (15), the model of which (Figure 1)
was used to design a small molecule (targeting a UU in-
ternal loop) that is able to efficiently suppress –1 PRF
in vitro (16)––raising the hope that small-molecule regu-
lators of SARS-CoV-2 RNA biology can be discovered
that may prove to be effective therapeutics. With such
a potent example of a high-value structural element in
SARS-CoV-2, multiple groups have undertaken intensive
research to characterize the SARS-CoV-2 RNA structur-
ome using high-throughput biochemical probing coupled
to experimentally-informed secondary structural modeling
(17–20). Selective 2′-hydroxyl acylation analyzed by primer
extension (SHAPE) probing of transcripts from infected
human cell lines, which maps regions of RNAs that are
structurally flexible (i.e. unpaired regions), and dimethyl
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Figure 1. In silico ScanFold-Fold predicted secondary structure for the SARS-CoV-2 frameshift stimulatory element (FSE) spanning nts 13422–13547.
Average z-scores are overlaid on each nt via a heat map ranging from –2.34 (red) to 0.00 (blue). Top 10% of reactivities are shown for Manfredoina et
al. (squares, pentagons and diamonds), Huston et al. (circles), Sun et al. (stars) and Lan et al. (triangles) at their corresponding nt positions (17–20).
The attenuator hairpin and UU internal loop, recently targeted with small molecule inhibitors of –1 PRF (16), are depicted in blue shaded boxes and the
slippery sequence in a gold shaded box. The interactions of the pseudoknot proposed by other groups (17–20) are shown with solid and dashed gray lines
and the specific base pairing pattering are also shown in an inset. The smaller pseudoknot structure as determined by cyro-EM (14,73) is highlighted in
lavender (dashed line and inset). The two orange colored pairs at the top of Stem 1 were not detected by Bhatt et al. (73) in their cryo-EM and the two red
pairs at the base of stem 3 were not detected by either Bhatt et al. or Zhang et al. (14,73). All significantly covarying bps (R-scape APC corrected G-test;
E < 0.05) have been highlighted with a green box.

sulfate (DMS), which interrogates the Watson–Crick face of
adenosine and cytosine (preferentially modifying unpaired
or loosely structured bases (21)), have been used to gen-
erate robust models of RNA secondary structures found
throughout the viral genome/transcriptome.

SARS-CoV-2 appears to have an unusually structured
RNA genome with a multitude of exciting target mo-
tifs; for example, 106 predicted conserved secondary struc-
tures were previously identified via the motif discovery tool
RNAz (22–25). Approaches to rank target motifs are es-
sential for driving additional research, particularly in ef-
forts to drug RNA. We previously developed a computa-
tional approach known as ScanFold which aids in such
efforts by highlighting local RNA motifs with unusually sta-
ble base pairs. Unusual stability, as measured by a signif-
icantly negative thermodynamic z-score is a hallmark fea-
ture of functional RNAs; we partition this value via nu-
cleotides and base pairs to facilitate the model building pro-
cess. Recently, we showed that this process identifies struc-
tures that are more consistently observed in RNA prob-
ing experiments (26). Such information then, serves as a
valuable complement to other analyses by proposing RNA
structures that are not only likely to represent native con-
formations (27,28) but also those with the greatest poten-

tial for being ordered/structured for performing biologi-
cal functions (29). In this report, we detail the results of a
ScanFold analysis of SARS-CoV-2, perform comparisons
to available experimental probing analyses, and ultimately
use these results to identify eight novel RNA structures
with significant evidence of structural conservation (using
R-scape (30,31) and CaCoFold (32)). These results pro-
vide a roadmap that can be used to drive future studies of
SARS-CoV-2 by enumerating local structural motifs with
exceptional prediction metrics that are robustly supported
by multiple sources of experimental and phylogenetic data.

MATERIALS AND METHODS

ScanFold analyses of SARS-CoV-2

The SARS-CoV-2 reference genome sequence
(NC 045512.2) was downloaded from the NCBI nu-
cleotide database. For the standard, purely in silico
ScanFold analysis we used the parameters that were most
successful at modeling the known functional structures in
the HIV and Zika virus genomes (27) as depicted in their
experimentally derived global secondary structures (33,34);
a range of window sizes (from 120 to 600 nt) and different
shuffling routines (mononucleotide or dinucleotide) were
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tested as well. For the standard run, ScanFold-Scan was
used with a 120 nt window moving with a single nucleotide
step size and 100 mononucleotide randomizations. Each
window was analyzed using the RNAfold algorithm
implemented in the ViennaRNA package (35) (Version
2.4.14). For each window the minimum free energy (MFE)
�G◦ structure and value was predicted using the Turner
energy model (36) at 37◦C. To characterize the MFE, a �G◦
z-score is calculated for each window: each MFE predicted
for the native sequence (MFEnative) is compared to MFE
values calculated for 100 mononucleotide (or dinucleotide
when specified) shuffled versions of the sequence with the
same nucleotide composition (MFErandom) as shown in
Equation 1; using an approach adapted from Clote et al.
(37). Here, the standard deviation (�) is calculated across
all MFE values.

�G◦ z-score = MFEnative − MFErandom

σ
(1)

The P-value corresponds to the number of MFErandom
values which were more stable (more negative) than the
MFEnative. In addition to these metrics, RNAfold partition
function calculations (38) were utilized to characterize the
potential structural diversity of the native sequence. These
include the ensemble diversity (ED) and the centroid struc-
ture. The centroid structure depicts the base pairs which
were ‘most common’ (i.e. had the minimal base pair dis-
tance) between all the Boltzmann-ensemble conformations
predicted for the native sequence. The ED then attempts
to quantify the variety of different structures which were
present in the ensemble (where higher numbers indicate
multiple structures unique from the predicted MFE and low
numbers indicate the presence of a dominant MFE struc-
ture highly represented in the ensemble (39,40)).

Alignment and conservation analyses

Individual motifs were analyzed for covariation using the
cm-builder Perl script, which builds off the RNAFrame-
work toolkit (41) and was recently introduced in (18).
This script utilizes Infernal (here using release 1.1.2;
(42,43)) to build and search for covariation models of each
ScanFold motif’s secondary structure. The coronavirus
sequence database referenced by Infernal was built us-
ing the ViPR database (44,45) (accessed in October 2020)
and was composed of 25571 Coronaviridae sequences. For
successful covariation models, the resulting structural align-
ment files (in Stockholm format) were tested for covary-
ing base pairs and analyzed with the CaCoFold algo-
rithm using R-scape (version 1.5.16); statistical signifi-
cance was evaluated by the APC corrected G-test (30,31)
using the default E value of 0.05. All Stockholm alignments
and R-scape/CaCoFold results can be found at https:
//structurome.bb.iastate.edu/sars-cov-2-structure-extracts.

Soft constraint analyses

ScanFold was updated to allow the incorporation of
SHAPE reactivities values (from a two or three column re-
activity file, where the reactivity values are in the right most

column) via RNAfold’s core library functions. By defin-
ing slope and intercept parameters for the Deigan (46) or
Zarringhalam (47) pseudo-energy model, the correspond-
ing reactivity values are passed into each ScanFold anal-
ysis window and incorporated during the native sequence
MFE calculation.

We ran ScanFold at varying scanning analysis window
sizes (120, 200, 300, 400, 500 and 600 nt) with the in vitro
and in vivo SHAPE reactivity data sets generated by Man-
fredonia et al.. We used the Deigan pseudo-energy model
(46) with a slope and intercept of 0.8 and –0.2 (as reported
in Manfredonia et al.) respectively. The output data files are
formatted the same as standard ScanFold analyses, but
the resulting ScanFold-Fold models are now informed
by the SHAPE reactivity data sets.

Hard constraint analyses

The SHAPE reactivity datasets for the Incarnato
(18), Pyle (17) and Zhang (20) labs are publicly
available at http://www.incarnatolab.com/datasets/
SARS Manfredonia 2020.php, https://github.com/
pylelab/SARS-CoV-2 SHAPE MaP structure, and
http://rasp.zhanglab.net/ respectively. The DMS reac-
tivity dataset from the Rouskin Lab (19), was obtained
by request. Reactivity and constraint values for each data
set were analyzed and characterized using Excel and R.
Constraint files were generated which constrained the top
10% of reactivities as being unpaired for select data sets
(for Manfredonia et al.’s in vitro SHAPE data, Huston
et al.’s in vivo SHAPE data, and Lan et al.’s in vivo DMS
data), individually, along with a combined file containing
all unique constraints from the top 10% of reactivities. The
individual and combined constraint files were then used as
hard constraints with ScanFold to analyze the SARS-
CoV-2 genome, using the same parameters as described for
the standard ScanFold analysis.

ROC analysis

ScanFold-Fold generated SARS-CoV-2 genome sec-
ondary structure models (both in silico and soft constrained
models at varying analysis windows) along with available
global models from Manfredonia et al. and Huston et al.
had their corresponding secondary structures (as depicted
in connectivity table or ‘CT’ data files) cross referenced to
varying SHAPE and DMS reactivity data sets generated
from SARS-CoV-2 probing experiments. By sequentially
setting reactivity value thresholds from lowest to highest
values (at 1% intervals; i.e. 1, 2, 3. . . 100%) to define a nu-
cleotide as being paired and checking their consistency with
base pair coordinates in the reference CT file, we can per-
form a receiver operator characteristic (ROC) analysis. In
this analysis, the true positive rate (TPR) and false positive
rate (FPR) are represented by equations 2 and 3 below:

TPR = TP
(TP + FN)

(2)

FPR = FP
(FP + TN)

(3)

https://structurome.bb.iastate.edu/sars-cov-2-structure-extracts
http://www.incarnatolab.com/datasets/SARS_Manfredonia_2020.php
https://github.com/pylelab/SARS-CoV-2_SHAPE_MaP_structure
http://rasp.zhanglab.net/
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Here, the true positive (TP) is defined as being paired in
the given CT file and paired at the defined reactivity thresh-
old, the false negative (FN) is paired in the CT and unpaired
at the reactivity threshold, the false positive (FP) is un-
paired in the CT and paired at the reactivity threshold, and
the true negative (TN) is unpaired in CT and unpaired at the
given reactivity threshold. With these definitions, when the
threshold is set to 0%, TPR and FPR will be equal to zero
and when the reactivity threshold is set to 100%, TPR and
FPR will equal one. If a given RNA secondary structure
model is truly random, when compared to increasing reac-
tivity thresholds from a probing data set, then the TPR and
FPR should increase proportionately. However, if the RNA
secondary structure model agrees with the reactivity data
set the TPR should initially rise faster than the FPR, cre-
ating a larger area under the curve (AUC). In this way, we
can quantitatively assess and compare each model’s ability
to fit the data via their respective AUCs.

Comparisons of RNA secondary structural models

Comparisons of ScanFold CT files from in silico and
constrained runs, along with other global models were
done using the script ct compare.py, which checks ev-
ery position in the reference CT file (whether paired or
unpaired) and reports whether that position is similarly
paired or unpaired in the target CT file. The positive
predictive value (PPV; Equation 4) and sensitivity (Equa-
tion 5) between varying models were generated using the
script ct sensitivity ppv.py, which is based off of
the RNAstructure’s (48–50) scorer script (modified to
allow any size CT files) and based on the given comparison
will treat one model as the ‘predicted model’ and the other
as the ‘known model’.

PPV = TP
TP + FP

(4)

Sensitivity = TP
TP + FN

(5)

Z-score binning analyses

To characterize how well negative and positive �G◦ z-score
regions predicted by ScanFold agree with SHAPE and
DMS informed models, we performed an analysis where
each nt position of the SARS-CoV-2 genome was binned
based on its in silico ScanFold average nt z-score (Zavg)
value (from < –2 to > +2 at intervals of 1) and then
cross referenced to positions of structural conflict that ex-
ist between in silico (i.e. unconstrained with standard pa-
rameters) ScanFold models and SHAPE/DMS informed
global models of Manfredonia et al.. The ct compare.py
script (mentioned above) generates and outputs a list of
all the conflicting position between two alternative model
CT files generated for the same input sequence. Scan-
Fold models, generated at varying window sizes (120, 200,
300, 400, 500, 600), were each compared to the SHAPE in
vitro, SHAPE in vivo, and DMS in vitro informed global
models proposed by Manfredonia et al. and the SHAPE in
vivo global model from Huston et al. The Zavg is a Scan-
Fold calculated metric found in the final partners output

file from the ScanFold-Scan analysis (Dataset S1). Us-
ing the zscore conflict analyzer.py script, the in
silico ScanFold Zavg values (at window sizes of 120, 200,
300, 400, 500, 600) were cross referenced to the list of con-
flicting nts, reported in thect compare.py output, for the
various model comparisons. The resulting output shows the
percent agreement between each Zavg bin and the number of
positions present in each bin.

Data availability

All Datasets (S1-S3) associated with this study are
available at: https://structurome.bb.iastate.edu/sars-cov-2.
Python scripts used in analyses can be found at https://
github.com/moss-lab/SARS-CoV-2.

RESULTS AND DISCUSSION

Global assessment of structural propensity in the SARS-
CoV-2 genome

Thermodynamics-based RNA folding algorithms (e.g.
Mfold (51–54), RNAstructure (50,55–56), and
RNAfold (35,57)) utilize experimentally derived pa-
rameters to approximate the free energy of formation
(�G◦) for a given RNA secondary structure. Traditionally,
these algorithms have been used to find the most stable
secondary structure that a sequence can form (i.e. the
structure with the most minimum free energy of formation
or MFE) in the hopes that this captures the true structure.
Due to several limitations (e.g. molecular crowding in
vivo, trans-factor interactions, multiple conformations of
folding and the inability to natively account for tertiary
structures such as pseudoknots), the MFE is not always
a reliable method for predicting exactly how an RNA
will fold in the cell. The algorithm is, however, able to
accurately approximate the folding energy of a sequence, as
the �G◦ of the true structure does tend to be fairly close to
the predicted MFE �G◦: for many RNAs there is a < 5%
difference between the �G◦ of the true secondary struc-
ture and the predicted MFE �G◦ (36). So, even though
the predicted structure may be imprecise, the predicted
thermodynamics are robust and can be reliable metrics
for characterizing the local thermodynamic properties of
RNA (36). Informed by these limitations, ScanFold was
not explicitly designed to predict global RNA secondary
structures, instead, ScanFold utilizes thermodynamic
values to detect any local RNA structural elements with
unusual stability (with an emphasis on analyzing large
sequences such as viral genomes (26–27,58)). In the first
step, a sequence is scanned stepwise using a small analysis
window and in the second step, any regions of the sequence
contributing to unusual thermodynamics are highlighted
and modeled. ScanFold-Scan then, is the first step in
this process and performs a high volume of overlapping
RNA folding calculations in order to (i) generate a local
thermodynamic RNA folding profile and (ii) highlight
regions of the sequence yielding particularly interesting
structural thermodynamics (Figure 2).

An initial ScanFold-Scan was conducted on the
SARS-CoV-2 genome (using the previously optimized pa-
rameters of a 120 nt window and single nt step size (26–

https://structurome.bb.iastate.edu/sars-cov-2
https://github.com/moss-lab/SARS-CoV-2
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Figure 2. Global results for SARS-CoV-2 and comparisons to other viral genomes. (A) At the top is a cartoon depiction of the SARS-CoV-2 genome with
the major regions annotated. Below this is a heatmap of average per nt z-scores (Zavg) with colors ranging from red (–5.00) to white (>=0.00) with yellow
set to midrange (–2.00). Next, the MFE �G◦ for each ScanFold analysis window is shown across the genome (black line demarcated every 2500 nts) with
values ranging from –47.50 to –8.80 (kcal/mol); here, a moving average of MFE values calculated across 120 nts is shown. Further down is a depiction of
the �G◦ z-score for each ScanFold analysis window across the genome and values range from –6.40 to +2.74 with an average of –1.49; here, a moving
average of �G◦ z-scores calculated across 120 nts is shown. Finally, there is a positional track from 1 to 29 903 nts with markers spaced 2500 nts apart. Just
past the 12500 mark, there is a region shaded with a light gray box that represents the location of the frameshift stimulatory element (FSE). (B) On the
left, violin plots depicting the distribution of �G◦ z-scores for ScanFold analysis windows are shown for SARS-CoV-2, ZIKV, and HIV-1. On the right,
violin plots depicting the average genome �G◦ z-scores for all NCBI Coronaviridae reference genomes, along with the NCBI reference sequences for all
human ribovirus genomes for comparison (genomes accessed from NCBI on 20 March 2020). The number of genomes included in the analysis is shown
above each plot. The red line represents the average genome z-score, –1.49, of SARS-CoV-2.

27,59); details in Materials and Methods) resulting in 29784
almost fully overlapping analysis windows spanning the
genome (full results at https://structurome.bb.iastate.edu/
sars-cov-2 and in Supplementary Table S1). An overview
of the ScanFold-Scan results is given in Figure 2A.
The predicted MFE across all windows ranged from –8.8
to –47.5 and averaged –26.1 kcal/mol (somewhat more
stable than expected for this window size with a 37%
GC-content genome (60)). The key metric calculated by
ScanFold-Scan, however, is the thermodynamic z-score,
which compares the native sequence’s predicted MFE to
that of matched randomized samples with the same nt con-
tent: here, a negative value indicates the number of standard
deviations more stable than random a native sequence is.
This unusual stability can be taken to indicate the sequence
is ordered (potentially by evolution) to have a functionally
significant sequence/structure relationship that is disturbed
upon shuffling. The z-scores across the genome ranged from
−6.40 to +2.74 and yielded an average of −1.50 with local
regions of highly negative z-scores (< –2) and stable MFE

values found throughout the entirety of the genome (Figure
2A).

Positive z-score regions can be seen throughout the
genome as well, but are less frequent and smaller in
size. A previous analysis (26) found that such regions
were more likely to be reactive to structure probing
molecules (i.e. suggesting they are unstructured or highly
dynamic)––potentially to facilitate intermolecular or long-
range intra-genomic interactions. For example, of the
118 windows overlapping the start codon of ORF1a, 70
windows (60%) had positive z-scores suggesting a pref-
erence for weak structures localizing around the start
codon; consistent with previous analyses of RNA fold-
ing near start codons (29,61–62). Another notable region
is the 3′ UTR, which was found to yield mostly posi-
tive z-scores. Given the high GC content for this region
(0.45 on average; Supplementary Table S1), MFE values
here were less stable than expected, averaging z-scores of
+0.98 (or roughly one standard deviation less stable than
random).

https://structurome.bb.iastate.edu/sars-cov-2
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Globally, however, one of the striking results of our anal-
ysis was the extreme overall shift in the global z-score values
for the SARS-CoV-2 genome. The mean z-score for all win-
dows was –1.50 with 88.9% of the analysis windows being
negative. For comparison, this value is one standard devi-
ation more stable on average than the previously scanned
RNA genomes (e.g. in (27,58)) of HIV-1 and ZIKV which
had average z-scores of −0.45 and −0.55, respectively. In
each case, the z-scores are normally distributed around a
negative median value (Figure 2B) however, SARS-CoV-2
is sufficiently shifted into the negative to be classified as hav-
ing globally ordered RNA structure (63–66). This unusual
propensity for ordered RNA structure appears to be a par-
ticular feature of coronaviruses: all clades were significantly
more negative than 103 other Riboviria RefSeq genomes
with the delta and beta clades having the greatest negative
shift (Figure 2B).

While low z-score windows and their associated mini-
mum free energy secondary structure predictions suggest
functional regions and models, an innovation ofScanFold
is its -Fold module, which uses the scanning window data
to generate unique z-score weighted consensus secondary
structure models. These models are comprised of base pairs
that most contribute to unusual thermodynamic stability of
low z-score windows and are presumably the key interac-
tions in functional RNA structural motifs. This approach
was successfully able to deduce known and novel motifs in
other viral genomes (27–28,58) and, additionally, prelimi-
nary work on SARS-CoV-2 was able to model and home in
on key structural elements within the FSE (Figure 1) that
could be targeted with small molecules to disrupt –1 PRF
(16). This highlights a key benefit of the ScanFold-Fold
analysis, which can not only be useful for generating models
of local structure, but can also rapidly deduce sub-domains
of larger RNA elements with particular indications of func-
tionality. This is key for the functional annotation of an
RNA as large as the SARS-CoV-2 genome, which is pre-
dicted to contain multiple large structural domains (67).

Evaluation of available experimental data

The SARS-CoV-2 genome has been under intense study
and several high-quality experimental RNA structure prob-
ing datasets are available for comparison to ScanFold re-
sults (17–20). The agreement of each experimental dataset
with respect to the in silico ScanFold-Fold models (z-
score weighed consensus folds across all windows) was eval-
uated using a receiver-operating characteristic (ROC) anal-
ysis (Figure 3). Here, the effects of increasing the stringency
of reactivity cutoffs, which consider a site to be paired in
the model, provides a measure of the consistency of probing
data with regard to ScanFold models (see Material and
Methods). After calculating the AUC for each set of results,
all were found to be above 0.5, indicating global consistency
of the data with ScanFold results. AUC values ranged
from a minimum value of 0.629 from an in vivo SHAPE
dataset (Huston et al.) to a maximum value of 0.783 for
a in vivo DMS dataset (Lan et al.). No trends were appar-
ent in comparing AUC’s between DMS and SHAPE results;
for example, the second highest AUC (0.756) was for the in
vivo SHAPE data of Sun et al. Likewise, no large differences

Figure 3. Comparisons of ScanFold vs. experimental data. Receiver-
operating characteristic (ROC) analysis of the in silico (at a 120 nt analysis
window) ScanFold-Fold predicted base pair structure of SARS-CoV-2
against SHAPE and DMS reactivity data sets generated from SARS-CoV-
2 probing experiments. Reactivities are progressively evaluated from the
lowest reactivity values to the highest, at intervals of 1% of the total num-
ber of reactivity values (see Materials and Methods) and compared to the
ScanFold predicted secondary structure yielding a true positive rate (y
axis) and a false positive rate (x axis). Progressively increasing reactivity
thresholds have their respective TPR and FPR plotted from 0% (coordi-
nate (0,0)) to 100% (coordinate (1,1)) and each respective dataset is indi-
cated by a line with a unique marker (see figure legend). The area under
the curve (AUC) is calculated for each curve (listed in the figure legend
and Supplementary Table S6) and is an indication of how well the reactiv-
ity datasets agree with the in silico ScanFold-Fold predicted structure.

were observed comparing in vitro to in vivo datasets: e.g. the
Manfredonia et al. SHAPE data yielded AUCs of 0.689 and
0.675 for in vitro and in vivo results, respectively. These find-
ings indicate that ScanFold is detecting the most robust
local elements that do not vary between experimental con-
ditions.

To allow users to integrate experimental results directly
into ScanFold calculations, the program has been modi-
fied to accept both hard and soft (pseudoenergy) constraints
(see Materials and Methods). To compare the behaviors
of available experimental datasets with in silico Scan-
Fold, each one was incorporated as soft constraints during
ScanFold-Scan steps (for an analysis of the behavior of
hard constraints in ScanFold and the effects of larger win-
dow sizes, please see the Supplementary Results and Dis-
cussion). Predictions were made for all overlapping analysis
windows with the predicted folding energy being informed
by their chemical reactivity: i.e. highly reactive bases were
biased to be unpaired. Inclusion of these data led to varying
effects on predicted structure (Table 1 and Supplementary
Table S2); however, after ScanFold-Fold model build-
ing, a core set of 10702 base pairs remained invariant be-
tween all models (Supplementary Table S3). Significantly,
the majority (69%) of these common base pairs are pre-
dicted by in silico ScanFold-Fold alone, which is consis-
tent with our previous analyses of other viruses (26,27) that
showed ScanFold-Fold models of low z-score regions
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Table 1. Sensitivity and PPV from comparisons of SARS-CoV-2 secondary structure models. PPV values (Equation 4) are shown in the bottom right and
sensitivity values (Equation 5) are shown in the top left.

Sensitivity
D-SF 0.59 0.62 0.60 0.56 0.85 0.83 -
SC-vitro-SF 0.58 0.62 0.62 0.55 - 0.79
SC-vivo-SF 0.58 0.64 0.60 0.54 - 0.80
M-DMS-vitro 0.61 0.76 0.80 - 0.71 0.71 0.69
M-SHAPE-vitro 0.61 0.81 - 0.74 0.73 0.74 0.69
M-SHAPE-vivo 0.63 - 0.79 0.69 0.76 0.73 0.70
H-SHAPE-vivo - 0.67 0.64 0.59 0.74 0.74 0.71
D; Default (i.e. standard) H-SHAPE-vivo M-SHAPE-vivo M-SHAPE-vitro M-DMS-vitro SC-vivo-SF SC-vitro-SF D-SF
SF; ScanFold
SC; Soft constraints
M; Manfredonia
H; Huston

PPV

robustly predicted highly structured elements (Supplemen-
tary Results and Discussion). Significantly, in SARS-CoV-
2, we found that the z-score metric was largely unaffected
by probing data and that significantly low z-score motifs are
in high agreement with reactivity-informed models (Figure
4A, Dataset S1), we thusly use the in silico only ScanFold
results for our subsequent analyses. Furthermore, with our
focus on smaller structural elements, which facilitate analy-
ses of druggability, structure/function assays, and biophys-
ical studies, we elected to use results from 120 nt scanning
windows (as opposed to larger window sizes) because of
their lower false positive rate (Figure 4B; Supplementary
Results and Discussion).

Identification of local motifs with high likelihood of function-
ality

ScanFold-Fold identified 524 uniquely-stable structures
(with at least one Zavg < –1 bp); approximately one ordered
structural element every 57 nt (Dataset S2). Here, we (i) de-
termine if any of these locally stable structures have evidence
of conservation in other Coronaviridae genomes (ii) report
which of these structures (if any) are present in known struc-
tural regions or (iii) have been recently reported as signifi-
cant by other groups.

These 524 locally stable structures (as well as the Scan-
Fold model of the FSE; Figure 1) were assessed for ev-
idence of statistically significant structure-preserving se-
quence covariations (see Material and Methods). Briefly,
the ScanFold model was used to build a structural
covariation model (cm) with Infernal (42,43), draw-
ing from over 25000 Coronaviridae sequences in the ViPR
database (44,45). If a covariation model was successfully
constructed, the resulting structural/sequence alignment
(in Stockholm format) was tested for significantly co-
varying base pairs via R-scape’s G-test (31). We found
that Infernal was able to create covariation models for
355 of the structures. Of these, we found that 57 of the
tested ScanFold structures (and the FSE model) con-
tained at least one pair with significant evidence of conser-
vation (Dataset S3 and https://structurome.bb.iastate.edu/
sars-cov-2-structure-extracts). This is in line with Manfre-
donia et al. results, which found ∼10% of their regions iden-
tified as highly structured had evidence of specific base pair
conservation (18).

A

B

Figure 4. Comparisons of in silicoScanFoldZavg values against three dif-
ferent reactivity-informed secondary structural models of SARS-CoV-2.
(A) In silico ScanFold Zavg values were binned based on their magnitude
from < -2 to > +2 at intervals of 1 and are labelled across the x axis along
with the number of values that are present in each bin. The positions cor-
responding to each Zavg value were cross referenced between the in silico
ScanFold predicted secondary structure of SARS-CoV-2 and the three
model conditions proposed by Manfredonia et al. (DMS in vitro, black
shading; SHAPE in vitro, dark gray shading; SHAPE in vivo, light gray
shading) to calculate a percent similarity which is plotted on the y axis.
Across all three model conditions, the lowest Zavg bins consistently have
the highest similarity to the reactivity informed global models. (B) The <

-1 and < -2 binned Zavg values for in silico ScanFold models of SARS-
CoV-2, at both a 120 and 600 nt analysis window, were compared to the
three separate models from Manfredonia et al. and a false positive rate
(FPR) was calculated. The Zavg bins are labelled across the x axis along
with the number of nt positions associated with each bin and the FPR is
plotted along the y axis. For the 120nt scanning analysis window, the most
negative Zavg bin (i.e. < -2) had the lowest FPR compared to the < -1 Zavg
bin and the All Zavg bin (which had the highest FPR). The distribution
of Zavg values for the ScanFold model utilizing a 600 nt analysis win-
dow were significantly shifted to be more negative, resulting in almost all
(>99%) of the Zavg values to be in the < -2 bin, therefore there is little
variation in the FPR for these Zavg bins and the FPR in all bins are higher
compared to the < -2 bin utilizing the 120 nt analysis window.

https://structurome.bb.iastate.edu/sars-cov-2-structure-extracts
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A

B

Figure 5. Full analysis of the 5′ UTR of SARS-CoV-2. (A) The results of the full ScanFold pipeline are shown. ScanFold metrics and base pairs
have been loaded into the IGV desktop browser (91). Metric type and ranges are shown on the left side of the panel (metric descriptions can be found in
Material and Methods). Here the start codon has been highlighted with a green bar and structures which correspond to previously named elements have
been annotated. (B) ScanFoldRNA 2D structures are shown for the 5′ UTR. All base pairs shown are consistent between SARS-CoV and SARS-CoV-2,
and nucleotide variations which are present within structures have been highlighted with green circles. Structures have been visualized here using VARNA
(92). Top 10% of reactivities are shown for Manfredoina et al. (squares, pentagons and diamonds), Huston et al. (circles), Sun et al. (stars) and Lan et al.
(triangles) at their corresponding nt positions (17–20).

Identification of previously described elements

The full ScanFold-Scan results for the 5′ UTR can be
seen in Figure 5A. ScanFold-Fold modeled four of the
known stem loops in the 5′ UTR leader region with z-
scores < -2. Only one of these (SL4) had evidence of spe-
cific base pair conservation. Downstream of this, we find
that the start codon has been modeled as unpaired, as op-
posed to experimental/conservation models which place the
start codon within a large multibranch structure (known
as SL5) (1,68–69). As reported above, the scanning data
around the start codon resulted in positive �G◦ z-scores,
which in this case favor the formation of a small hairpin
where the 5′ end of the SL5 basal stem would form, keeping
the start codon nucleotides unpaired (Figure 5B). Since the
basal stem base pairs span >120 nt (the window size used),
we would not expect ScanFold to identify it. This stem
can, however, be predicted using larger analysis window
sizes; https://structurome.bb.iastate.edu/sars-cov-2-global-
model-comparisons). The ScanFold model then, leaves
75% of the basal stem nucleotides unpaired, indicating that
these predicted local folds may not strongly compete against
formation of the larger stem. Further, though the basal stem
of SL5 is not present in the ScanFold model, the termi-
nal stem loops are found to be uniquely stable (SL5a-c) and
are modeled consistently with recent models of SL5 (68,69),
which supports a recent finding that these structures are the
most structured portions of SL5 (i.e. are the most sensitive
to cleavage by RNAse V1 (70)). We also found that SL5a
had three significantly covarying base pairs indicating its
particular structural importance.

The FSE is an RNA structural motif which incorpo-
rates nucleotides from the overlapping reading frames of

ORF1a and ORF1b (nt 13476–13542). The FSE falls within
a low z-score region and the base pairs which correspond
to these negative values are shown in the ScanFold-Fold
model (Figure 1). The ScanFold-Fold model of the FSE
is largely consistent with recent models (68,71); consisting
of two stable hairpins––the first of which contains a loop se-
quence that forms the proposed pseudoknot (13–14,72–73)
by pairing with nucleotides upstream of the second hairpin
(Figure 1). We also found that this stem was highly con-
served, having four base pairs with evidence of covariation.
ScanFold cannot predict the pseudoknot directly, how-
ever, the generated model does leave the pseudoknot form-
ing nucleotides sufficiently unpaired to allow for the inter-
action to occur. Comparing the non-pseudoknotted base
pairs predicted by ScanFold to two models built using
cryo-EM data (one for ribosome-bound RNA (74) and one
for free RNA (14), we find that ScanFold predicts only
slightly different helixes from either other model (Figure 1).
Specifically, the ribosome-bound model did not contain the
two closing base pairs of the Stem 1 terminal loop, while
both the ribosome-bound and free RNA models did not
have the two basal pairs predicted by ScanFold in Stem 3
(both had G13503 base paired to C13476 to extend Stem 1).
Interestingly, mutations converting G13486 to an A (con-
sistent with base pairing to U) or C (inconsistent with base
pairing to U) both significantly reduced frameshifting in an
in vitro assay (73). This supports the ribosome bound model
of these bases occurring in a loop where G13486 is proposed
to be flipped out to make contacts with the ribosome. It is,
however, possible for this base flipping to be stimulated by
interactions with the ribosome; in both our model and that
of the free RNA, these nts are modeled as forming stable
base pairs.

https://structurome.bb.iastate.edu/sars-cov-2-global-model-comparisons
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Functional elements upstream of these hairpins are
placed into an alternative model by ScanFold. Here, the
attenuator hairpin is embedded in a multibranched struc-
ture along with the slippery sequence, which is predicted
to form a small three base pair stem. Indeed, the only
bps which had average z-scores < –2 for the FSE region
are found in the basal stem of this previously unreported
multibranched structure. In support of this model, both
the attenuator hairpin and the basal stem of this upstream
structure were found to have evidence of specific base pair
conservation (Figure 1). These findings (along with sev-
eral other reports (17,19,75)) suggest the full frameshift ele-
ment may incorporate more upstream nucleotides than pre-
viously described. Notably, this ScanFold attenuator hair-
pin model has been used to identify small molecules which
specifically bind its UU internal loop (Figure 1) and inhibit
–1 PRF (76).

The 3′ UTRs of Sarbecovirus genomes contain three
RNA structural elements; a 3′ UTR pseudoknot structure,
presumably required for replication (77), a bulged stem
loop (BSL), and a mobile genetic element with an unde-
termined function known as the 3′ stem–loop II-like motif
(s2m) embedded in a hypervariable region (HVR) (78). Un-
der the current genome annotation (NC 045512.2) much of
the previous 3′ UTR sequence is now found within an up-
stream open reading frame named ORF10 (however, this
has been recently reported as being an untranslated ORF
(79)). ScanFold’s model partially recapitulates a recent
model of the region (68) (blue pairs; Supplementary Fig-
ure S1A) detecting the BSL and the non-pseudoknotted
pairs of the pseudoknot stem (though this pseudoknot has
recently been called into question (17,20,75)). The overall
metrics for the region however, including high ensemble di-
versity values and positive �G◦ z-scores (Supplementary
Table S1) suggest the region is locally unstructured and/or
highly dynamic. Indeed, while portions are structurally con-
served (18,20) much of the 3′ UTR has been shown to form
long range interactions beyond the BSL and pseudoknot
structures (75). As such, the ScanFold model predicts the
downstream region (composed of the HVR and s2m) to be
mostly absent of locally structured elements.

Identification of recently reported structures

Manfredonia et al. predicted 87 high-confidence structured
regions based on their in vitro SHAPE-derived modelling
(defined as having low Shannon entropy and lower than av-
erage SHAPE reactivity (18)). ScanFold-predicted motifs
with Zavg < –1 correlated with all but one of these struc-
tures (one was correctly modeled by ScanFold, but with
Zavg values above –1). Of these 86 correlated motifs, 34 of
them were identical between ScanFold and Manfredonia
et al. (Supplementary Table S4). Most of the disagreements
between models were simply due to ScanFold’s smaller
base pair span (eleven of the Manfredonia et al. structures
were larger than 120 nt) and only one ScanFold structure
was completely different (nt 652–723). However, even larger
structures that could not be fully predicted with smaller
window sizes were composed of multiple ScanFold struc-
tures (e.g. the region spanning nt 7923 to 8127 and the re-
gion spanning 23969 to 24097; Supplementary Figure S2A).

Other disagreements arose due to ScanFold predicting
structures which were simply larger (e.g. the regions span-
ning nt 8392–8428 and 6260–6320; Supplementary Figure
S2B). Despite select disagreements, ScanFold’s ability to
model these experimentally derived structured regions (18)
averaged a PPV (Equation 4) and sensitivity (Equation 5)
of 0.90 and 0.85, respectively (Supplementary Table S4).
Huston et al. also reported several well folded regions (de-
fined similarly to Manfredonia et al. as having low Shannon
entropy and low SHAPE reactivity) throughout ORF1a/b
(17). The well-folded regions here were defined to encom-
pass more nucleotides than Manfredonia et al. averaging
198 nt long (as opposed to 66 nt in Manfredonia et al. Sup-
plementary Table S3). Again, all but one of these regions
corresponded to Zavg < –1 ScanFold structures. However,
in this case the overall similarity to ScanFold models was
somewhat lower with a sensitivity and PPV of 0.71 and 0.82
respectively (Supplementary Table S4).

Structured region conservation

The structured regions defined in this study, and others,
were all tested for evidence of specific base pair conserva-
tion (by analyzing their respective sequence alignments us-
ingR-scape). Evidence of structural conservation suggests
that base pairing is being maintained; presumably because it
is evolutionarily advantageous (e.g. serves some functional
role). Of the 524 ScanFold motifs, 57 had evidence of
statistically significant conservation. Several groups have
reported conservation of RNA secondary structures in
SARS-CoV-2 (20,22) and here we compare our findings to
two of them (17,18). The workflow we used to detect con-
servation was first laid out in Manfredonia et al., where In-
fernal(42,43) andR-scape (30,31) were used to find that
8 of their 87 structured regions had evidence of conservation
(18). A similar approach was used in Huston et al (which
looked for conservation within the Betacoronaviridae clade
alone) which found 3 of their 40 well-folded regions had ev-
idence of structural conservation (17). Each method found
that ∼10% of the independently defined structured regions
had evidence of structural conservation and, surprisingly,
there is little overlap between these structures. Of the 57 con-
served motifs detected byScanFold, for example, only two
were found to overlap any other group: motif-5 (i.e. SL5a)
from the 5′ UTR and motif-491 (nt 28066–28118) in ORF8.
Between Manfredonia et al. and Huston et al., only one
conserved structure was shared (embedded in ORF1a from
nt 8144 to 8220).

Evidence of structural conservation via R-scape can be
further evaluated by considering the power of the respective
alignment (i.e. how many base pairs would be expected to
covary given the amount of sequence variation observed in
the alignment) (30). Using this, we can determine how many
motifs have evidence that they are not under evolutionary
pressure because the alignment had enough variation to de-
tect conservation but failed to do so. Of the 298 structures
with no evidence of conservation, 56 were expected to de-
tect at least one pair and, significantly, 39 were expected
to detect more than one covarying pair but failed to do so
(Supplementary Table S5). So, while most motifs lacking
evidence of conservation simply lacked alignments power-
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ful enough to detect it, these 39 (or ∼7% of) ScanFold-
predicted structured motifs have evidence for not being un-
der evolutionary pressure to maintain their structure (30)
throughout Coronaviridae genomes (Supplementary Table
S5).

Identification of novel structural motifs in SARS-CoV-2

ScanFold identified 53 uniquely stable and potentially
conserved structures (Supplementary Table S5) which have
yet to be fully characterized. We further filtered this list
to only structures with more than one covarying base; ul-
timately homing in on nine structures (one was the previ-
ously reported: SL5a from the 5′ UTR); the ScanFold-
Fold models for these eight remaining motifs are shown in
Figure 6. These represent higher priority targets for addi-
tional analyses and their identification illustrates the ability
of the in silico ScanFold pipeline to rapidly deduce local
high-value motifs. Notably, these motifs are invariant with
inclusion of experimental constraints (Supplementary Ta-
ble S3): e.g. models in Figure 6 are annotated with highly
reactive sites from six RNA probing datasets (17–19). It is
important to note that, even for elements predicted without
statistically significant covariation, the ScanFold method
calculates metrics that can help prioritize motifs: e.g. by low
z-scores and ED values.

One potential source of modeling error was addressed in
the eight high value motifs: the tendency of ScanFold-
Fold consensus structures to model ambiguously paired nt
as single stranded in the consensus fold (because no pair-
ing arrangements dominated). This issue was addressed by
refolding these motifs using the CaCoFold algorithm (32),
where the input were the sequence alignments generated for
analysis of covariation (see Materials and Methods). Ca-
CoFold generates folding models based on the evolution-
ary signal of RNA structure conservation (i.e. base pairs are
selected/removed based on positive or negative covariation
signals). Models built using this orthogonal approach reca-
pitulate the ScanFold-Fold pairs (Figure 6; Dataset S3),
while ‘filling in’ potentially artifactually missed pairs (due
to the consensus modelling of recurring low z-score base
pairs)––indeed, CaCoFold is even able to suggest poten-
tial non-Watson–Crick base pairs. For example, the Scan-
Fold model for motif-56 predicts a large (18 nt) terminal
loop, which CaCoFold models as ‘zipped up’ into a pen-
taloop that is stabilized by three consecutive non-Watson–
Crick base pairs (two CA pairs followed by a GU ‘wob-
ble’ pair) flanked by canonical AU pairs (Figure 6). A sin-
gle, highly reactive site was identified by both the Huston
et al. (SHAPE in vivo) and Manfredonia et al. (SHAPE in
vitro) datasets, which occurs on the U of the GU wobble
pair (with two more reactive sites identified in the CaCo-
Fold predicted pentaloop). Indeed, when all available ex-
perimental data are assessed vs these model structures, they
largely support the ScanFold-Fold, and CaCoFold,
predictions (top 10% of reactivities from probing data sets;
Figure 6).

These eight motifs can serve as the starting point for bi-
ological hypothesis generation or for therapeutic targeting
(e.g. for small-molecule degraders of RNA (80–83)). For ex-
ample Sun et al. recently targeted motif-522 (Figure 6; nt

29504 to 29539) with an antisense oligonucleotide (ASO)
which resulted in decreased viral infection in cells (75); two
other structures were successfully targeted as well, both of
which were identified in our set of 524 structured motifs
(motif-134 which had no covarying pairs and 179 which
had one covarying pair) showing that even when lacking
covariation support ScanFold-predicted motifs may serve
as potential targets for ASOs. The remaining 7 motifs are
scattered throughout the genome. Several motifs are found
in ORF1ab: two are found in relatively close proximity to
each other around nt 3000 in (motif-56 and -58), suggesting
this area could benefit from extra scrutiny; one is relatively
small and found around nt 6300 (Figure 6; motif-132) but
is part of a larger structured region identified by Huston et
al.; the only other structure (besides the known structures in
FSE and 5′ UTR) with three covarying bps is found around
nt 9050 and has a large internal loop with lower Zavg values
(Figure 6 motif-174); the largest motif is found around nt 12
100 and is riddled with bulges and internal loops, with co-
variation occurring in the lowest Zavg nts suggesting the sta-
ble and conserved basal portion of the structure may have
been preserved to support an otherwise unstable structure
(Figure 6; motif-219). The remaining three structures are
found within the last 3000 nts of the genome: motif-456 is
embedded in the E protein’s relatively short CDS; motif-479
is found just downstream of ORF7a’s start codon; motif-
522 has already been successfully targeted with an ASO in
cells (20) and is found directly overlapping the N protein’s
stop codon.
ScanFold-Foldmotifs can facilitate the study of larger

structural domains in SARS-CoV-2 by helping to define
core elements of particular significance for additional func-
tional studies. For example, one of the eight unusually sta-
ble, experimentally supported, and conserved motifs (Fig-
ure 5B) occurs within the 5′ UTR of SARS-CoV-2 and is
part of a larger structural domain (18–19,22,67,84); this
motif occurs as a named element (SL5a) within the global
5′ UTR model. Our results highlight this as a likely key
structural and functional element within the 5′ UTR. In-
deed, only in the FSE pseudoknot-presenting hairpin, did
we identify a helix with more phylogenetic support (Figure
1).

It is also worth noting another feature of our results that
has only begun to be explored. Although the viral genome
shows extreme biases in being ordered to form stable RNA
secondary structures (Figure 2), interspersed throughout
the genome are regions of unusual instability (indicated
by their positive thermodynamic z-scores). These regions
are particularly notable for their rarity in SARS-CoV-2
and their apparent ordering to not form stable RNA struc-
tures suggests potential functions––perhaps in maintaining
accessibility for long-range or intermolecular interactions
with host and/or viral biomolecules (75,85). The functions
of these sites of unusual instability requires additional study
and these regions may also prove useful in efforts to com-
bat COVID-19. The interface of RNA-protein interactions
could be targeted using small molecule drugs or antisense
oligonucleotides (86–89). Unstructured and accessible sites
predicted by ScanFold may also facilitate the design of
assays and biosensors to detect infection that rely on the
recognition/binding of viral RNA (90).
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Figure 6. ScanFold predicted motifs annotated with conservation and probing data. Nucleotides are colored based on the Zavg value predicted in the
standard ScanFold run. Particularly interesting base pairs which were identified in CaCoFold models are shown in blue. Significantly covarying bps (R-
scape APC corrected G-test; E<0.05) have been highlighted with a green box. Nucleotide coordinates are relative to the SARS-CoV-2 reference genome
NC 045512.2. Top 10% of reactivities are shown for Manfredoina et al. (squares, pentagons and diamonds), Huston et al., (circles), Sun et al. (stars) and
Lan et al. (triangles) at their corresponding nt positions (17–20).

CONCLUSION

With our bioinformatics program, ScanFold, we sought
to define the local thermodynamic landscape of the SARS-
CoV-2 genome to enumerate well-structured, potentially
functional motifs that could serve as ideal targets for RNA
targeting therapeutics. The SARS-CoV-2 genome proved to
be exceptionally structured (an apparent feature of CoVs),
with many highly-negative thermodynamic z-score regions,
an indication of ordered stability and functional propen-
sity. In efforts to enhance our structural modeling, Scan-
Fold was updated to allow the inclusion of experimen-
tal reactivities as soft constraints during the scanning pro-

cess. Interestingly, the inclusion of experimental data did
not significantly alter the z-score trends across the SARS-
CoV-2 genome or affect the final list of high value motifs.
This analysis shows that ScanFold can rapidly highlight
regions of highly ordered structures and produce models
of sufficient quality to serve as guides for additional stud-
ies; indeed, structures we highlight have already been suc-
cessfully targeted with small molecule inhibitors of viral
gene regulation (16) and antisense oligonucleotides (20,89).
All ScanFold-Scan and ScanFold-Fold results are
available and organized on the RNAStructuromeDB (https:
//structurome.bb.iastate.edu/sars-cov-2) to maximize their
utility in future efforts to understand the roles of RNA fold-

https://structurome.bb.iastate.edu/sars-cov-2
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ing in this unusually structured RNA virus and, hopefully,
to develop novel RNA-targeting therapeutics.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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