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Abstract

Motivation: Successful science often involves not only performing experiments well, but also choosing well among
many possible experiments. In a hypothesis generation setting, choosing an experiment well means choosing an ex-
periment whose results are interesting or novel. In this work, we formalize this selection procedure in the context of
genomics and epigenomics data generation. Specifically, we consider the task faced by a scientific consortium such
as the National Institutes of Health ENCODE Consortium, whose goal is to characterize all of the functional elements
in the human genome. Given a list of possible cell types or tissue types (‘biosamples’) and a list of possible high-
throughput sequencing assays, where at least one experiment has been performed in each biosample and for each
assay, we ask ‘Which experiments should ENCODE perform next?’

Results: We demonstrate how to represent this task as a submodular optimization problem, where the goal is to
choose a panel of experiments that maximize the facility location function. A key aspect of our approach is that we
use imputed data, rather than experimental data, to directly answer the posed question. We find that, across several
evaluations, our method chooses a panel of experiments that span a diversity of biochemical activity. Finally, we
propose two modifications of the facility location function, including a novel submodular–supermodular function,
that allow incorporation of domain knowledge or constraints into the optimization procedure.

Availability and implementation: Our method is available as a Python package at https://github.com/jmschrei/
kiwano and can be installed using the command pip install kiwano. The source code used here and the similarity
matrix can be found at http://doi.org/10.5281/zenodo.3708538.

Contact: jmschr@cs.washington.edu or william-noble@uw.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Experimental characterization of the genomic and epigenomic land-
scape of a human cell line or tissue (‘biosample’) is expensive but
can potentially yield valuable insights into the molecular basis for
development and disease. Fully measuring the epigenome involves,
in principle, assaying chromatin accessibility, transcription, dozens
of histone modifications and the binding of over a thousand DNA-
binding proteins. Even after accounting for the decreasing cost of
high-throughput sequencing, such an exhaustive analysis is expen-
sive, and systematically applying such techniques to diverse cell
types and cell states is simply infeasible. Essentially, we cannot af-
ford to fill in an experimental data matrix in which rows correspond
to types of assays and columns correspond to biosamples.

Several approaches have been proposed to address this challenge.
Some scientific consortia, such as GTEx and ENTEX, aim to

completely fill in a smaller submatrix of preselected assays and bio-
samples. In contrast, other consortia, such as the Roadmap
Epigenomics Mapping Consortium (Kundaje et al., 2015) and
ENCODE (ENCODE Project Consortium, 2012), adopted a rough-
ly ‘L’-shaped strategy, in which consortium members focused on
carrying out many assays in a small set of high-priority biosamples,
and a smaller set of assays over a much larger set of biosamples.
Recently, computational approaches have been proposed that rely
on using machine learning models to impute the experiments that
have not yet been performed (Durham et al., 2018; Ernst and Kellis,
2015; Schreiber et al., 2020a,b). Although the imputation strategy
can relatively easily complete the entire matrix, a drawback is that
the imputed data is potentially less trustworthy than actual experi-
mental data.

In this work, we address a variant of the matrix completion
problem where the goal is to identify a set of k values within the
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matrix that should be filled in. This problem corresponds to the
scenario that we, as a field, find ourselves in currently, where we
have performed many assays in many biosamples and are trying to
figure out which of the remaining assay/biosample combinations
(‘experiments’) we should perform next. However, this problem is
difficult because, by definition, we do not know how informative an
experiment will be before it is performed. As a result, the choice of
which experiments to perform is frequently driven by intuition and
guesswork.

A computational approach to this problem is to frame the selec-
tion as a submodular optimization problem. In this formulation, a
submodular set function fð�Þ quantifies the quality of a panel of
assays relative to the full collection of potential experiments, and
maximization of this function involves identifying a panel of high
quality. Framing the problem as a submodular optimization has sev-
eral advantages, including principled greedy approaches to opti-
mization, and the ability to seed these greedy algorithms with
experiments that have already been performed. However, a chal-
lenge facing this optimization is that, generally, f relies on calculat-
ing similarities between all pairs of input elements, and similarities
cannot be calculated for experiments that have not been performed.

Wei et al. (2016) overcome this challenge by restricting panel se-
lection to one axis of the experimental matrix at a time. Although
this restriction does not allow similarities to be calculated when
assays are missing for the given biosample (or biosamples for a given
assay), these similarities can be inferred by calculating the average
similarity for each pair of assays across all other biosamples where
both assays have been performed. After calculating this assay �
assay similarity matrix, they choose a panel of assays by using stand-
ard methods to maximize a ‘facility location’ set function. An im-
portant consequence of calculating similarities in this manner is that
their method is ‘biosample-agnostic,’ in the sense that it yields a sin-
gle set of suggested assays, irrespective of biosample. Wei et al. ex-
plicitly consider the scenario in which a specified set of assays has
already been performed in a given biosample, and the task is to se-
lect the next k assays to perform. However, even in this setting, the
proposed approach is cell-type agnostic: the method yields the same
answer for any biosample in which the specified set of assays has
been performed.

In this work, we overcome the challenge of calculating similar-
ities for experiments that have not yet been performed by making
use of imputed data. Because imputed data exists for every experi-
ment, there is no need to aggregate similarities across biosamples, as
Wei et al. do. Rather, a panel of experiments can be chosen directly
by maximizing the facility location function using the experiment �
experiment similarity matrix. This approach has two advantages
over the work of Wei et al. First, rather than restricting our selection
to a single row or column of the data matrix, using imputed data
allows us to address the global question, ‘Among all possible experi-
ments within the experimental matrix, which one should I do next?’
Second, even in the case where we want to choose a panel of assays
within a single given biosample, our imputation-based approach
selects a set that is tailored to this particular biosample.

We use ENCODE data to validate our approach in several ways.
First, we illustrate via visualization that the imputation-based simi-
larity matrix encodes meaningful biological relationships among
assay types and biosamples that are matched by the real data. We
then apply the optimization procedure to this similarity matrix and
show that the resulting subset of experiments is representative of the
full set, both qualitatively and through simulation experiments. In
these simulation experiments, we find that our approach outper-
forms the approach of Wei et al. in a setting similar to the one that
they consider. Next, although many of our experiments involve opti-
mizing a plain facility location function, we show that one can in-
clude weights and a novel supermodular regularization term to
incorporate domain knowledge that is important for choosing a
practical set of experiments. Finally, we illustrate how to apply the
objective function used in our optimization to ascertain which bio-
samples are currently undercharacterized and which assays are
underutilized. We have made a tool available at https://www.github.

com/jmschrei/kiwano/ that can order experiments based on the pre-
calculated similarity matrix we use here.

2 Materials and methods

2.1 Submodular optimization and facility location
Submodular optimization is the discrete analog of convex optimiza-
tion and operates on submodular set functions. A function is sub-
modular if and only if it has the property of diminishing returns; i.e.
the incremental gain in function value associated with adding an
element s to a set A becomes smaller as the size of the set A becomes
larger. More formally, given a finite set S ¼ fs1; s2; . . . ; sng, a dis-
crete set function f : 2S ! R is submodular if and only if

f ðA [ sÞ � f ðAÞ � f ðB [ sÞ � f ðBÞ; 8A � B � S; s 62 B:

In this work, we use a submodular function whose value is in-
versely related to the redundancy within a given set. Thus, optimiz-
ing such a function, subject to a cardinality constraint, involves
identifying the subset whose elements are minimally redundant with
each other. For further reading on submodular optimization, we
suggest Fujishige (2005), Krause and Golovin (2014) and Lovász
(1983).

Our method relies on optimizing a particular submodular func-
tion called facility location. Facility location takes the form

f ðXÞ ¼
X

y2Y

max
x2X

/ðx; yÞ (1)

such that Y is the full set of experiments, X is the selected subset of
experiments such that X � Y, x and y are individual experiments in
X and Y respectively, and /ðx; yÞ is the squared correlation between
x and y. The facility location function is optimized using the acceler-
ated greedy algorithm (Minoux, 1978), which iteratively selects the
experiment that increases the gain by the largest amount. We use
apricot v0.3.0 to perform this selection (Schreiber et al., 2019).

2.2 Model training
We evaluated our selection process by training multi-task linear re-
gression models using selected tracks as input and the full set of
tracks as the output. These models were implemented using keras
(v2.2.4) (Chollet et al., 2015) with a Theano (v1.0.4) (Theano
Development Team, 2016) backend. The weight matrix that trans-
formed inputs to outputs was optimized using the Adam optimizer
(Kingma and Ba, 2015) with a mean-squared-error loss. All hyper-
parameters and the weight initializations are set to the keras defaults
with no explicit regularization.

These models were trained and evaluated using different parti-
tions of the ENCODE Pilot Regions. First, when the experiments to
use were selected using submodular optimization, they were selected
using the similarity matrix based on the first 600 000 25 bp bins
used throughout this work. Second, the models were trained using
the next 500 000 25 bp bins. Finally, the models were evaluated on
the remaining 99 362 25 bp bins. There is no overlap between these
three partitions.

2.3 Datasets
We generated our imputations using an Avocado model that had
previously been trained on the ENCODE2018-Core dataset
(Schreiber et al., 2020a). The model is available at https://noble.gs.
washington.edu/ jmschr/mango/models/. This model was trained on
3814 experiments across 400 biosamples and 84 assays where the
signal was �log10 P-values that had subsequently been arcsinh
transformed to reduce the effect of outliers. The resulting imputa-
tions are in the same space. Due to the large size of the genome, we
only imputed the ENCODE Pilot Regions, comprising �1% of the
genome (ENCODE Project Consortium, 2007), for each of the
33 600 potential experiments. This 1% is comprised of a handful of
manually selected regions that were deemed of particular biological
interest, combined with a randomly selected set of 30 1-Mb regions
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that systematically vary in terms of gene density level of non-exonic
conservation.

An important detail is that, at the time of accession, experiments
measuring transcription had been divided into plus-strand signal
and minus-strand signal on the ENCODE portal. Consequently,
each strand was counted as a separate assay when training the
Avocado model. While the strand that transcription occurs on is im-
portant for an imputation approach to capture, this distinction is
not helpful for prioritizing experiments because one generally can-
not perform an experiment measuring transcription on only one of
the strands. Thus, we combine the plus- and minus-strand experi-
ments for both the imputed and the primary epigenomic data by
simply adding the tracks together. This process reduced the total
number of assays from 84 to 77, the total number of performed
experiments from 3814 to 3510, and the total number of potential
experiments from 33 600 to 30 800.

3 Results

3.1 Imputations cluster according to known biological

patterns
Our approach for prioritizing experimental characterization relies
on a similarity matrix that is calculated on imputed experiments. To
produce this matrix, we first generated imputations of epigenomic
and transcriptomic experiments using a recently developed imput-
ation approach based on deep tensor factorization, named Avocado.
These imputations span 400 human biosamples and 77 assays of
biological activity for a total of 30 800 imputed tracks. After acquir-
ing these imputations, we calculated the squared Pearson correlation
between all pairs of imputed experiments for use as a similarity
measure, resulting in a 30 800 by 30 800 matrix. For efficiency,
these correlations were computed with respect to the ENCODE
Pilot Regions (ENCODE Project Consortium, 2007), comprising
1% of the genome.

After calculating the similarity matrix, we investigated whether
the similarity matrix was able to capture high level biological trends
that would be crucial for prioritization. We began by visually
inspecting a two-dimensional UMAP projection (McInnes and
Healy, 2018) of the similarity matrix down to two dimensions
(Fig. 1A). The clearest trend in this projection is a separation of
experiments based on a broad categorization of the type of activity

measured by the assay. We observed that one cluster contained
mostly protein binding experiments, one contained mostly histone
modification experiments, and several neighboring clusters were
composed exclusively of transcription-measuring experiments.
Initially, one might expect that experiments in the same biosample
where the assays measure the same underlying phenomena might
cluster together. However, we observed that in some cases a pair of
experiments may exhibit low correlation when the shape of their sig-
nals along the genome differ, even when the assays used in the
experiments both measure the same underlying biological activity.
For example, the histone modification H3K36me3 is known to be
associated with transcription but generally forms broad peaks across
the entire gene body, whereas assays such as CAGE or RAMPAGE
form punctate peaks.

To confirm that the separation according to assay categorization
was not an artifact of the imputation process, we used the same pro-
cess to calculate a similarity matrix and subsequent UMAP projec-
tion for the 3150 tracks of the experimental (or ‘primary’) data
(Fig. 1B). The major trends present in the projection of imputed data
are consistent with those in the primary data. In particular, tran-
scription experiments form distinct clusters, protein binding experi-
ments are mostly distinct from histone modification ones, and
chromatin accessibility experiments localize closer to protein bind-
ing experiments than to histone modification experiments. Note
that although the figure may appear to show that accessibility
experiments overlap with protein binding experiments, a closer
examination reveals that the protein binding experiments mostly
surround the accessibility experiments.

Next, we more closely examined four sets of assays that, a priori,
we expected to show distinctive patterns. The first set of experi-
ments was those that measured transcription. When we highlighted
experiments by assay type, we observed CAGE and RAMPAGE
experiments forming distinct cluters, micro- and small-RNA-seq
experiments forming a third cluster, and polyA-, polyA-depleted-
and total-RNA-seq experiments forming a fourth (Fig. 1C and D).
The second and third sets of experiments involved triplets of assays
whose activity are usually associated, specifically, with CTCF and
the cohesin subunits, SMC3 and RAD21, as well as H3K27me3 and
two polycomb subunits, EZH2 and SUZ12 (Fig. 1E and F). In both
cases we observe distinct clusters of experiments, which is particu-
larly interesting for H3K27me3 and the polycomb subunits because
one assay measures a histone modification and the other two

Fig. 1. A projection of imputed and experimental epigenomic tracks. Each panel shows a UMAP projection of 30 800 imputed experiments (top row) or of 3150 tracks of pri-

mary data (bottom row). In each column, a different set of experiments is highlighted based on their biological activity. (A/B) Experiments are highlighted based on broad cat-

egorization of the assayed activity. (C/D) Transcription-measuring experiments are colored according to different types of assays. (E/F) Experiments are highlighted that

measure H3K27me3 and two polycomb subunits, as well as CTCF and two cohesin subunits. (G/H) Experiments are highlighted showing several histone modifications that

are enhancer-associated, such as H3K4me1 (blue) and H3K27ac (orange), promoter-associated such as H3K4me2 (green) and H3K4me3 (red), transcription-associated such

as H3K36me3 (purple) or broadly repressive such as H3K9me3 (brown)
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measure protein binding. The fourth set of experiments focused on
six well-studied histone modifications (Fig. 1G and H). The cluster-
ing of these six marks coincides with the genomic element in which
they are typically enriched. In particular, experiments measuring
H3K36me3 and H3K9me3 form their own clusters, with the two
assays respectively measuring activity enriched in gene bodies and
constitutive heterochromatin. Further, the primary cluster of histone
modification experiments exhibited a separation between the
promoter-associated marks, H3K4me2 and H3K4me3, and the
enhancer-associated marks, H3K4me1 and H3K27ac. We observed
similar patterns across both the imputed and primary data for each
of these four sets of assays. Taken together, these observations sug-
gest that a similarity matrix derived from imputed experiments is
successfully capturing important aspects of real biological activity.

3.2 Submodular selection of imputations flexibly

prioritizes assays across cellular contexts
Having shown that the similarity matrix captures several high-level
trends in the data, we turn to the task of experimental prioritization.
Our strategy for prioritizing experiments relies on submodular selec-
tion, which is a technique for reducing a set of elements to a minim-
ally redundant subset through the optimization of a submodular
function that captures the quality, or ‘representativeness,’ of a given
subset relative to the full set (see Section 2 for details). Submodular
selection has been used previously to select genomics assays (Wei
et al., 2016), to select representative sets of protein sequences
(Libbrecht et al., 2018) and to choose genomic loci for characteriza-
tion by CRISPR-based screens (Gasperini et al., 2019). Specifically,
we optimize a ‘facility location’ objective function, which operates
on pairwise similarities between elements and so is well suited to le-
verage our similarity matrix (see Section 2). A critical property of
submodular functions is that greedy optimization will yield a subset
whose objective value is within 1� e�1 of the optimal subset, and
that this is the best approximation one can make unless P¼NP
(Nemhauser et al., 1978). This greedy optimization algorithm itera-
tively selects the single element whose inclusion in the representative
set leads to the largest gain in the objective function. Thus, when

applied to our similarity matrix, the submodular selection procedure
will yield an ordering over all experiments that attempts to minimize
redundancy among those experiments that are selected early in the
process.

To demonstrate that submodular selection results in a represen-
tative subset of assays, we applied it to our calculated similarity ma-
trix. Visually, we observe that the first 50 selected experiments
appear to cover the space well and include selections from many of
the small clusters of experiments (Fig. 2A, Supplementary Table S1).
When we count the number of assays selected for each type of bio-
logical activity, we find that protein binding assays are the most
commonly selected with 23 experiments, followed by histone modi-
fication assays with 19 experiments, transcription assays with 6
experiments, and, finally, accessibility assays with 2 experiments
(Fig. 2B). However, when we compare the number of selected
experiments of each type to the number that one would expect by
randomly selecting with replacement, we observe that protein bind-
ing experiments are underrepresented, whereas histone modification
experiments are overrepresented. We note that the first 10 experi-
ments are at the centers of large clusters of experiments and that the
subsequent 40 experiments are selected from smaller clusters. This
finding corresponds with the gain in the facility location objective
score from each successive experiment significantly diminishing by
the tenth experiment (Fig. 2C).

We then evaluated the stability of our procedure by applying it
to randomly selected sets of genomic loci drawn from the entire gen-
ome, rather than a portion of the ENCODE Pilot Regions. As a
practical matter, we could not select these positions from the impu-
tations themselves because it would involve storing > 30k genome-
wide tracks in memory. Furthermore, because each track took
roughly half a gigabyte to store in memory, we were restricted to
using only a subset of 800 of the 3150 experimental tracks. When
we applied our procedure to these 800 tracks to choose 50 experi-
ments, we found that a similar number of experiments were selected
across 100 runs for each type of biological activity (Supplementary
Fig. 1A). Likewise, we found a similar number of experiments
selected per assay (Supplementary Fig. 1B). We also noted that these
numbers were similar to the number of experiments chosen when

Fig. 2. A selection of experiments before and after accounting for those that have already been performed. (A) The same projection of imputed experiments as shown in

Figure 1A, where the first 50 experiments selected using our method are colored by the type of activity that they measure. The first 10 experiments selected are marked using

an X, and the remaining 40 are marked with a dot. (B) A bar chart showing the frequency that experiments of each type of activity are selected in the first 50 experiments. (C)

The facility location objective score as the first 50 experiments are selected, with each point colored by the type of activity measured by that experiment. (D) The same as (A),

but with the selection procedure initialized with the experiments that have already been performed, and with those experiments displayed in dark gray. (E) The same as (B),

but with dark gray bars showing the frequency of experiments of each type that have already been performed. (F) The same as (C), but with the selection procedure initialized

with the experiments that have already been performed
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using the ENCODE Pilot Regions. Together, these results indicate
that the selection is stable to small perturbations in the correlation
matrix, and that the ENCODE Pilot Regions are a reasonable ap-
proximation of a random sample of the entire genome.

Next, we consider whether the selection process is influenced by
the number of available experiments for each biosample or assay.
Potentially, biosamples and assays with plentiful available data will
have more information-rich imputations that are consequently pri-
oritized highly by our method, whereas biosamples and assays with
little available data will have poor quality imputations that appear
similar to each other and are largely ignored by the method.
However, we did not find any evidence that this was the case. When
we used our approach to choose a panel of 500 experiments, we
observed little correlation between the number of available experi-
ments and the number of chosen experiments for each biosample
and assay (Supplementary Fig. 2). Further, we found that only 5.6%
(28) of the 500 chosen experiments corresponds to experiments that
had actually been performed and were used to train the underlying
imputation model, indicating that our method does not simply select
experiments from the training set of the underlying imputation
model.

A weakness in simply applying submodular selection to the full
set of imputed experiments is that the procedure does not account
for the thousands of epigenomic and transcriptomic experiments
that have already been performed. Fortunately, there are two ways
that one can account for these experiments. The first is to remove
those experiments that have already been performed from the simi-
larity matrix and perform selection on the remaining experiments.
While this approach is simple, it does not account for the content of
the experiments that have already been performed. For example, if
transcription has already been measured in hundreds of biosamples,
then it may be beneficial to focus experimental efforts on character-
izing other types of biological activity. A second approach takes ad-
vantage of the fact that the selection process is greedy by initializing
the set of selected experiments with those that have already been
performed. This ensures that the selected experiments cover types of
activity that are not already well characterized.

Accordingly, we proceeded with the second approach. We ini-
tialized a facility location function with the 3150 experiments that
had already been performed and ranked the remaining 27 650
experiments. We observed that the selected experiments lie primarily
in areas of the UMAP projection that do not already have many
experiments performed (Fig. 2D, Supplementary Table S2). When
we counted the number of selected experiments of each type, we
found that the number of protein binding experiments increased
from 23, when not accounting for the experiments that had already
been performed, to 41, when accounting for them (Fig. 2E).
Correspondingly, the number of histone modification experiments
decreased from 19 to 9. This change in coverage is likely because
1726 experiments measuring histone modification have already
been performed, whereas only 571 experiments measuring protein
binding have been performed. Further, none of the first 50 selected
experiments measure transcription or accessibility, likely because

those forms of activity are already much better measured than pro-
tein binding. In this setting, the gain in the facility location objective
function of each successive experiment is much lower, due in large
part to the experiments that have already been performed (Fig. 2F).

3.3 Selection on imputed experiments identify diversity

in primary data
Our next step was to evaluate the quality of the selected experiments
in a quantitative way. Following Wei et al., we reasoned that the sig-
nal contained in a representative subset of experiments would be
well suited for reconstructing the signal in all experiments. We for-
mulated the problem of quantitatively measuring how representative
a subset is as a multi-task regression problem, with the input fea-
tures being the signal from the selected subset of experiments and
the outputs being the signal from the full set of experiments (see
Section 2). Importantly, to ensure that this validation measured how
representative a subset is of the primary data, despite subset selec-
tion having been performed on the imputations, we used the primary
data as both the input and target for this task.

We selected a subset of experiments in three ways. The first was
through the submodular selection procedure described in Section
3.2, applied to the 3150 imputed experiments for which primary
data had already been collected. The second was by applying the
submodular selection procedure to the 3150 tracks of primary data
themselves. Naturally, selecting subsets based on the primary data
cannot be extended to experiments that have not yet been per-
formed, and so the purpose of evaluating models trained using this
subset is to measure the effect that the imputation process itself has
on selecting a representative subset of experiments. The third was
selecting subsets of the 3150 performed experiments at random.
This random process was repeated 20 times to obtain a distribution
of scores.

We observed that the subsets of experiments selected using sub-
modular selection consistently outperform those selected at random
(Fig. 3A). Each comparison is statistically significant at a P-value
threshold of 0.01 according to a one sample t-test. Further, for
smaller subsets, applying submodular selection to the imputed tracks
performs nearly as well as the panels selected on the primary data it-
self, showing that the distortion introduced by the imputation pro-
cess is small. Interestingly, when the subsets become much larger,
those selected using imputed tracks appear to outperform those
selected using the primary data. This trend may arise because
imputed tracks can serve as denoised versions of the primary data
(Ernst and Kellis, 2015). At the beginning of the selection process,
this denoising is not necessary to select experiments that are very dif-
ferent from each other. However, once many experiments have been
selected, the denoised experiments may be better at identifying real
differences between experiments. We observed similar trends when
the selection step was performed on a different set of experiments
from those used to evaluate the regression model (Supplementary
Fig. ??A), and when an entire form of biochemical activity, in this
case protein binding assays, was held out from the selection step and

Fig. 3. Imputation performance using different panels of assays. (A) The performance of regression models (in terms of mean-squared-error, MSE) as a function of the number

of experiments chosen as the input. These panels range in size from 5 assays to 1000 assays, and are selected either randomly (gray), through a facility location function applied

to imputed experiments (red), or through a facility location function applied to primary data (blue). (B) The average performance of regression models across all biosamples as

a function of the number of experiments chosen as the input for that biosample. The panels are chosen either using our approach or the method of Wei et al. Gray shading indi-

cates differences that are significant at Wilcoxon P-value 	 0:05
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then used to evaluate the regression model (Supplementary Fig.
??B).

Next, we compared our approach to the approach proposed by
Wei et al. in their restricted setting of choosing a subset of assays
within a particular biosample. Specifically, for each biosample, we
derive similarity matrices from the imputed experiments for that
biosample (our approach) or the average similarity over experiments
from every other biosample (their approach). It is worth mentioning
that, even though this evaluation setting is similar to the one consid-
ered by Wei et al., it is not identical: our approach is still restricted
to the set of biosamples where imputations are available. In a similar
manner to the previous evaluations in this section, we then evaluate
how well regression models can use varying sized subsets of assays
from a particular biosample to predict the full set of assays within
the biosample. The errors are then averaged across biosamples for
each panel size.

In this setting, our method outperformed the method of Wei
et al. for most subset sizes, and frequently by a large margin
(Fig. 3B). Although our method results in errors up to 5.6% higher
for subsets of sizes one through three, it achieves reductions in MSE
of up to 27.4% for larger panel sizes. Further, our approach
achieves a lower error with a Wilcoxon P-value 	 0:05 for 16 panel
sizes (Wei et al. outperforms our method with a Wilcoxon P-value
	 0:05 for panel sizes between one and three). We noted that most
panel sizes do not show a statistically significant difference between
the two methods, mostly because there are few biosamples where a
large number of assays have been performed. These results indicate
that the use of imputed data leads to better panels of experiments
than averaging similarities across other biosamples.

3.4 Incorporating domain information by extending the

objective function
At this point, we have demonstrated that our procedure can choose
a panel of experiments that exhibit diverse functional activity.
However, because the procedure considers only the calculated simi-
larity matrix when making choices, the resulting panel of experi-
ments may be suboptimal in practice. One reason for this is that
some experiments can be easily integrated with other sources of in-
formation, enhancing their overall usefulness. For example, chroma-
tin accessibility measurements from DNase-seq or ATAC-seq can be
paired with genomic sequence to identify protein binding motifs or
other regulatory sequences. Another reason that the panel may be
suboptimal is that the chosen experiments are likely to be scattered
across a large number of biosamples or assays. Although this prop-
erty is desirable in theory, preparing many biosamples or acquiring
the materials to perform many different types of assays can be diffi-
cult or expensive in practice.

The facility location objective function can be modified to in-
corporate a weight for each experiment that encourages or discour-
ages the selection of those experiments. These weights provide a
straightforward way to incorporate estimates of the relative utility
of each experiment, when such is known in advance. The weighted
facility location objective function is

f ðXÞ ¼
X

y2Y

max
x2X

wðxÞ/ðx; yÞ; (2)

where w is a function that returns a non-negative weight of experi-
ment x. Because this weight does not change during the optimization
process, this weighted objective remains submodular and can be
optimized in the same manner as the original objective.

Using this objective, we explored the effect that the weights had
on the chosen experiments. We began by varying the weights for all
DNase-seq experiments from 0.01 to 100, setting the weights for all
total RNA-seq experiments to half that of the DNase-seq weight,
and keeping the weights of all other experiments at 1. We then
selected 500 experiments in the same manner as our initial selection
experiments for each of five weights for DNase-seq experiments
(Fig. 4A). As expected, a small weight of 0.01 resulted in a panel
that did not contain DNase-seq or total RNA-seq experiments at all,
whereas a weight of 100 resulted in a panel that predominately

consisted of these experiments, with 222 DNase-seq experiments
and 137 total RNA-seq experiments. These results demonstrate not
only that the weights influence the selection process but that the
relative weights are important, with roughly half as many total
RNA-seq experiments selected as DNase-seq experiments.

We then considered a more sophisticated use of the weights by
setting them using biological measurements. A potential issue with
our selection of protein binding experiments is that not all proteins
are expressed in every biosample (Fig. 4B). A protein that is not
expressed cannot bind to the genome, and the corresponding ChIP-
seq experiment measuring binding of that protein, although yielding
a flat signal that is likely very dissimilar to other protein binding
experiments, would be uninformative. We can penalize the selection
of such unwarranted experiments by weighting protein binding
experiments using gene expression values from RNA-seq assays.
Specifically, we set the weight of each protein binding assay to
log10ðTPMþ 1Þ where TPM is the transcripts-per-million value
from a total RNA-seq experiment for the relevant gene and biosam-
ple. This weighting scheme downweights protein binding experi-
ments when the protein is not expressed in that biosample and
upweight those experiments where the protein is expressed highly.
Because some biosamples did not have a total RNA-seq experiment
performed in them, we excluded from this analysis all protein bind-
ing experiments from biosamples without a total RNA-seq experi-
ment performed in it.

We find that weighting experiments in this manner results in
choosing fewer unwarranted experiments. Overall, this procedure
raised the median TPM of the genes encoding the assayed proteins
from 4.1 to 16.2 and reduced the number of chosen experiments
with a corresponding TPM of <0.5 from 22 to 4 (Fig. 4C).
Interestingly, we did not find that using a weighted objective to
choose a panel of experiments resulted in experiments with a signifi-
cantly lower score according to the original objective function: the
panel chosen from the weighted function achieved 98.8% of the
score of the panel chosen using the original function (Fig. 4D).

Next, we considered a further modification to the objective func-
tion that reduces the scatter of chosen experiments across the experi-
mental matrix. This modification involves adding to the facility
location function a pair of regularization terms that count the num-
ber of experiments in each biosample or assay. More formally, we
define functions a and b that take in a set of experiments and return
a vector of the count of experiments that involve each assay or bio-
sample, respectively. We incorporate these terms into a new object-
ive function

f ðXÞ ¼
X

y2Y

max
x2X

wðxÞ/ðx; yÞ þ kajjaðYÞjj22 þ kbjjbðYÞjj22; (3)

where ka is a weight that encourages experiments to span fewer
assays and kb is a weight that encourages experiments to span fewer
biosamples. This function is not submodular because kajjaðYÞjj22 and
kbjjbðYÞjj22 grow during the selection process and, thus, violate the
diminishing returns property. Although the greedy algorithm does
not have the same guarantees when applied submodular–supermod-
ular mixtures as it does on purely submodular functions, it has been
shown to perform well empirically (Bai and Bilmes, 2018).

In a similar set of experiments as when we weighted DNase-seq
and total RNA-seq experiments, we next inspected the selections
made as we varied ka and kb. As expected, we see that as we increase
the regularization strength the selected experiments span fewer
assays and biosamples, respectively (Fig. 4E–G). Interestingly, we
observed that as the regularization strength increased from ka ¼ 1 to
ka ¼ 10 the most chosen assay switched from measuring the histone
modification H4K91ac to the binding of ETS1. This finding suggests
that utility of a particular assay is dependent on the number of other
experiments that can be performed to supplement it.

3.5 Calculating the coverage of each biosample

and assay
Thus far, we have focused our efforts on prioritizing individual
experiments but have provided little guidance for how to prioritize
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entire biosamples or assays. We next considered a scenario where an
investigator is looking to either assay undercharacterized biosamples
or to run underperformed assays, but is unsure which biosamples or
assays to focus on. A simple approach would be to count the number
of experiments that each biosample or assay is involved in and
choose the ones with the fewest experiments. However, this ap-
proach does not account for the content of the performed experi-
ments, which can be extremely similar in some cases. For example,
in the ENCODE data several biosamples have been assayed exten-
sively for transcription but not assayed at all for histone modifica-
tions or protein binding.

A final component of our methodology is the ability to quantify
the extent to which each biosample has been characterized and each
assay has been performed using the facility location objective func-
tion. Because the objective function takes in a set of experiments
and returns a score corresponding to the diversity of the set, this
function can be used to assess the diversity obtained by an existing
set of experiments, corresponding to a single biosample or a single
type of assay. In our setting, where similarity is measured via
squared correlation, this score ranges from zero up to the total num-
ber of experiments that have been performed. Thus, for each bio-
sample, the maximum value is 77 due to the 77 assays in the

Fig. 4. Controlling selection with an extended objective function. (A) The 500 experiments selected as the weights for DNase and total RNA-seq experiments changes. (B) Log-

transformed gene expression values for the proteins whose binding is assayed in ENCODE2018-Core across 157 biosamples. (C) The expression values for selected protein

binding experiments in the original setting (blue) and when weighting experiments by the log-transformed expression values (pink). (D) The score from the facility location ob-

jective function without weighting from the experiment subsets when weighting or not weighting the objective. (E) A selection of 500 experiments performed normally. (F) A

selection of 500 experiments when mixing the submodular function with a supermodular assay penalty of varying weight. (G) A selection of 500 experiments when mixing the

submodular function with a supermodular biosample penalty of varying weight
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dataset, and for each assay, the maximum value is 400 due to the
400 biosamples in the dataset.

We applied this approach to score each of the biosamples and
assays in the ENCODE2018-Core dataset. Not surprisingly, we find
that the three ENCODE Tier 1 cell lines—H1-hESC, K562 and
GM12878—are the three best scoring biosamples, with scores of
71.2, 70.2 and 68.6, respectively. These biosamples are followed by
several ENCODE Tier 2 cell lines, such as HepG2, IMR90 and
HeLa-S3. We found a rank correlation of 0.82 between the number
of assays performed in a biosample and the objective score, confirm-
ing that while in general there is increase in coverage as more assays
are performed, the composition of those assays is also captured by
the objective function. Next, we scored the assays and found that
the highest scoring ones were H3K4me3, H3K36me3 and CTCF,
whereas the lowest scoring assays are H2BK15ac and FOXK2. We
found a weaker, but still very significant, rank correlation of 0.66
between the number of biosamples that an assay was performed in
and the objective score.

We next sought to contextualize the scores we obtained for each
biosample and assay by comparing them to scores obtained if one
had used alternate methods to select experiments. For each element,
i.e. a particular assay or biosample, we scored 10 randomly selected
panels of the same size as the number of experiments involving that
element. In addition, we score the panel of experiments that would
have been selected using submodular selection. We observe a strik-
ing result, which is that the set of experiments that were actually
performed not only underperforms the set selected through submod-
ular selection, but also generally underperform random selection
(Fig. 5). This trend is consistent across both biosamples and assays.
We note that the 64 biosamples with the worst scores were assayed
almost exclusively for transcription, supporting the notion that bio-
samples with more assays performed in them are not always better
characterized.

4 Discussion

In this work, we describe an approach for the prioritization of epige-
nomic and transcriptomic experiments that has the potential to in-
crease the rate of scientific discovery by focusing characterization
efforts on those experiments that are expected to yield the least re-
dundant information. To our knowledge, this is the first approach
that enables the global prioritization of experiments across both bio-
samples and assays. We anticipate that, due to the time it takes to
perform experiments and the simplicity of our method, investigators
may use our prioritization methods even when they plan eventually
to perform all potential experiments to begin analyses sooner.

An important consideration is that, due to the reliance on
imputed experiments, our method cannot be applied directly to a
biosample or assay type when no experiments have yet been per-
formed. In particular, in the setting where a researcher aims to char-
acterize a distinct system for which essentially nothing is known
about the different biosamples and assays, then it would be neces-
sary to first perform a subset of experiments that include all assays
and biosamples for use in training an imputation model, and then

use the resulting imputations to prioritize the remaining experi-
ments. Potentially, for such a system, it may be possible to identify
closely related experiments for which imputations have already been
generated. Although these imputations may not capture activity spe-
cific to an experiment, it is likely that the resulting similarity matrix
would provide a reasonable approximation. However, in the setting
where one truly knows nothing about a biosample or assay, the
method proposed by Wei et al. provides a principled approach for
choosing an initial panel of assays to comprehensively perform in
each biosample in the system before imputing the remaining missing
experiments.

Although the primary question we address is how to prioritize
experiments across both biosamples and assays, we recognize that
this approach may not always result in a practical set of experiments
to perform. In practice, it is generally more difficult to culture and
maintain a variety of biosamples than it is to maintain a large quan-
tity of a single biosample, making sets of experiments that span sev-
eral biosamples harder to perform than those in the same biosample.
This difficulty may cause investigators to prefer performing batches
of experiments within a biosample. Accordingly, we have proposed
weighting experiments to incorporate domain knowledge and a
novel submodular–supermodular function that encourages the
chosen experiments to span a compact set of biosamples and assays.
However, there are likely more aspects of performing experiments,
e.g. the predicted cost of each experiment and the anticipated diffi-
culty, that could also be directly included in the optimization
procedure.

When we scored the biosamples in the ENCODE2018-Core
dataset using the facility location objective function, we noted that
the actual set of assays performed in many biosamples performed
worse than randomly selecting an equally sized panel of assays.
However, this trend is not entirely surprising. The experiments that
are included in our dataset were intentionally devised to investigate
specific research questions, and generally these questions do not aim
to broadly characterize the human epigenome. Thus, these results
serve primarily to demonstrate that the current strategy for selecting
experiments is not well suited for the goal of characterizing the over-
all diversity of activity in the human epigenome.

A potential weakness in our method is that mistakes in the im-
putation process may be propagated to the selection process. These
mistakes can be simple errors in predicting certain peaks or can in-
volve more systematic trends. For example, REST is a transcription
factor that is involved in suppressing neuronal genes in non-
neuronal tissues. However, the ENCODE2018-Core dataset does
not have examples of REST in neuronal tissue, and so an imputation
model trained on this dataset would likely be unaware of this prop-
erty of REST. Consequently, the prioritization process is unlikely to
capture that REST binding in neuronal tissues is significantly differ-
ent than in non-neuronal tissues. Another consideration is that our
method may be unlikely to prioritize experiments in biosamples
with poor quality imputations because those imputations are usually
similar to the average signal, i.e. appear to be unsurprising. In gen-
eral, unexpected patterns in data that has not yet been collected will
be difficult for any prioritization method to account for.

Fig. 5. Scoring biosamples and assays according to their captured diversity. (A) The facility location objective score for each biosample when applied to the set of experiments

that investigators have performed in that biosample (blue), the set of experiments identified by optimizing the objective function (magenta), and the sets of randomly selected

experiments (orange), ordered by the score of the performed experiments. (B) The same as (A), but for each assay instead of each biosample
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The flexibility of our method allows for several extensions that
we did not consider here, but may nonetheless prove valuable to
those prioritizing experiments. The first is that, in the setting where
one is prioritizing experiments within a particular biosample, one
could measure the gain that each successive experiment adds to the
objective function to determine when to stop performing experi-
ments. This would serve as a data-driven indicator of when further
experimental efforts are mostly redundant. A second extension is
that one could calculate the similarity matrix using only a specific
genomic locus or set of loci of interest. For example, if an investiga-
tor was aiming to experimentally quantify the activity surrounding
an important gene across many biosamples, one could restrict the
similarity calculation to a window surrounding that gene. Overall,
our approach is a simple yet powerful way to prioritize experiments
in a wide variety of contexts.
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