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Abstract: In this paper, a new multiple attribute decision-making (MADM) method under q-rung
dual hesitant fuzzy environment from the perspective of aggregation operators is proposed. First,
some aggregation operators are proposed for fusing q-rung dual hesitant fuzzy sets (q-RDHFSs).
Afterwards, we present properties and some desirable special cases of the new operators. Second, a
new entropy measure for q-RDHFSs is developed, which defines a method to calculate the weight
information of aggregated q-rung dual hesitant fuzzy elements. Third, a novel MADM method is
introduced to deal with decision-making problems under q-RDHFSs environment, wherein weight
information is completely unknown. Finally, we present numerical example to show the effectiveness
and performance of the new method. Additionally, comparative analysis is conducted to prove the
superiorities of our new MADM method. This study mainly contributes to a novel method, which
can help decision makes select optimal alternatives when dealing with practical MADM problems.

Keywords: multi-attribute decision-making; q-rung dual hesitant fuzzy sets; power average;
Hamy mean

1. Introduction

Multi-attribute decision-making (MADM) indicates a series of decision-making prob-
lems that we often encounter in our daily life [1–5]. MADM theories and methods have re-
ceived great interests and quite a few significant achievements have been published [6–10].
At the same time, these theories have also been applied in many fields to solve prac-
tical problems [11–14], such as the prevention of soil erosion [11] and factory location
selection [12]. There are many kinds of methodologies to deal with MADM issues and
aggregation operators are impressive tools, as they integrate individual attribute values
into single ones. Decision makers (DMs) can easily and conveniently get the rank of feasible
alternatives according to their overall evaluation values by using aggregation operators.
However, it is not easy to aggregate attribute values in actual MADM problems, as there
exists complicated and daedal interrelationship among attributes. Hence, in the process of
calculating the overall evaluation values of alternatives, the interrelationship among the
attribute values ought to take into account.

Based on these facts, more and more researchers and scholars have started to inves-
tigate to fuse attribute values from the perspective of Bonferroni mean (BM) [15] and
HEronian mean (HEM) [16]. The attractive and prominent characteristic of BM and HM is
their ability of considering the interrelationship that is subsistent among attribute values.
It is worthy pointing out that BM and HM were originated for crisp numbers and in order
to adopt them to different complicated and fuzzy decision environment, BM and HM has
been extended to accommodate fuzzy decision-making information.

On the other side, the q-rung dual hesitant fuzzy sets (q-RDHFSs) proposed by Xu
and her colleagues [17] is an effective tool to depict assessment information of DMs, and
they absorb advantages of both q-rung orthopair fuzzy sets (q-ROFSs) [18] and dual
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hesitant fuzzy sets (DHFSs) [19]. In [17], Xu and her colleagues investigated aggregation
operators of q-RDHFEs and applied them in decision-making problems. Afterwards,
some extensions of q-RDHFSs have also been put forward and deeply studied, which
also illustrate the uniqueness and superiorities of q-RDHFEs in dealing with fuzzy and
uncertain information [20–24]. Nonetheless, we must point out that existing MADM
method based on q-RDHFSs still has some shortcomings. First, existing method only
considers the interrelationship among attribute values, whereas fails to further consider
how to effectively deal with DMs’ unreasonable or extreme assessment values. In other
words, when DMs provide absurd the decision-making results, Xu et al.’s [17] method
produces unreasonable results. Besides, the method proposed by Xu et al.’s [17] only
considers situations where the weight information of attributes is completely known.
However, in most practical MADM problems, the weight vector of attributes is unknown.
Hence, the novel MADM method that aims to solve MADM problems under q-RDHFSs
with unknown weight information is highly necessary.

The main novelties and motivations of our paper can be summarized as follows.
(1) Novel aggregation operators for fusing q-rung dual hesitant fuzzy information are
proposed. Considering the good performance of the power Hamy mean (PHM) in ag-
gregating fuzzy information [24–26], we extend it into q-RDHFSs and introduce novel
aggregation operators for q-RDHFSs. These operators noy only consider the interrela-
tionship between attributes but also effectively handle DMs’ unreasonable or extreme
evaluation values. (2) A new method to determine the weight vector of attributes is pro-
posed. In most practical MADM problems, weight information of attributes is usually
unknown. In addition, entropy is widely used to determine attributes’ weights. Hence, this
study presents entropy measure for q-RDHFSs and based on which, a method to calculate
weights in MADM under q-RDHFSs environment is introduced. (3) We give a new MADM
method to deal with decision-making problems under q-RDHFSs with unknown weight
information. Meanwhile, in order to prove the practical value of this method, we also
conduct numerical analysis.

The rest of this paper is organized as follows. Section 2 reviews related literature.
Section 3 recalls basic concepts that will be used in later sections. Section 4 studies novel
aggregation operators for q-RDHFEs and investigates their properties. Section 5 investi-
gates entropy of q-RDHFEs and shows the process of determining weight information.
Section 6 introduces a new MADM method with q-RDHFEs. Section 7 demonstrates the
actual performance of the new method through numerical examples. Summarization and
future research directions are presented in Section 8.

2. Literature Review

As the complexity of decision-making problems increases, it is very difficult to use
clear values to describe attribute values. Therefore, more and more scholars are concerned
about how to deal with this uncertain phenomenon. Zadeh [27] constructed the concept
of fuzzy set (FS), which only has a membership degree (MD), thereby it is impossible to
describe the imprecision. Atanassov [28] presented an intuitionistic fuzzy set (IFS) to deal
with the fuzziness and uncertainty in 1986. To overcome the limitation of IFS, Yager [29]
introduced concept of the Pythagorean fuzzy set (PFS), which can enable the cases of the
sum of the MD and non-membership degrees (NMD) is larger than one. In 2017, Yager [18]
proposed the concept of q-ROFS to cope with situations wherein the square sum of MD
and NMD exceeds one. In real decision-making problems, the DMs may hesitate in a set
of values when determines the attribute value, Therefore Torra [30] presented the concept
of hesitating fuzzy set (HFS). Due to the limitation of HFS, Zhu et al. [19] proposed the
concept of dual hesitant fuzzy set (DHFS), which can both represent the MD and NMD.
Xu et al. [17] expanded the concepts of q-ROFSs and DHFSs and presented q-RDHFSs, to
describe uncertain phenomena.

With the development of fuzzy sets, their aggregation operators are discussed widely.
The main works and contributions of scholars are to extend BM and HM to accommodate
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fuzzy decision-making information. Presently, BM and HM have been gradually extended
to IFSs [31,32], HFSs [33], DHFSs [34,35], PFSs [36], etc. In addition, some scholars have
noticed that it is insufficient to only consider the interrelationship among attributes. They
realized that DMs usually provided unreasonable evaluation values, which evidently
negatively affect the final decision results. Hence, scholars combined the power average
(PA) [37] operator with BM and HEM, and proposed the power BM (PBM) [38] and power
HEM (PHEM) [39] operators, which are evidently more powerful and useful than PA,
BM, and HEM. Due to these reasons, PBM and PHEM have been extensively applied in
fusing fuzzy attribute values and quite a few new achievements have been reported [40–45].
Recently, by combining PA with Hamy mean (HM) [46], power Hamy mean (PHM) [47],
which is more efficient as it has the capability of capturing the interrelationship among
multiple attributes. Hence, it is unceasingly worth to studying PHM in solving practical
MADM. We provide Table 1 to better demonstrate the development fuzzy sets theories and
aggregation operators.

Table 1. The related studies mentioned.

References Theory Characteristics

Fuzzy Sets

Zadeh [27] (1965) FSs The MD is interval [0, 1].

Atanassov [28] (1986) IFSs The sum of MD and NMD should be less than or equal to one.

Torra [30] (2010) HFSs The MD is denoted by a set of possible values in [0, 1].

Zhu et al. [19] (2012) DHFSs The sum of maximum values of MD and NMD is less than or equal to one.

Yager [29] (2014) PFSs The square sum of MD and NMD is less than or equal to one.

Yager [18] (2017) q-ROFSs The sum of the qth power of MD and the qth power of NMD does not exceed 1.

Xu et al. [17] (2018) q-RDHFSs Both MD and NMD are denoted by multiple values and the sum of qth power
of maximum MD and qth power of maximum NMD does not exceed 1.

Aggregation Operators

Bonferroni [15] (1950) BM It considers the interrelationship among any two arguments.

Sykora [16] (2009) HEM It considers the interrelationship among any two arguments.

Yager [37] (2001) PA It effectively handles extreme input arguments.

He et al. [38] (2014) PBM It takes the advantages of PA and BM.

Peide Liu [39] (2017) PHEM It takes the advantages of PA and HEM.

Hara et al. [46] (1998) HM It can consider the interrelationship among multiple arguments.

Peide Liu [47] (2019) PHM It takes the advantages of PA and HM.

Because of the extreme complexity of real decision-making problems, the above-
mentioned decision-making methods based on q-RDHFSs still have limitations. Therefore,
the purpose of this paper can be summarized as three points. First, to reduce the bad
influence of unreasonable or extreme q-RDHFEs, it is necessary to construct a model to
eliminate the influence of extreme values. Therefore, this paper proposed new aggregation
operators to fuse q-RDHFEs. Second, when DMs are uncertain about the importance
of attributes, to determine the reasonable attribute weights, we consider developing an
entropy measure for q-RDHFSs, thereby expanding the application scenarios of this method.
Third, to prove the practical value of this method, medical decision-making issues, such as
the assessment of hospital medical quality, can be solved by the proposed MADM method.

3. Preliminaries

Some basic notions that will be used in the following sections are reviewed in this section.
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3.1. The q-Rung Dual Hesitant Fuzzy Sets

Definition 1 ([30]). Let X be an ordinary fixed set, a q-rung dual hesitant fuzzy set (q-RDHFS) A
defined on X is expressed as

A = {〈x, hA(x), gA(x)〉|x ∈ X }, (1)

where hA(x) and gA(x) are two sets of some interval values in [0, 1], denoting the MD and NMD of
the element x ∈ X to the set A, like that 0 ≤ γ, η ≤ 1 and γq + ηq ≤ 1(q ≥ 1), where γ ∈ hA(x)
and η ∈ gA(x) for all x ∈ X. For convenience, the ordered pair dA(x) = (hA(x), gA(x)) is
called a q-rung dual hesitant fuzzy element (q-RDHFE), which can be symbolized as d = (h, g)
for simplicity.

Xu et al. [17] proposed the operations of q-RDHFEs.

Definition 2 ([17]). Let d1 = (h1, g1), d2 = (h2, g2) and d = (h, g) be any three q-RDHFEs,
and λ be a positive real number, then

(1) d1 ⊕ d2 = ∪γ1∈h1,γ2∈h2,η1∈g1,η2∈g2

{{(
γ

q
1 + γ

q
2 − γ

q
1γ

q
2

)1/q
}

, {η1η2}
}

;

(2) d1 ⊗ d2 = ∪γ1∈h1,γ2∈h2,η1∈g1,η2∈g2

{
{γ1γ2},

{(
η

q
1 + η

q
2 − η

q
1η

q
2

)1/q
}}

;

(3) λd = ∪γ∈h,η∈g

{{(
1− (1− γq)λ

)1/q
}

,
{

ηλ
}}

;

(4) dλ = ∪γ∈h,η∈g

{{
γλ
}

,
{(

1− (1− ηq)λ
)1/q

}}
.

Xu et al. [17] presented a comparison method to sort any q-RDHFEs.

Definition 3 ([17]). Let d = (l, p) be a q-RDHFE, then the score function of ε is defined as

S(d) =

(
1
#l ∑

γ∈l
γ

)q

−
(

1
#p ∑

η∈p
η

)q

, (2)

and the accuracy function of ε is defined as

H(d) =

(
1
#l ∑

γ∈l
γ

)q

+

(
1

#p ∑
η∈p

η

)q

, (3)

Let d1 = (l1, p1) and d2 = (l2, p2) be any two q-RDHFEs, then

(1) If S(d1) > S(d2), then d1 > d2;
(2) If S(d1) = S(d2), then

if H(d1) > H(d2), then d1 > d2;
if H(d1) = H(d2), then d1 = d2;

Then, we introduce the distance measure between any two q-RDHFEs.

Definition 4. Let d1 = (h1, g1) and d2 = (h2, g2) be two q-RDHFEs, then the distance measure
between d1 and d2 is defined as

d(d1, d2) =

 1
(#h + #g)

 #h

∑
i=1

∣∣∣((γ1)σ(i)

)q
−
(
(γ2)σ(i)

)q∣∣∣+ #g

∑
j=1

∣∣∣((η1)σ(j)

)q
−
(
(η2)σ(j)

)q∣∣∣
, (4)

where (γ1)σ(i) ∈ h1, (γ2)σ(i) ∈ h2, (η1)σ(j) ∈ g1, (η2)σ(j) ∈ g2. #h as a sign of the number of
elements in h1 and h2, and #g symbolize the number of elements in g1 and g2.
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Remark 1. Let d1 = (h1, g1) and d2 = (h2, g2) be any two q-RDHFEs. From Definition 4, it
should be noticed that h1 and h2 should have the same number of values, and g1 and g2 are supposed
to have the same number of values when computing the distance. Nonetheless, this situation will
not always be satisfied. Therefore, in order to calculate accurately, the shorter q-RDHFE is supposed
to adding values to ensure that the number of MDs and NMDs of the two q-RDHFEs is equal. Then
some supplementary rules are proposed for the shorter q-RDHFE.

Let

d1 = (h1, g1) =


{
(γ1)σ(1), (γ1)σ(2), . . . , (γ1)σ(#h1)

}{
(η1)σ(1), (η1)σ(2), . . . , (η1)σ(#g1)

} ,

and

d2 = (h2, g2) =


{
(γ2)σ(1), (γ2)σ(2), . . . , (γ2)σ(#h2)

}{
(η2)σ(1), (η2)σ(2), . . . , (η2)σ(#g2)

} ,

If #h1 < #h2 and #g1 > #g2, there are two methods to supplement d1 and d2. When
DMs are optimistic, the method to extend d1 and d2 to d1

′ and d2
′ is adding the largest

values in h1 and g2. On the contrary, if DMs have pessimistic evaluations, the method is
that add the smallest values in h1 and g2. For convenience, we suppose DMs are optimistic
in our paper and the first method is taken to supplement shorter q-RDHFEs.

Example 1. Let two q-RDHFEs are d1 = {{0.3},{0.5, 0.7, 0.8}} and d2 = {{0.2, 0.4},{0.5, 0.8}}.
For calculation, d1 and d2 could be changed into d′1 and d′2 , specifically (q = 6).

d′1 = {{0.3, 0.3}, {0.5, 0.7, 0.8}},

d′2 = {{0.2, 0.4}, {0.5, 0.8, 0.8}}.

Then,

d(d1, d2) =

(
1

(2 + 3)
((∣∣(0.3)q − (0.2)q∣∣+ ∣∣(0.3)q − (0.4)q∣∣)+ (∣∣(0.5)q − (0.5)q∣∣+ ∣∣(0.7)q − (0.8)q∣∣+ ∣∣(0.8)q − (0.8)q∣∣)))

=

(
1
5
(
(0.4)q − (0.2)q + (0.8)q − (0.7)q)) = 0.0297

For two q-RDHFEs d1 and d2, the distance between d1 and d2, symbolized as d(d1, d2),
should satisfy the following properties:

(1) 0 ≤ d(d1, d2) ≤ 1;
(2) d(d1, d2) = 0 if and only if d1 = d2;
(3) d(d1, d2) = d(d2, d1).

3.2. PA, HM and PHM Operators

Definition 5 ([37]). Let ai(i = 1, 2, . . . , n) be a collection of non-negative crisp numbers, then the
PA operator is defined as

PA(a1, a2, . . . , an) =

n
∑

i=1
(1 + T(ai))ai

n
∑

i=1
(1 + T(ai))

, (5)

where T(ai) =
n
∑

j=1,i 6=j
Sup

(
ai, aj

)
, Sup

(
ai, aj

)
symbolizes the support for ai from aj, satisfying

the conditions:

(1) 0 ≤ Sup
(
ai, aj

)
≤ 1

(2) Sup
(
ai, aj

)
= Sup

(
aj, ai

)
;
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(3) Sup(a, b) ≤ Sup(c, d), if |a, b| ≥ |c, d|.

Definition 6 ([46]). Let ai(i = 1, 2, . . . , n) be a collection of nonnegative real numbers, and
k = 1, 2, . . . , n. If

HM(k)(a1, a2, . . . , an) =

∑
1≤i1<···<ik≤n

(
k

∏
j=1

aij

)1/k

Ck
n

, (6)

Then HM(k) is the HM operator, where (i1, i2, . . . , ik) traverses all the k-tuple combination of
(1, 2, . . . , n) and Ck

n is the binomial coefficient.

Definition 7. Let ai(i = 1, 2, . . . , n) be a collection of nonnegative real numbers, and k =
1, 2, . . . , n. The power Hamy mean (PHM) operator is defined as

PHM(k)(a1, a2, . . . , an) =
1

Ck
n

 ∑
1≤i1<···<ik≤n

 k

∏
j=1

n

(
1 + T

(
aij

))
aij

n
∑

j=1

(
1 + T

(
aj
))



1/k
, (7)

where (i1, i2, . . . , ik) traverses all the k-tuple combination of (1, 2, . . . , n) and Ck
n is the binomial co-

efficient. T(ai) =
n
∑

j=1,i 6=j
Sup

(
ai, aj

)
, Sup

(
ai, aj

)
symbolize support value for ai from aj, satisfying

the properties presented in Definition 5.

4. Some Aggregation Operators and Their Properties

We extend the powerful PHM to q-RDHFEs and discuss their properties in this section.

4.1. The q-Rung Dual Hesitant Fuzzy Power Hamy Mean Operator

Definition 8. Let di(i = 1, 2, . . . , n) is a collection of q-RDHFEs and k = 1, 2, . . . , n. The q-rung
dual hesitant fuzzy power Hamy mean (q-RDHFPHM) operator is as follows

q− RDHFPHM(k)(d1, d2, . . . , dn) =
1

Ck
n

 ⊕
1≤i1<···<ik≤n

 k
⊗

j=1

n

(
1 + T

(
dij

))
dij

n
∑

i=1
(1 + T(di))




1/k
, (8)

where (i1, i2, . . . , ik) traverses all the k-tuple combination of (1, 2, . . . , n) and Ck
n is the binomial

coefficient. T
(

dij

)
=

n
∑

j=1,i 6=j
Sup

(
di, dj

)
, which should be satisfied following properties:

(1) 0 ≤ Sup
(
di, dj

)
≤ 1;

(2) Sup
(
di, dj

)
= Sup

(
dj, di

)
;

(3) Sup
(
di, dj

)
≤ Sup(ds, dt), if dis

(
di, dj

)
≥ dis(ds, dt), and dis

(
di, dj

)
is the distance

between di and dj.

If we assume

δi =
1 + T(di)

n
∑

i=1
(1 + T(di))

, (9)

then Equation (8) can be transformed into the following form

q− RDHFPHM(k)(d1, d2, . . . , dn) =
1

Ck
n

 ⊕
1≤i1<···<ik≤n

(
k
⊗

j=1

(
nδij dij

))1/k
, (10)
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where δ = (δ1, δ2, . . . , δn)
T is called the power weight vector, such that 0 ≤ δi ≤ 1 and

∑n
i=1 δi = 1.

Theorem 1. Let di = (hi, gi)(i = 1, 2, . . . , n) be a series of q-RDHFEs, the aggregated value by
the q-RDHFPHM operator is still a q-RDHFE and

q− RDHFPHM(k)(d1, d2, . . . , dn) = ∪γij
∈hij

,ηij
∈gij



1− ∏
1≤i1<...<ik≤n

(
1−

k

∏
j=1

(
1−

(
1− γ

q
ij

)nδij

) 1
k
) 1

Ck
n


1
q
,

 ∏
1≤i1<...<ik≤n

1−
k

∏
j=1

(
1− η

nqδij
ij

) 1
k


1
qCk

n


. (11)

Proof. See Appendix A. �

Theorem 2. (Idempotency): Let di = (hi, gi)(i = 1, 2, . . . , n) be a collection of q-RDHFEs, if
di = d = (h, g) for all i, then

q− RDHFPHM(k)(d1, d2, . . . , dn) = d. (12)

Proof. See Appendix B. �

Theorem 3. (Boundedness): Let di = (hi, gi)(i = 1, 2, . . . , n) is a set of q-RDHFEs,
d− = min(d1, d2, . . . , dn) and d+ = max(d1, d2, . . . , dn), then

x ≤ q− RDHFPHM(k)(d1, d2, . . . , dn) ≤ y. (13)

where x = 1
Ck

n

 ⊕
1≤i1<···<ik≤n

(
k
⊗

j=1

(
nδij d

−
))1/k


and y = 1

Ck
n

 ⊕
1≤i1<···<ik≤n

(
k
⊗

j=1

(
nδij d

+
))1/k

.

Proof. See Appendix C. �

Then, some special cases of the proposed q-RDHFPHM operator with respect to q and
k will be inferenced.

Case 1. If k = 1 , the q-RDHFPHM operator is reduced to the q-rung dual hesitant fuzzy power
average (q-RDHFPA) operator.

q− RDHFPHM(k)(d1, d2, . . . , dn) =
n
⊕

i=1
δidi = ∪γi∈hi ,ηi∈gi



(

1−
n

∏
i=1

(
1− γ

q
i

)δi

) 1
q
,

{
n

∏
i=1

η
δi
i

}. (14)

Besides, when Sup
(
di, dj

)
= t > 0, a q-RDHFPHM operator is reduced to a q-rung

dual hesitant fuzzy average (q-RDHFA) operator.

q− RDHFPHM(k)(d1, d2, . . . , dn) =
1
n

n
⊕

i=1
di = ∪γi∈hi ,ηi∈gi



(

1−
n

∏
i=1

(1− γ
q
i )

1
n

) 1
q
,

{
n

∏
i=1

η
1
n
i

}. (15)

Case 2. If q = 1, the q-RDHFPHM operator is reduced to the dual hesitant fuzzy power Hamy
mean (DHFPHM) operator.
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q− RDHFPHM(k)(d1, d2, . . . , dn) = ∪γij
∈hij

,ηij
∈gij

1− ∏
1≤i1<...<ik≤n

(
1−

k

∏
j=1

(
1−

(
1− γij

)nδij

) 1
k
) 1

Ck
n

,

 ∏
1≤i1<...<ik≤n

1−
k

∏
j=1

(
1− η

nδij
ij

) 1
k


1
Ck

n


. (16)

Besides, if Sup
(
di, dj

)
= t > 0, the q-RDHFPHM operator is reduced to the dual

hesitant fuzzy Hamy mean (DHFHM) operator.

q− RDHFPHM(k)(d1, d2, . . . , dn) = ∪γij
∈hij

,ηij
∈gij

1− ∏
1≤i1<...<ik≤n

1−
k

∏
j=1

(
γij

) 1
k


1

Ck
n

,

 ∏
1≤i1<...<ik≤n

1−
k

∏
j=1

(
1− ηij

) 1
k


1
Ck

n


. (17)

Case 3. When q = 2, the q-RDHFPHM operator is reduced to the dual hesitant Pythagorean fuzzy
power Hamy mean (DHPFPHM) operator.

q− RDHFPHM(k)(d1, d2, . . . , dn) = ∪γij
∈hij

,ηij
∈gij



1− ∏
1≤i1<...<ik≤n

(
1−

k

∏
j=1

(
1−

(
1− γ2

ij

)nδij

) 1
k
) 1

Ck
n


1
2
,

 ∏
1≤i1<...<ik≤n

1−
k

∏
j=1

(
1− η

2nδij
ij

) 1
k


1
2Ck

n


. (18)

Besides, if Sup
(
di, dj

)
= t > 0, the q-RDHFPHM operator is reduced to the DHPF-

PHM operator.
q− RDHFPHM(k)(d1, d2, . . . , dn) = ∪γij

∈hij
,ηij
∈gij



1− ∏
1≤i1<...<ik≤n

1−
k

∏
j=1

(
γ2

ij

) 1
k


1

Ck
n


1
2
,

 ∏
1≤i1<...<ik≤n

1−
k

∏
j=1

(
1− η2

ij

) 1
k


1
2Ck

n


. (19)

Case 4. When k = n, a q-RDHFPHM operator is reduced to a q-rung dual hesitant fuzzy power
geometric (q-RDHFPG) operator.

q− RDHFPHM(k)(d1, d2, . . . , dn) =

(
n
⊗

j=1
nδjdj

) 1
n

= ∪γj∈hj ,ηj∈gj


 n

∏
j=1

(
1−

(
1− γ

q
j

)nδj
) 1

nq

,


(

1−
n

∏
j=1

(
1− η

nqδj
j

) 1
n

) 1
q

. (20)

Besides, when Sup
(
di, dj

)
= t > 0, a q-RDHFPHM operator is reduced to a q-rung

dual hesitant fuzzy geometric (q-RDHFG) operator.

q− RDHFPHM(k)(d1, d2, . . . , dn) =
n
⊗

j=1
d1/n

j = ∪γj∈hj ,ηj∈gj


{

n

∏
j=1

γ
1
n
j

}
,


1−

n

∏
j=1

(
1− η

q
j

) 1
n

 1
q

. (21)
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Remark 2. More special cases of the q-RDHFPHM operator can be obtained. For example, if
q = k = 1, then the q-RDHFPHM operator reduces to the dual hesitant fuzzy power average opera-
tor. If q = 1 and k = 2, then the q-RDHFPHM operator reduces to the dual hesitant fuzzy power
geometric mean operator. Some other aggregation operators, such as dual hesitant Pythagorean
fuzzy power average operator, and dual hesitant Pythagorean fuzzy power geometric operator.

4.2. The q-Rung Dual Hesitant Fuzzy Power Weighted Hamy Mean Operator

Definition 9. Let di(i = 1, 2, . . . , n) is a collection of q-RDHFEs and k = 1, 2, . . . , n. Let
w = (w1, w2, . . . , wn)

T is a weight vector, satisfying 0 ≤ wi ≤ 1 and ∑n
i=1 wi = 1. The q-rung

dual hesitant fuzzy power weighted Hamy mean (q-RDHFPWHM) operator is defined as

q− RDHFPWHM(k)(d1, d2, . . . , dn) =
1

Ck
n

 ⊕
1≤i1<···<ik≤n

 k
⊗
j=1

n
wij

(
1 + T

(
dij

))
dij

n
∑

i=1
wi(1 + T(di))




1/k, (22)

where (i1, i2, . . . , ik) traverses all the k-tuple combination of (1, 2, . . . , n) and Ck
n is the binomial co-

efficient. T(di) =
n
∑

j=1,i 6=j
Sup

(
di, dj

)
, which also satisfying the properties presented in Definition 7.

If we assume

σi =
wi(1 + T(di))

n
∑

i=1
wi(1 + T(di))

, (23)

then we can rewrite Equation (22) as

q− RDHFPWHM(k)(d1, d2, . . . , dn) =
1

Ck
n

 ⊕
1≤i1<···<ik≤n

(
k
⊗

j=1

(
nσij dij

))1/k
, (24)

where σ = (σ1, σ2, . . . , σn)
T is known as the power weight vector 0 ≤ σi ≤ 1 and ∑n

i=1 σi = 1.
Based on the operational rules of q-RDHFEs, the aggregated result of q-RDHFPWHM operator

is derived.

Theorem 4. Let di = (hi, gi)(i = 1, 2, . . . , n) be a series of q-RDHFEs, the aggregated value by
the q-RDHFPWHM operator is still a q-RDHFE and

q− RDHFPWHM(k)(d1, d2, . . . , dn) =

∪γij
∈hij

,ηij
∈gij





1− ∏
1≤i1<...<ik≤n

(
1−

k

∏
j=1

(
1−

(
1− γ

q
ij

)nσij
) 1

k

) 1
Ck

n


1
q
,

 ∏
1≤i1<...<ik≤n

1−
k

∏
j=1

(
1− η

nqσij
ij

) 1
k


1
qCk

n


. (25)

Proof. See Appendix D. �

Theorem 5. (Boundedness): Let di = (hi, gi)(i = 1, 2, . . . , n) be a collection of q-RDHFEs,
d− = min(d1, d2, . . . , dn) and d+ = max(d1, d2, . . . , dn), then

x ≤ q− RDHFPWHM(k)(d1, d2, . . . , dn) ≤ y. (26)

where x = 1
Ck

n

 ⊕
1≤i1<···<ik≤n

(
k
⊗

j=1

(
nσij d

−
))1/k


and y = 1

Ck
n

 ⊕
1≤i1<···<ik≤n

(
k
⊗

j=1

(
nσij d

+
))1/k

.

Proof. See Appendix E. �
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5. A Method to Determine the Attribute Weights Based on Entropy

Entropy is a widely used tool to measure the uncertainties in fuzzy sets theory. In
addition, in quite a few practical MADM problems, the weight vector of attributes is
completely unknown. It is widely acknowledged by DMs that such attribute vector plays
an important role in MADM problems [48–52]. Hence, before determining the optimal
alternatives, the weight information of attributes should be calculated by some methods.
Entropy measure is widely accepted as an approach to determine the weights of attributes.
Hence, in the followings, we develop an entropy measure for q-RDHFSs and based on
which, a method to determine weight information of attributes is proposed. The axiom for
entropy measure of q-RDHFEs is presented as follows.

Definition 10. Let d1 = (h1, g1) and d2 = (h2, g2) be any two q-RDHFEs. A function E is an
entropy on q-RDHFEs, if and only if E satisfies the following properties.

(1) E(d1) = 0, if and only if d1 = {{0}, {1}} or d2 = {{1}, {0}};
(2) E(d1) = 1, if and only if #h1 = #g1 and (γ1)σ(i) = (η1)σ(i)(i = 1, 2, . . . , m), where

(γ1)σ(i) and (η1)σ(i) are the ith smallest values of h1 and g1, respectively;
(3) E(ρ) ≤ E(θ) if maxih1

i ≤ minsh2
s , minjgi

(4) E(d1) = E
(
dC

1
)

Based on the axiom, in what follows, we present an entropy measure of q-RDHFE. Let
d = (h, g) be a q-RDHFE, then the entropy measure of d is defined as

E(d) = 1− dis
(

d, dC
)

(27)

where dis
(
d, dC) is distance measure between d and its complement ρC.

Remark 3. If d = {{0.2, 0.5, 0.6}, {0.3, 0.7}}, then dC = {{0.3, 0.7}, {0.2, 0.5, 0.6}}. In
addition, d and dC should be changed into d′1 and d′2, Particularly (q = 6).

d′1 = {{0.2, 0.5, 0.6}, {0.3, 0.7, 0.7}},

d′2 = {{0.3, 0.7, 0.7}, {0.2, 0.5, 0.6}}.

Then,

E(d) = 1− dis
(

d, dC
)
= 1−

(
1

(3 + 3)
((∣∣(0.2)q − (0.3)q∣∣+ ∣∣(0.5)q − (0.7)q∣∣+ ∣∣(0.6)q − (0.7)q∣∣)+

(∣∣(0.3)q − (0.2)q∣∣+ ∣∣(0.7)q − (0.5)q∣∣+ ∣∣(0.7)q − (0.6)q∣∣))).
= 1−

(
1
6
×
(
4× (0.7)q+2×

(
(0.3)q − (0.2)q − (0.5)q − (0.6)q)))= 1− 0.0579 = 0.9421.

Based on the entropy measure of q-RDHFEs, we present a novel method to determine
the weights of aggregated q-RDHFEs. Let di(i = 1, 2, . . . , n) be a collection of q-RDHFEs,
then weight of di is given as

wi =
1− E(di)

n−∑n
i=1 E(di)

(28)

6. A Novel MADM Method Based on q-RDHFEs

In this section, a novel approach to MADM based on q-RDHFEs is proposed. The
following is a typical MADM problem which has q-RDHFE assessment information. Sup-
pose that {A1, A2, . . . , Am} is m alternatives and the performance of the alternatives under
a set of n attributes {C1, C2, . . . , Cn} is evaluated by the DMs. DMs are required to com-
municate assessment information by a q-RDHFE dij =

(
hij, gij

)
with regard to alternative

Ai(i = 1, 2, . . . , m) under attribute Cj(j = 1, 2, . . . , n). Therefore, a decision matrix of q-
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rung dual hesitant fuzzy can be simplified to R =
(
dij
)

m×n. The process of choosing the
optimal alternative is presented as follow.

Step 1. Transform the decision matrix. Normally, kinds of attributes should be
benefit type or cost type. Therefore, the decision matrix can be standardized by the
following method.

dij =

{ (
hij, gij

)
Cj is bene f it type(

gij, hij
)

Cj is cost type
, (29)

Step 2. Calculate the Sup(dil , dim) by

Sup(dil , dim) = 1− d(dil , dim), (30)

satisfying that l, m = 1, 2, . . . , n; l 6= m
Step 3. Calculate T

(
dij
)

by

T
(
dij
)
=

n

∑
l,m=1,l 6=m

Sup(dil , dim), (31)

Step 4. Calculate the weight of Cj(j = 1, 2, . . . , n) based on the entropy measure of
q-RDHFEs as the following formula

wj =
1− E

(
dj
)

n−∑n
j=1 E

(
dj
) , (32)

Step 5. Calculate the power weights δij using below method

δij =
wi
(
1 + T

(
dij
))

n
∑

i=1
wi
(
1 + T

(
dij
)) , (33)

Step 6. Calculate the evaluation values di of alternative Ai based on the q-RDHFPWHM
operator.

di = q− RDHFPWHM(k)(di1, di2, . . . , din), (34)

Step 7. Using definition 8 to sequence the evaluation values di(i = 1, 2, . . . , n).
Step 8. Using the sequence of the overall values to sort alternatives, then choose the

best one.

7. Assessment Indicator System of Hospital Medical Quality

In the context of hospital’s medical quality evaluation, we propose an evaluation
system based on the newly developed AOs. The establishment of the evaluation system
is divided in two steps: (1) analyze the evaluation factors; (2) prove the rationality of
evaluation factors on the basis of MADM method under q-RDHFEs.

7.1. Analysis Evaluation Factors from the Perspective of Patients

Hospital medical quality evaluation involves multiple factors and multiple indicators,
including indicators such as medical workload and work efficiency. Through literature
search and expert consultation, Lang and Song [53] proposed a comprehensive tertiary
hospital’s medical quality evaluation index system, which includes three indicators of
work efficiency, medical quality and workload.

7.1.1. Work Efficiency

Work efficiency is the most intuitive factor that affects the quality of medical care in
a hospital. It includes the utilization rate of hospital beds, the average hospital stay of
patients, the cure rate, and the number of outpatient and emergency patients received by
each employee per day.
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(1) Utilization rate of hospital beds. It can reflect the ratio between the total number
of beds used per day and the total number of existing beds, and reflect the load of
hospital beds. In addition, high utilization rate indicates that the use of hospital beds
is scientific and reasonable.

(2) Average length of hospital stay. The average hospital stay represents the average
length of stay of each discharged patient within a period, which is a comprehensive
index for estimating hospital efficiency, medical quality, and technical level.

(3) The number of outpatient and emergency patients received by each employee per
day. It can reflect the work efficiency of the hospital staff.

7.1.2. Medical Quality

Medical quality is a key factor affecting the survival and development of a hospital,
including the cure rate, the success rate of critically ill rescue, and the satisfaction of
nursing services.

(1) Cure rate, improvement rate and mortality rate. These indicators are the link quality
indicators in the clinical quality evaluation. The patient’s cure status truly reflects the
hospital’s medical quality.

(2) Success rate of critically ill rescue. The rescue success rate of critically ill patients not
only reflects the medical quality of the hospital and the technical level of medical staff,
but also represents the management level of a hospital.

(3) Satisfaction of nursing service. The patient’s satisfaction with the nursing service of
medical staff will affect the doctor-patient relationship and the patient’s satisfaction
with the hospital.

7.1.3. Workload

The workload of a hospital can describe the medical quality of the hospital from the
side. The workload is mainly composed of two aspects: the number of visits and the
number of hospitalizations.

(1) Number of visits. The number of visits is the general term for the total number of
visits to the hospital for treatment, including emergency and outpatient.

(2) Number of hospitalizations. In general, there is a certain relationship between the
number of visits to the hospital and the number of hospitalizations. As the number of
visits increases, the number of hospitalizations also increases. Both of these indicators
have an impact on the evaluation of hospital workload.

7.2. Establish Medical Quality Evaluation System and Decision Matrix

Based on the analysis of existing evaluation indicators, we have constructed a hospital
medical quality evaluation system, as shown in Table 2.

Afterwards, to prove the rationality of evaluation factors on the basis of MADM
method under q-RDHFEs, we provide a numerical example.

Table 2. Medical quality evaluation system.

Index Implication

Work efficiency (C1)
Utilization rate of hospital beds
Average length of hospital stay

The number of outpatient emergency patients

Medical quality (C2)
Cure rate, improvement rate and case fatality rate

Success rate of critically ill rescue
Satisfaction of nursing service

Workload (C3)
Number of visits

Number of hospitalizations

Example 2. To select the best medical quality form four hospitals Ai(i = 1, 2, 3, 4), DMs assess
the four hospitals under three attributes Cj(j = 1, 2, 3), where C1 represents the work efficiency; C2
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represents the medical quality; and C3 represents the workload. DMs are required to evaluate the
four alternatives with respect to the three attributes Cj(j = 1, 2, 3) by q-RDHFEs and the decision
matrix Ai(i = 1, 2, 3, 4) x dij =

{{
hij
}

,
{

gij
}}

is obtained, which is shown in Table 3.

Table 3. The q-rung dual hesitant decision matrix.

C1 C2 C3

A1 {{0.3, 0.4}, {0.6}} {{0.7, 0.9}, {0.2}} {{0.5, 0.6}, {0.3}}
A2 {{0.2, 0.3}, {0.7}} {{0.6, 0.7}, {0.4}} {{0.7}, {0.2, 0.3, 0.4}}
A3 {{0.5}, {0.2, 0.3}} {{0.2, 0.3, 0.4}, {0.6}} {{0.5}, {0.3, 0.4}}
A4 {{0.7, 0.8}, {0.2}} {{0.6}, {0.5}} {{0.5, 0.7}, {0.1, 0.2}}

7.3. The Decision-Making Process

The method described in Section 5 is used to determine the best alternative. The
calculation process is as follows.

Step 1. Since the attributes are benefit types, the step of standardizing the initial
decision matrix can be skipped.

Step 2. Compute the support between dil and dim, that is, Sup(dil , dim). The symbol
Slm is used to represent the value Sup(dil , dim)(l, m = 1, 2, 3; i = 1, 2, 3, 4; l 6= m). Therefore,
the result of calculation is as follow.

S12 = S21 = (0.6037, 0.7323, 0.8654, 0.8200);

S13 = S31 = (0.8537, 0.6838, 0.9813, 0.9015);

S23 = S32 = (0.7500, 0.9560, 0.8766, 0.8853).

Step 3. Compute the support T
(
dij
)
. The symbol Tij is used to symbolize the value

T
(
dij
)
, and the result is below

T =


1.4573 1.3537 1.6037
1.4161 1.6883 1.6398
1.8467 1.7420 1.8579
1.7215 1.7053 1.7868


Step 4. Calculate the weight of Cj(j = 1, 2, . . . , n) according to Equation (31). Therefore,

the result of calculation is as follow.

wij =


0.2025 0.6271 0.1704
0.3825 0.2532 0.3643
0.2905 0.4946 0.2149
0.5669 0.1230 0.3101


Step 5. Compute the power weight δij and we can obtain

δij =


0.2059 0.6106 0.1836
0.3601 0.2652 0.3747
0.2957 0.4848 0.2195
0.5631 0.1214 0.3155


Step 6. For alternative Ai(i = 1, 2, 3, 4), utilized the q-RDHFPWHM operator to com-

pute the evaluation di(i = 1, 2, 3, 4) (assume that k = 1 and q = 3).
Step 7. Compute the score values S(di)(i = 1, 2, 3, 4) of the overall evaluation values,

and we can get

S(d1) = −0.1117, S(d2) = −0.3535, S(d3) = −0.3806, S(d4) = −0.0675
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Step 8. According to the score values S(di)(i = 1, 2, 3, 4), the ranking orders of the
alternatives can be determined, that is A4 > A1 > A2 > A3, which directs that A4 is the
optimal alternative.

7.4. Analysis of the Impact of Parameters

One of the most important research aspects of AOs is to check out the influence of
parameters. Hence, we also conduct sensitivity analysis of the parameters of the proposed
decision-making method.

7.4.1. The Influence of the Parameter q on the Results

First of all, the impact of the parameter q will be investigated. Hence, different q
in the process of the calculation (we assume that k = 2) are taken and show the results
in Table 4. From Table 4, when different parameters of q are employed, different score
values of alternatives are derived, which may also lead to different ranking results of
alternatives. In addition, we also noticed that although the ranking orders are different, the
best option is always A4. This finding also illustrates the stability of our decision-making
method. Moreover, we shall notice that the method of determining the value of q is also am
important problem. In [30], authors have discussed the method of choosing a proper value
of q. More details of determining the value of q can be found in Xu et al.’s publication.

Table 4. Score values of alternatives Ai(i = 1, 2, 3, 4) when q ∈ [1, 5] based on q-RDHFPWHM
operator (k = 2).

q Score Values S(di)(i = 1,2,3) Ranking Orders

q = 1 S(d1) = −0.4985, S(d2) = −0.5700,
S(d3) = −0.5804, S(d4) = −0.4127 A4 > A1 > A2 > A3

q = 2 S(d1) = −0.4424, S(d2) = −0.5136,
S(d3) = −0.4968, S(d4) = −0.3084 A4 > A1 > A3 > A2

q = 3 S(d1) = −0.4041, S(d2) = −0.4334,
S(d3) = −0.4001, S(d4) = −0.2350 A4 > A3 > A1 > A2

q = 4 S(d1) = −0.3969, S(d2) = −0.3590,
S(d3) = −0.3190, S(d4) = −0.1910 A4 > A3 > A2 > A1

q = 5 S(d1) = −0.4140, S(d2) = −0.2930,
S(d3) = −0.2573, S(d4) = −0.1663 A4 > A3 > A2 > A1

7.4.2. The Influence of the Parameter k on the Results

The impact of the parameter k should be studied in the following. The parameter k is
a significant parameter in the q-RDHFPWHM operator. If we use different values of the
parameter k, we can obtain the following decision results, including the score values of
alternatives as well as their ranking orders (See Table 5). We noticed that if the values of k
are different, the score values of alternatives are different, which further lead to slightly
different ranking orders of alternatives. However, the optimal alternative is always A4.
However, it is obvious that the score values according the increase of k are smaller. In
addition, k represents the numbers of attributes among which their interrelationship is
taken into consideration. In real MADM problem, DMs can select proper parameter k
according to practical needs.
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Table 5. Score values and ranking results with different values of k in the q-RDHFPWHM operator
(q = 3).

k Score Values S(di)(i = 1,2,3,4) Ranking Orders

k = 1 S(d1) = −0.1117, S(d2) = −0.3535,
S(d3) = −0.3806, S(d4) = −0.0675 A4 > A1 > A2 > A3

k = 2 S(d1) = −0.4041, S(d2) = −0.4334,
S(d3) = −0.4001, S(d4) = −0.2350 A4 > A3 > A1 > A2

k = 3 S(d1) = −0.4542, S(d2) = −0.4636,
S(d3) = −0.4060, S(d4) = −0.3594 A4 > A3 > A1 > A2

7.5. Validity Analysis

In this section, we use our method and some existing method include the method
proposed by Xu et al. [17] using q-rung dual hesitant fuzzy weighted Heronian mean
(q-RDHFWHM) operator, the method proposed by Wei et al. [54] based on dual hesitant
Pythagorean fuzzy Hamacher weighted averaging (DHPFHWA) operator and the method
proposed by Zhang et al. [55] based on dual hesitant fuzzy Maclaurin symmetric mean
(DHFMSM) operator to solve some practical examples and compare their decision results.

7.5.1. Compared with Xu et al.’s Method

In this section, we compare our method with the method proposed by Xu et al. [17]
based on q-RDHFWHM operator. The two methods are used to solve the Example 2 and
the results are shown in Table 6. As we can see from the Table 6, it is obvious that the score
values are different, which leads to different orders. However, the optimal alternative is
always A4. Hence, it indicates the feasibility of our method.

Table 6. The decision-making results by different methods.

Methods Score Values S(di)(i = 1,2,3,4) Ranking Orders

Xu et al.’s [17] method based
on q-RDHFWHM operator

(t = 1, s = 1, q = 3)

S(d1) = −0.7206, S(d2) = −0.6748,
S(d3) = −0.2525, S(d4) = 0.1998 A4 > A3 > A2 > A1

Our method based on
q-RDHFPWHM

(k = 1, q = 3)

S(d1) = −0.1117, S(d2) = −0.3535,
S(d3) = −0.3806, S(d4) = −0.0675 A4 > A1 > A2 > A3

7.5.2. Compared with Wei et al.’s Method

In this section, we compare our method with the method proposed by Wei et al. [54]
based on DHPFHWA operator. We use the two methods to solve the Example 2 and the
results are shown in Table 7. From the Table 7, although the score values and ranking
orders obtained by different methods are different, the optimal alternative is always A4,
which illustrate the validity of our method.

Table 7. The decision-making results by different methods.

Methods Score Values S(di)(i = 1,2,3,4) Ranking Orders

Wei et al.’s [54] method based
on DHPFHWA operator

S(d1) = 0.7153, S(d2) = 0.5778,
S(d3) = 0.5143, S(d4) = 0.7229 A4 > A1 > A2 > A3

Our method based on
q-RDHFPWHM

(k = 3, q = 2)

S(d1) = −0.4924, S(d2) = −0.5403,
S(d3) = −0.5039, S(d4) = −0.4237 A4 > A1 > A3 > A2

7.5.3. Compared with Zhang et al.’s Method

In this subsection, we compare the method presented by Zhang et al. [55] based
on dual hesitant fuzzy Maclaurin symmetric mean (DHFMSM) with our method based
on q-RDHFPWHM.
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Example 3. An investment company desires to select a city to expand its business. After in-
vestigation, there are five cities Ai(i = 1, 2, 3, 4, 5) may be selected. DMs assess the alternatives
under four attributes Cj(j = 1, 2, 3, 4), where C1 represents resources; C2 represents politics and
policy; C3 represents economy; and C4 represents infrastructure. DMs requested to evaluate the five
alternatives with respect to the four attributes by q-RDHFEs and the decision matrices is shown
in Table 8.

Table 8. The normalized q-rung dual hesitant decision matrix of Example 3.

C1 C2 C3 C4

A1 {{0.3, 0.4}, {0.6}} {{0.4, 0.5}, {0.3, 0.4}} {{0.2, 0.3}, {0.7}} {{0.4, 0.5}, {0.5}}
A2 {{0.6}, {0.4}} {{0.2, 0.4, 0.5}, {0.4}} {{0.2}, {0.6, 0.7, 0.8}} {{0.5}, {0.4, 0.5}}
A3 {{0.5, 0.7}, {0.2}} {{0.2}, {0.7, 0.8}} {{0.2, 0.3, 0.4}, {0.6}} {{0.5, 0.6, 0.7}, {0.3}}
A4 {{0.7}, {0.3}} {{0.6, 0.7, 0.8}, {0.2}} {{0.1, 0.2}, {0.3}} {{0.1}, {0.6, 0.7, 0.8}}
A5 {{0.6, 0.7}, {0.2}} {{0.2, 0.3, 0.4}, {0.5}} {{0.4, 0.5}, {0.2}} {{0.2, 0.3, 0.4}, {0.5}}

According to Table 9, different score values of alternatives are computed by two meth-
ods. Nevertheless, the ranking orders and the optimal alternative are the same,
i.e., A5 > A3 > A4 > A2 > A1, and A5 is the best alternative. In other words, it
proves the flexibility of our method.

Table 9. The decision-making results of example 3 by different methods.

Methods Score Values S(di)(i = 1,2,3,4,5) Ranking Orders

Zhang’s [55] method
based on DHFMSM

operator

S(d1) = −0.2046, S(d2) = −0.1190,
S(d3) = −0.0360,S(d4) = −0.0445,

S(d5) = 0.0528
A5 > A3 > A4 > A2 > A1

Our method based on
q-RDHFPWHM

(k = 3, q = 2)

S(d1) = −0.7812, S(d2) = −0.7545,
S(d3) = −0.6648, S(d4) = −0.6700,

S(d5) = −0.5805
A5 > A3 > A4 > A2 > A1

7.6. Advantages of Our Method

In this part, the advantages and superiority of our method are further proved.

7.6.1. It Can Effectively Deal with DMs’ Unreasonable Evaluation Values

Based on the q-RDHFPWHM operator, our method can effectively handle extreme
evaluation values, which is demonstrated by the following cases.

Example 4. In order to state more clearly, we suppose that the DM have personal preferences:
the DM are biased against the city A3 and prefer the city A5 under city environment C3. Hence,
the DM give A3 a low evaluation {{0.1, 0.2, 0.3}, {0.1, 0.2}} and assume A3 a high assessment
{{0.5, 0.8}, {0.2, 0.3}} and the other assessment information is the same as Example 3. The method
proposed by Zhang et al. [55] and our proposed method are used to solve the Example 4 and the
decision results are shown in Table 10.

Table 10. The decision-making results of example 4 by different methods.

Methods Score Values S(di)(i = 1,2,3,4,5) Ranking Orders

Zhang et al.’s [55] method
based on DHFMSM

operator (k = 2)

S(d1) = −0.7584, S(d2) = −0.7235,
S(d3) = −0.6120, S(d4) = −0.6773,

S(d5) = −0.6134
A3 > A5 > A4 > A2 > A1

Our method based on
q-RDHFPWHM

(k = 2, q = 3)

S(d1) = −0.7186, S(d2) = −0.6869,
S(d3) = −0.6056, S(d4) = −0.5511,

S(d5) = −0.4629
A5 > A4 > A3 > A2 > A1

From Table 10, it is noted that the ranking order obtained by Zhang et al.’s [55] method
changed into A3 > A5 > A4 > A2 > A1, the best choice changed into A3. Besides, the
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order obtained by our method also be A5 > A4 > A3 > A2 > A1 and the optimal choice is
A5, which direct that our method can effectively deal with the extreme values. Hence, our
method is more flexible and robust than Zhang et al.’s [55] method.

7.6.2. It Can Determine the Weight Information of Attributes Objectively

In our proposed MADM method, the weight information of attributes is unknown. In
other words, our method provides a method to objectively determine weight information of
attributes based on the decision matrix. However, the MADM methods in Xu et al. [17] are
based on the supposition that the weight vector of attributes is known. In the reality, due
to the difficulties of decision-making problems, it is usually difficult to provide attributes’
weights by DMs. When employing our method to choose the optimal alternative, DMs
need not provide weight information in advance. Hence, in our decision-making method,
the weight vector of attributes is objectively determined by DMs’ original decision matrices,
which makes the decision results more reasonable and reliable. Hence, our method is more
flexible than Xu et al.’s [17] method.

7.6.3. It Can Consider the Complex Interrelationship among Multiple Attributes

In real decision-making problems, the interrelationship among attributes is usually
changeable. To make the final results more reliable, it is necessary to take the interrelation-
ship into consideration when calculating. We propose a multi-attribute decision-making
method based on the q-RDHFPWHM operator, which can handle complex interrelation-
ships. To prove this advantage, Example 4 is solved by our method, and the results are
shown in Table 11. We can find that the best alternative with different k is different. In real
decision-making problem, DMs can select a proper k according to actual needs.

Table 11. Score values and ranking results with different values of k in the q-RDHFPWHM operator
(q = 3).

k Score Values S(di)(i = 1,2,3,4,5) Ranking Orders

k = 1
S(d1) = −0.6877, S(d2) = −0.6257,
S(d3) = −0.5172, S(d4) = −0.3811,

S(d5) = −0.3358
A5 > A4 > A3 > A2 > A1

k = 2
S(d1) = −0.7186, S(d2) = −0.6869,
S(d3) = −0.5690, S(d4) = −0.5511,

S(d5) = −0.4804
A5 > A4 > A3 > A2 > A1

k = 3
S(d1) = −0.7309, S(d2) = −0.7074,
S(d3) = −0.5865, S(d4) = −0.6317,

S(d5) = −0.5088
A5 > A3 > A4 > A2 > A1

k = 4
S(d1) = −0.3048, S(d2) = −0.2656,
S(d3) = 0.0456, S(d4) = −0.3127,

S(d5) = −0.1202
A3 > A5 > A2 > A1 > A4

7.6.4. It Can Effectively Express DM’s Evaluation Comprehensively

The constraint of q-RDHFEs is that of qth power of MD and qth power of NMD is less
than or equal to one. Compared with the DHFs, q-RDHFs can describe larger information
space. Basically, q-RDHFs allow DMs to evaluate the alternatives more comprehensively.
The example 5 is shown to illustrate the advantage better.

Example 5. In Example 3, DMs use DHFs to note their assessment. The constraint of DHFSs is the
sum of MG and NMG ought to be less than one. Particularly, this constrain cannot be always satis-
fied. Such that the evaluation value of attribute C3 of A2 is changed into {{0.8}, {0.3, 0.8, 0.9}}.
Then, the method proposed by Zhang et al. and us are used to solve Example 5 and the decision
results are shown in Table 12.
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Table 12. The decision results of Example 3 by different methods.

Method Score Values S(di)(i = 1,2,3,4,5) Ranking Orders

Zhang’s [55] method
based on DHFMSM

operator
Cannot be calculated ——

Our method based on
q-RDHFPWHM

(k = 2; q = 5)

S(d1) = −0.6368, (d2) = −0.6167,
S(d3) = −0.4454, S(d4) = −0.4497,

S(d5) = −0.4233
A5 > A3 > A4 > A2 > A1

As shown in Table 12, the method proposed by Zhang et al. [55] cannot be suitable
for Example 5. Our method solves it, and the ranking orders is A5 > A3 > A4 > A2 > A1.
This is because the value {{0.8}, {0.3, 0.8, 0.9}} does not satisfy the constraint of DHFs,
as 0.8 + 0.9 = 1.7 > 1. The method proposed by us remains suitable for this example,
such as our set q = 5, so 0.85 + 0.95 = 0.9182 < 1. Hence, it is effective to deal with DMs’
assessment information by our method.

8. Conclusions

This paper proposed a new MADM approach based on q-RDHFs. The main attributes
can be summarized into three points. First, to solve the existing methods based on q-
RDHFSs only consider the relationship between attribute values, we present a novel
MADM method used the proposed q-RDHFPHM operator and q-RDHFPWHM operator,
which further consider how to deal with unreasonable or extreme evaluation values of
DMs. Second, in most MADM problems, weight vector of attributes is unknown and
DMs provide the weight information with difficulty. Based on the entropy measure, we
determine the weight information of a set of q-RDHFE, so the above problems can be solved.
Finally, a comprehensive novel method to handle MADM problems with q-RDHFPWHM is
derived. Meanwhile, a numerical example is given to illustrate how the proposed method
can be used to solve assessment of hospitals’ medical quality. Numerical examples and
comparative analysis demonstrate how our method is more powerful and feasible than
other existing methods.

Compared with existing methods, our proposed method has obvious advantages;
however, our method is insufficient to handle decision makers’ interval-valued evaluation
information. In addition, we only focus on MADM problems where there are several
decision makers. However, as real decision-making problems are becoming more and more
complex, more decision makers are necessary for determining the final decision results.
Hence, large-scale group decision-making has become a promising research topic [56–58].
We will pay more attention to these limitations and strengthen the depth of research. In
future works, we will continue our research from three aspects. First, we shall investigate
more MADM methods under q-rung dual hesitant fuzzy decision-making environment.
Second, in order to handle DMs’ interval-valued information, we shall continue to study
interval-valued q-RDHFSs-based MADM method. Third, we shall investigate methods for
large-scale group decision-making under q-RDHFSs and interval-valued q-RDHFSs.
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C. The Proof Process of Theory 3 in Section 3.1

Proof. From Definition 7, we can obtain

nδij d
− ≤ nδij dij ,

and
k
⊗

j=1

(
nδij d

−
)
≤

k
⊗

j=1

(
nδij dij

)
.

Thus, (
k
⊗

j=1

(
nδij d

−
))1/k

≤
(

k
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(
nδij dij

))1/k

,

therefore,
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−
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(
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.

Finally,
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n
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,

which represents x ≤ q− RDHFPHM(k)(d1, d2, . . . , dn). �
Analogously, q− RDHFPHM(k)(d1, d2, . . . , dn) ≤ y can be proved. Therefore, Theo-

rem 3 is proved completely.

D. The Proof Process of Theory 4 in Section 3.2

Proof.
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E. The Proof Process of Theory 5 in Section 3.2

Proof.
nσij d
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and
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Therefore,
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Finally,
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which implies that x ≤ q− RDHFPWHM(k)(d1, d2, . . . , dn). �

In the same way, q− RDHFPWHM(k)(d1, d2, . . . , dn) ≤ y can be proved. Therefore,
Theorem 5 is proved completely.
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