
Research article

Assessment of NSCLC disease burden: A survival model-based
meta-analysis study

Nataliya Kudryashova a,c, Boris Shulgin a, Nikolai Katuninks a, Victoria Kulesh a,b,
Gabriel Helmlinger d, Kirill Zhudenkov a,b,*, Kirill Peskov a,b,e

a I.M. Sechenov First Moscow State Medical University, Moscow, Russia
b Modeling & Simulation Decisions FZ-LLC, Dubai, UAE
c Semenov Research Center of Chemical Physics, Moscow 119991, Russia
d Quantitative Medicines LLC, Lexington, MA 02420, USA
e Russia Sirius University of Science and Technology, Sirius, Russia

A R T I C L E I N F O

Keywords:
NSCLC disease burden
Model-based meta-analysis
Survival model
Oncology
QALY
Life years gained

A B S T R A C T

We present a meta-analytics approach to quantify NSCLC disease burden by integrative survival models.
Aggregated survival data from public sources were used to parameterize the models for early as well as advanced
NSCLC stages incorporating chemotherapies, targeted therapies, and immunotherapies. Overall survival (OS)
was predicted in a heterogeneous patient cohort based on various stratifications and initial conditions. Phar-
macoeconomic metrics (life years gained (LYG) and quality-adjusted life years (QALY) gained), were evaluated to
quantify the benefits of specialized treatments and improved early detection of NSCLC. Simulations showed that
the introduction of novel therapies for the advanced NSCLC sub-group increased median survival by 8.1 months
(95 % CI: 5.9, 10.0), with corresponding gains of 2.9 months (95 % CI: 2.2, 3.6) in LYG and 1.65 months (95 %
CI: 1.2, 2.0) in QALY. Scenarios representing improved detection of early cancer in the whole patient cohort,
revealed up to 17.6 (95 % CI: 16.5, 19.0) and 15.7 months (95 % CI: 14.8, 16.6) increase in median survival, with
respective gains of 6.2 months (95 % CI: 5.9, 6.4) and 5.2 months (95 % CI: 4.9, 5.4) in LYG and 6.6 months (95
% CI: 6.4, 6.7) and 6.0 months (95 % CI: 5.9, 6.2) in QALY for conventional and optimal treatment. This inte-
grative modeling platform, aimed at characterizing cancer burden, allows to precisely quantify the cumulative
benefits of introducing specialized therapies into the treatment schemes and survival prolongation upon early
detection of the disease.

1. Introduction

Lung cancer remains one of the leading causes of cancer-related
deaths worldwide, accounting for over 2.20 million newly diagnosed
patients and over 1.7 million deaths in 2020 [1]. It is a heterogenous
disease; however, over 85 % of all lung cancers are classified as
non-small cell lung cancer (NSCLC), with a 5-year all-NSCLC survival
rate of 28 % [1,2]. NSCLC presents with various histology, including
non-squamous adenocarcinoma (NSQ) as the most prevalent form,

followed by squamous cell carcinoma (SQ) [1]. The incidence of NSCLC,
especially SQ, has decreased with profound smoking cessation [1,3].
Attempts to enforce regular screening for high-risk groups, even though
proven beneficial, have not been fully successful yet, while overall
survival (OS) has improved with the introduction of targeted and im-
mune therapies [1,4–7].

NSCLC mutations have been widely investigated, as potential
markers in the development of innovative targeted and immune thera-
pies [1,8–11]. A proportion of subjects with advanced/metastatic NSQ
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exhibit mutations in exons 18 – 21 of tyrosine kinase domains in the
epidermal growth factor receptor (exon 19 deletion or L858R EGFR
mutations). EGFR mutations occur in 10–20 % of Caucasian patients
with NSCLC [9,12,13]. First- and second-generation anti-EGFR treat-
ments such as erlotinib, gefitinib and afatinib improve OS and
progression-free survival (PFS) in the first-line setting [13]. Also, osi-
mertinib, a novel selective targeted therapy for a T790M point mutation,
has shown efficacy in first line for patients with various EGFR mutations
[12,14].

Fusions of the echinoderm microtubule-associated protein-like 4
(EML4) gene and the anaplastic lymphoma kinase (ALK) gene trans-
locations represent further biomarkers with corresponding de-
velopments of targeted therapies. These gene rearrangements are
observed in approximately 5 % of NSCLC subjects and lead to dysre-
gulated over-expression of ALK [15,16]. These mutations rarely
co-occur with EGFR or KRAS mutations [15]. The first-generation ALK
inhibitor crizotinib is a common choice as first-line therapy, although
second-generation alectinib and ceritinib show improved
progression-free survival [10,11,17,18]. There are other rare mutations
and associated targeted treatments not discussed here including RET,
NTRK, ROS1, BRAFV600E, METex14 [1,10,11].

For patients with advanced/metastatic NSCLC without driving mu-
tations, the last decade has also been marked by critical progress linked
to substantially improved survival. In particular, the development of
specific antibodies against the programmed cell death protein (PD-1), its
corresponding ligand 1 (PD-L1) and the cytotoxic T-lymphocyte-asso-
ciated protein 4 (CTLA4) in first- or second-line setting have led to
prolonged survival for a proportion of these patients [1,10,11,18]. Im-
mune checkpoint inhibitors with anti-PD-1 and PD-L1, initially used as
monotherapies in the second-line setting, have shifted toward various
combination approaches. Today, with the exception of targetable mu-
tations, a substantial number of patients with metastatic NSCLC receive
an anti PD-1 or anti PD-L1 combination therapy in the first-line setting
[19].

Prolonging patient survival remains one major driver in developing
innovative treatments and their subsequent integration into clinical
guidelines [20,21]. Key primary clinical endpoints in oncology are OS
and PFS. These data represent time-to-event (TTE) outcome measures
and are typically explored using Kaplan-Meier (KM) curves, which may
be further stratified according to patient, biomarker, or treatment types.
The KM approach, however, only represents, graphically, basic
descriptive analyses and a clinical researcher cannot generate any
extrapolation or simulations of alternative scenarios as well as perform a
multivariate analysis.

To overcome these limitations an approach to the regression
modeling of TTE data is used to qualify semi-parametric (i.e., Cox
models) or fully parametric (i.e., using accelerated failure time (AFT) or
proportional hazards (PH) parameterization) survival models against
the study outcomes data [22]. In these models, the survival function can
be estimated and then simulated and plotted over the observed TTE
data, to check the goodness-of-fit [23]. Weibull models with AFT or PH
parameterization has become quite popular in demographics, epidemi-
ology, and clinical study outcome analyses [22]. The flexible parametric
survival models have been proposed to model complex distributions of
survival times with spline functions. The latter item is the official alias
for Royston-Parmar survival models we use here [24,25]. Other ap-
proaches to the analyses of survival data have been published, including
neural networks and disease progression models which make use of
Markov chains [26–28].

Likewise, pharmacoeconomic analyses have been performed to
assess the impact of cancer screening efficacy, where staging and pro-
gression of lung cancer as well as preventative strategies are being
accounted for [4–7,26]. These modeling approaches present multiple
ways to assess survival, though they are often limited to a particular
sub-group of patients. There is, therefore, a lack of an integrative
modeling methodology aiming at performing meta-analyses of TTE data

pooled from various sources and studies, to then perform model-based
indirect comparisons of various medical interventions, to subsequently
predict outcomes in mixed patient cohorts which would have not yet
been tested head-to head in standalone clinical trials.

The aim of this modeling research was to investigate patient survival,
together with corresponding disease burden, of mixed NSCLC cohorts,
through the integration of summary-level data from various sources that
include randomized controlled trials (RCT) and epidemiology studies.
Towards this goal, we developed a model-based platform which in-
corporates data on cancer stages, treatments, and survival for various
patient cohorts and according to global regulatory guidelines. Here, we
estimated the benefit of integrating data on multiple therapies against
advanced and metastatic cancer and on disease stage distribution, to
predict OS as well as to quantify disease burden in terms of life-years
gained (LYG) and quality-adjusted life-years (QALY) gained.

2. Materials & methods

2.1. Data aggregation

An applied four-stage workflow for a model-based NSCLC burden
assessment is shown in Fig. 1: (1) reconstruction of the treatment
scheme; (2) data acquisition; (3) model development; and (4) scenario
simulations. A bottom-up approach was implemented in gathering
relevant data sources. First, ESMO NSCLC treatment guidelines
featuring available and recommended treatments for different disease
stages based on the TNM staging system were considered, to allocate
patient subgroups differentiated by biomarkers, histology and treatment
specifications [29,30]. Based on this analysis, a patient treatment
scheme was developed, with each sub-group eligible to receive one or
more approved therapies. Published RCT outcomes referenced in the
ESMO guidelines were also retrieved. For early-stage cancer, where no
sub-group specification was provided in the guidelines, epidemiology
studies were identified to retrieve treatment details and OS for particular
TNM stages [30].

Next, KM curves from the identified RCTs were digitized, to recon-
struct individual patient-level datasets (IPD) using a Guyot et al.
approach [31–35]. This methodology finds numerical solutions to the
inverted KM equations and calculates the number of deaths at each in-
terval from the digitized survival probability data, using the initial
number of patients in a cohort. The difference between the initial
number of patients and the number of deaths is the number of censoring
events added to the IPD. The final survival dataset consists of IPD
sub-datasets, each corresponding to either a particular treatment and/or
histology or TNM stage depending on the source data. No further co-
variate stratification was added to the data.

2.2. Modeling methods

The acquired IPD were used to qualify a set of flexible Royston-
Parmar survival models [36]. The best model was chosen using multi-
ple criteria including parameter uncertainty assessment, likelihood
maximization and goodness-of-fit plot analyses. The formulation of
flexible parametric survival models that fit the general baseline log cu-
mulative hazard function on the log timescale as a restricted cubic spline
was applied. The log cumulative hazard function can be viewed as a
linear function of log time (Eq.1) [24,25]:

logH(t) = log(λ)+ γ1 = γ0 + γ1log(t), (1)

where γ0 is a constant and γ1log(t) represents the time dependency.
When logH(t) is approximated with cubic splines, a complex sur-

vival curve shape can be described. Since natural splines are piecewise
cubic polynomials, they are defined to be continuous, with continuous
first and second derivatives at the knots, constrained to be linear beyond
boundary knots kmin (time of observation start), kmax (censoring time). A
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restricted cubic spline function of log(t) can be written as (Eqs. 2–6)
[25]:

s(log(t)) = γ0+ γ1z1 + γ2z1+…+ ym+1zm, (2)

where zj is the jth basis function

z1 = log(t) (3)

zj = (log(t) − kj)3+ − λj(log(t) − kmin)3+ − (1 − λj)(log(t) − kmax)3+, (4)

(log(t) − ka)3+ =

{
(log (t) − ka)3, iflog(t) > ka

0,otherwise
(5)

λj =
kmax − kj
kmax − kmin

, (6)

where kj is jth knot position, ka is any knot position. If m = 0, then there
are only two parameters, γ0, γ1, defining a Weibull survival model [36].

Optimal model development including knot position selection was
performed based on the lowest Akaike information criterion (AIC) and
RSE less than 50 % for all model parameters. The qualified γ parameters
and knot positions alone can be used to construct the mean probability
survival trend; however, here we also incorporate survival function
uncertainty by sampling 500 sets of model parameters from the multi-
variate normal distribution, based on the obtained variance-covariance

matrix [37,38]. The 2.5 % and 97.5 % percentiles of the generated pool
of survival functions’ estimates were then derived to construct 95 % CI.
The time interval for simulations was up to 60 months for the full NSCLC
patient cohort and up to 24 months for the stage IIIb/IV sub-cohort
(advanced/metastatic NSCLC).

When simulating survival of the full patient cohort or for the multiple
treatments incorporated in stage IIIb/IV, the summary function
describing OS in respective cohort was defined as a mixture of survival
models corresponding to particular sub-groups, with a weighting
parameter reflecting the expected proportion of these sub-groups within
the whole patient cohort; OS was, therefore, calculated as a sum of
continuously sampled estimates (Eq.7):

sfull(log(t)) = a1s1(log(t))+ a2s2(log(t))+…+ ansn(log(t)) (7)

where an is the proportion of an n sub-cohort in the full population, sn is
the survival function describing survival for the nth sub-cohort.

2.3. Disease burden evaluation

Patient quality of life (QoL) was integrated to estimate the disease
burden weighed on utility scores. For each pairwise comparison of
scenarios, the LYG was calculated as a difference in area under the two
respective survival curves (AUC) (Eqs. 8,9,10); then weighted on utility
scores for the corresponding stages of NSCLC, to derive QALY gained
(Eq. 11) [4,39]. For this analysis, we allocated utility scores depending
on the cancer stage alone, much like in a typical pharmacoeconomic
analysis [4,5,7,26].

AUC1 =
∫ T

0
a11 ∗ s11(log(t)) +

∫ T

0
a12 ∗ s12(log(t))+…+

∫ T

0
a1n

∗ s1n(log(t))
(8)

AUC2 =
∫ T

0
a21 ∗ s21(log(t)) +

∫ T

0
a22 ∗ s22(log(t))+…+

∫ T

0
a2n

∗ s2n(log(t))
(9)

LYG = AUC2 − AUC1 (10)

where un is a utility score associated with a particular stage and T is the
righthand time cut point of interest for LYG or QALY. Values for T were
set either to 24 or 60 months depending on the chosen scenario,
advanced/metastatic NSCLC, or all NSCLC stages analyzed, respectively.

The presented flexible survival models and disease burden evalua-
tion were additionally used to generate survival simulations of different
patient cohorts representing optimal treatment introduction effect as
well as the impact of variable initial distribution of cancer stages by
means of sensitivity analyses.

2.4. Software

OS data digitization was performed in Plot Digitizer [40]. IPD
reconstruction, model development, simulations and pharmacoeco-
nomic calculations were performed in R statistics (version 4.2.2) [41]. R
packages flexsurv_2.2.2 and survival_3.4.0 were used for model qualifi-
cation. Other R packages used included MASS_7.3–58.1 for parameter
estimation from the multivariate distribution, rstpm2_1.6.3 for the
combination of survival functions and LYG and QALY gained

Fig. 1. Modeling workflow for NSCLC burden assessment.

QALY = u1 ∗ (a21
∫ T

0
s21(log(t)) − a11

∫ T

0
s11(log(t))) +u2 ∗ (a22

∫ T

0
s22(log(t)) − a12

∫ T

0
s12(log(t)))+…+ un

∗

(

a2n
∫ T

0
s2n(log(t) ) − a1n

∫ T

0
s1n(log(t) )

)

, (11)
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calculations, and ggplot2_3.4.1 for OS visualization.
Web-based version of the modeling platform is deployed at Shi-

nyApps repository and can be accessed at https://www.oncomonitor.
tech (see more details in the Fig. S5, address the corresponding author
for more information if needed).

3. Results

3.1. Model development

First, ESMO guidelines for NSCLC were examined to determine
cancer staging and major types of recommended treatments available on
the market. Overall, a whole NSCLC cohort was composed of four sub-
cohorts based on the TNM classification [30]. Since early stages of
NSCLC are treated mostly surgically with adjuvant therapy, it was
decided to use an epidemiology source to retrieve OS. KM curves
describing early NSCLC patient survival who underwent surgery and
adjuvant treatment (13469 patients total) were digitized [30]. Aggre-
gated OS data from sub-stages were then transferred into the IPD and
combined into three IPD datasets for stages I, II, and IIIa, representing
typical survival in Caucasian population.

Next, representative classes of first-line treatments were established
for advanced and metastatic NSCLC (stages IIIb/IV) from RCT outcomes
of the analyses referenced in ESMO guidlines [29]. A broader range of
recommended treatments allowed for pooling multiple classes of treat-
ments representing both a conventional standard of care and relatively
novel/optimal therapies. Variability in treatments was limited to tar-
geted therapies (ALK inhibitor therapy and anti-EGFR treatment), im-
munotherapies (PD-1 inhibitors), and chemotherapies (platinum-based
chemotherapy doublets). To eliminate a potential outcome bias, clinical
studies for Asian only or elderly patients only were not included, since it
is known that these patients exhibit a significantly different survival
when compared to non-Asian or non-elderly groups [42–44]. Likewise,
clinical studies including patients with poor performance status and
heavy smokers were excluded, for the same reason [45]. For respective
studies the long-term outcomes were checked for being published and
collected for analysis.

As a result, a total of ten KM curves were selected to describe survival
of the subjects with advanced NSCLC using the RCT outcome data (2339
patients total) [46–50]. This information was utilized to reconstruct IPD
and create two datasets describing conventional standard of care
(alectinib/crizotinib, gefitinib/erlotinib, chemotherapy) or optimal
treatment (alectinib/crizotinib, osimertinib, pembrolizumab mono- or
combination therapy) for patients with ALK-translocation, EGFR muta-
tion and without driver mutations, respectively. Based on the retrieved
data, a generalized treatment scheme with proportional patient distri-
bution based on stages, histology and relevant biomarkers was created
to describe OS and respective disease burden (Fig. 2). More details on
the data used are available in Table S6.

When the complete IPD dataset was created, a set of models were
qualified against the treatment data, to produce a comprehensive sur-
vival model for the full NSCLC cohort. The tested models included
parameterization with cubic splines with the number of knots ranging
from 0 to 2 (Table S1) [24,25]. A typical survival curve for each treat-
ment was parameterized with gamma parameters and knot position
values (Table S2a) according to the cubic spline formulae (Eqs. 2–6) [24,
25].

Uncertainty of survival function was derived as explained in Mate-
rials and Methods (see the parameter estimates and variance-covariance
matrices in Table S2b). The output from this step resulted in 12 survival
models, each describing a treatment scheme as shown in Fig. 2. The
optimal models had the lowest AIC criterion values yet keeping
parameter identifiability (RSE<50 %, see Table S1). The goodness-of-fit
plots (Fig. S1, S2) showed adequate reproduction of KM data.

3.2. Survival simulations for advanced and metastatic NSCLC patients

The family of survival models we developed was used to predict and
compare OS across a variety of scenarios, including specialized targeted
and immune treatments that have been tested and approved over the last
decade (Fig. 2). Due to the presence of various drug classes, analyses
were performed using one or two representative treatments from the
same class. First, a comparison among the same treatment types was
performed, to visualize the effect in patient survival with differing his-
tology (SQ, NSQ) and driver mutations (ALK or EGFR). The resulting
simulations show that 95 % confidence intervals intersect among sur-
vival curves for the same treatment class in the EGFR driving mutation
pool (Fig. S3a) and for the same treatment for different histology
(Fig. S3b-c).

Then the evaluation of the incremental benefit of specialized/
optimal treatments versus the conventional standard of care in the
advanced NSCLC patient sub-group was performed (Fig. 3). OS was
analyzed in four distinct patient sub-populations: NSQ cancer without a
driver mutation, SQ cancer without a driver mutation, NSQ or SQ cancer
with high PD-L1 expression (>50 %) [29,51], and NSQ cancer with an
EGFR+ driver mutation. A comparative simulation for the ALK+ patient
sub-group was not introduced since there was quite minor difference
detected on the levels the complete IIIb/IV patient subgroup and whole
cohort outcomes (up to 0.1 months difference in median survival; data
not shown). Despite the difference between OS for crizotinib and

Fig. 2. NSCLC treatment scheme with different survival models. Conventional
treatment is shown in grey, optimal treatment is shown in blue. Prevalence of
each sub-group in stage IIIb/IV is shown as a percentage in an oval. References
are provided in square brackets.
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alectinib [46], the prevalence of ALK+ subjects is quite small, thus for
the simulations the mixed alectinib/crizotinib outcomes were taken to
represent OS in all scenarios.

Conventional treatment schemes were taken as follows: alectinib/
crizotinib for the ALK+ sub-cohort, gefitinib/erlotinib for the
EGFR+ sub-cohort, and chemotherapy for both SQ or NSQ sub-cohorts
with or without high PD-L1 expression. The optimal treatment incor-
porated alectinib/crizotinib for the ALK+ sub-cohort, osimertinib for
the EGFR+ sub-cohort, pembrolizumab monotherapy for SQ/NSQ sub-
cohorts with high PD-L1 expression and pembrolizumab combination
with chemotherapy for SQ and NSQ sub-cohorts without any driver

mutations. For NSQ and SQ sub-cohorts not bearing any driver muta-
tions and with high PD-L1 expression, a prolongation in OS was
observed when immunochemotherapy was administered, as compared
to a conventional platinum doublet chemotherapy (Fig. 3a-c). An opti-
mized treatment with osimertinib as an anti-EGFR treatment showed an
improvement versus conventional anti-EGFR therapy (Fig. 3d).

Simulations showed that there was a significant difference between
optimal and conventional treatments and the 95 %CI did not overlap.
Conventional vs. optimal treatment scenarios in a cohort with
advanced/metastatic NSCLC with all treatment types incorporated
showed median survival time for the conventional treatment option

Fig. 3. Overall survival comparison for optimal vs. conventional therapy for selected sub-cohorts with advanced NSCLC. A. NSQ histology: chemotherapy,
immunochemotherapy. B. SQ histology: chemotherapy, immunochemotherapy. C. NSQ/SQ histology: chemotherapy, immunochemotherapy. D. EGFR+ : anti-EGFR
targeted therapy. The bands indicate 95 %CI for model simulations. E. All patients: all treatments.
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equal to 14.9 months (95 % CI: 13.6, 16.4) and for the optimal treatment
– 23.0 months (95 % CI: 21.6, 24.5) (Fig. 3e). Therefore, a cumulative
benefit from the introduction of optimal set of therapies was 8.1 months
(95 % CI: 5.9, 10.0) (Table S3).

3.3. Survival simulations for the full NSCLC patient cohort

To illustrate the sensitivity of the model-based OS predictions to
cancer stage prevalence in the cohort, a range of simulations were
performed reflecting actual NSCLC populations and advanced cancer
treatment schemes as described above (conventional vs. optimal). Three
stage distributions at the time of diagnosis (representing different cancer
screening efficacy) were tested to evaluate OS up to 60months (Table 1).
OS was simulated for a standard stage prevalence (“Standard”) [52],
where stages I, II, IIIa and IIIb/IV were distributed as follows: 15 %,
14 %, 14 %, and 57 %. Also, two scenarios with higher prevalence of
early cancer stages representing more effective detection (“Scenario 1″
and “Scenario 2″) [53,54] were considered, with distributions of,
respectively, 29 %, 8 %, 13 %, 50 % (Scenario 1) and 35 %, 15 %, 10 %,
40 % (Scenario 2). These stage distribution samples were published
recently for Russia [52], the USA [53] and EU [54].

Simulations for conventional treatment showed an improvement in
OS for Scenario 1 and Scenario 2, when compared to Standard: with OS
of 32.4 months (95 % CI: 30.5, 34.8) for Scenario 1, 43.2 months (95 %
CI: 41.1, 45.9) for Scenario 2 and 25.6 months (95 % CI: 24.1, 27.4) for
Standard scenario, i.e., a gain in OS over Standard scenario of 6.9
months (95 % CI 6.3, 7.6) for Scenario 1 and 17.6 months (95 % CI:
16.5, 19.0) for Scenario 2, as shown in Fig. S4a and Table S3. For an
optimal treatment, the OS was 32.4 months (95 % CI: 30.8, 34.2) for
Standard scenario, 39.1 months (95 % CI: 37.1, 41.2) for Scenario 1, and
48.1 months (95 % CI: 46.0, 50.4) for Scenario 2. Therefore, OS
increased by 6.66 months (95 % CI: 6.2, 7.2) and 15.7 months (95 % CI:
14.8, 16.7), for Scenario 1 and Scenario 2 respectively (Fig. S4b,
Table S3).

Pairwise comparisons were also tested, where stage distribution was
kept constant and the effect of treatment for stage IIIb/IV disease was
evaluated, in addition to the effect of optimal treatment and prevalent
early-stage distribution at detection (Fig. 4). Simulations for optimal
treatment showed an improvement in OS of 32.4 months (95 % CI: 30.7,
34.1) for Standard scenario, 39.1 months (95 % CI: 37.1, 41.2) for
Scenario 1, 48.1 months (95 % CI: 46.1, 50.4) for Scenario 2 in Table 4a-
c. Therefore, an introduction of optimal therapies shows a gain in OS
over conventional treatment is 4.9 months (95 % CI: 1.9, 7.6) for
Standard Scenario, 6.7 months (95 % CI: 3.8, 9.4) for Scenario 1, and 6.9
months (95 % CI: 4.6, 9.1) for Scenario 2 in Table S3.

We can observe the profound effect of optimal therapies while we are
investigating the advanced NSCLC subgroup only (Fig. 3). These simu-
lations show that in terms of OS benefit, the most efficient is Scenario 2
with optimal treatment introduced (Fig. 4c-d). Also, in a longer-term
perspective we see a tendency of elimination of the effect: despite of

quite high initial prevalence, patients with advanced NSCLC have
shorter survival; thus, their longer-term impact becomes limited, which
is examined further in the sensitivity analysis.

3.4. Disease burden evaluation

A further effect assessment of optimal and conventional treatments
as well as cancer stage prevalence on disease burden was conducted by
estimating standardized pharmacoeconomic metrics such as LYG and
QALY gained. Given the survival probability derived from the simula-
tions described above, we calculated LYG estimates for all pairwise
scenario combinations; we also computed QALY gained, which corre-
sponds to LYG weighted with utility scores (0.87 for stage I, 0.87 – stage
II, 0.77 – stage IIIa and 0.57 – stages IIIb/IV) for the time horizon of 60
months (24 months for stages IIIb/IV only) [4] (Table 1 & S4).

When considering all stages and depending on the scenario, the
introduction of optimal therapies provided LYG values ranging from 2.3
(Scenario 2) to 3.2 months (Standard scenario) and QALY gained scores
from 1.3 (Scenario 2) to 1.9 months (Standard scenario) (Table 1). The
pharmacoeconomic metrics for Scenario 1 were in-between those for
Standard scenario and Scenario 2. The effect of a higher early NSCLC
prevalence (representing more efficient screening), in terms of LYG,
ranged from 2.6 to 3.0 months (Scenario 1), and from 5.2 to 6.1 months
(Scenario 2), where larger values represent cohorts on conventional
treatment. The corresponding QALY gained values of 2.9 to 3.1 months
(Scenario 1) and 6.0 to 6.6 months (Scenario 2) showed the same ten-
dency favoring conventional treatment. Likewise, when the cumulative
effect of optimal treatment and earlier disease stage diagnosis preva-
lence (Scenario 2) was estimated, LYG and QALY gained were, respec-
tively, 8.4 and 7.9 months.

These results suggest that the introduction of optimal therapies alone
yielded a smaller improvement, for both LYG and QALY gained, in the
all-stages cohort in contrast to a more efficient detection with resultant
earlier NSCLC detection represented by Scenarios 1 and 2.

When looking at advanced NSCLC population only, then optimal
therapies provide values of 2.9 months of LYG and 1.7 months of QALY
gained. These values, however, while proving a positive effect of an
optimal treatment, do not infer the magnitude of the effect when the
percentage of stages IIIb/IV cases is changed.

To estimate the effect that advanced/metastatic NSCLC (stage IIIb/
IV) prevalence may have on disease burden for the whole cohort, a
sensitivity analysis was performed. The main goal was to determine the
dynamics of LYG and QALY as the prevalence of stages IIIb/IV varies
from 30 to 60 % with a set of scenarios based on the Standard scenario
distribution (Table S5). Since stages I, II an IIIa vary as well in this
scenario, two strategies were examined: (1) Stages I, II and IIIa are
equally distributed, (2) Stage I is always more prevalent than Stage II
and Stage IIIa, which are kept constant at 13 % of the whole population.
Thus, sampling was performed at 30 %, 35 %, 40 %, 45 %, 50 %, 55 %
and 60 % for Stage IIIb/IV prevalence for both options (Table S5). To

Table 1
Stage distribution, LYG and QALY for selected simulation scenarios.

All Stages (up to 60 months) Test/Baseline scenario Stage distribution (%) LYG (95 %CI), months QALY gained
(95 %CI), monthsI II IIIa IIIb/IV

Utility Score 0.87 0.87 0.77 0.57  
Scenario 2: Optimal 35 15 10 40 2.27 (1.47,3.00) 1.30 (0.84,1.71)
Scenario 2: Conventional 35 15 10 40 - -
Scenario 1: Optimal 29 8 13 50 2.84 (1.83,3.74) 1.62 (1.04,2.13)
Scenario 1: Conventional 29 8 13 50 - -
Standard: Optimal 15 14 14 57 3.24 (2.09,4.27) 1.85 (1.19,2.43)
Standard: Conventional 15 14 14 57 - -
Scenario 2: Optimal 35 15 10 40 8.40 (7.45,9.31) 7.86 (7.31,8.38)
Standard: Conventional 15 14 14 57 - -

Stage IIIb/IV patients (up to 24 months) Optimal 0 0 0 100 2.89
(2.15, 3.58)

1.65
(1.22 2.04)

Conventional 0 0 0 100 - -
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collect LYG and QALY gained estimates, for all tested scenarios a com-
parison to the Standard Scenario (Conventional or Optimal therapy) was
performed.

The sensitivity analysis revealed an overall increase in LYG and
QALY as the prevalence of stages IIIb/IV decreased from the baseline
60 % (Fig. 5). In terms of two strategies, most beneficial for LYG and
QALY, was the case, where stage I is prevalent, representing the most
efficient screening positively impacting both survival and quality of life
for patients.

However, it should be noted that in these scenarios we observe that

the conventional treatment comparison provided higher LYG and QALY
gained than the optimal treatment comparison. It is reasonable due to
the higher efficacy of optimal treatment for Stage IIIb/IV – the more
efficiently we treat cancer at late stages, the less effect will be retrieved
while increasing early stages prevalence in the whole cohort.

In summary, when the NSCLC patient population predominantly
consists of the subjects with advanced cancer, the introduction of
optimal therapies results in a smaller increase in LYG and QALY gained,
in comparison to scenarios with more efficient NSCLC detection and
predominant early NSCLC, where an overall incremental benefit of an

Fig. 4. Overall survival comparisons obtained for different scenarios of cancer stage distribution and optimal therapy introduction. Panels represent OS and its 95 %
CI for different scenarios. A – C. Optimal and conventional (solid and dashed lines) treatments applied for advanced NSCLC effect for the whole cohort (Standard
scenario, Scenario 1, and Scenario 2, respectively). D. Scenario 2 with optimal therapy compared to the Standard Scenario with conventional therapy. Numbers
within graphs represent median survival (red) and its 95 % CI (black).
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optimal treatment would become more prominent, especially if stage I is
more prevalent in the patient population.

4. Discussion

Predictive mathematical models applied to the assessment of patient
survival in a particular cancer such as NSCLC can be a powerful
approach in the evaluation of disease burden for a given set of therapies
and in a heterogeneous patient population.

Typically, RCT outcomes in oncology are reported as OS and PFS and
the non-parametric data analytics applied are limited to basic descrip-
tive statistics. More advanced analyses are required to provide a
comprehensive tool to effectively predict OS. Multiple approaches based
on neural networks [27], Markov models [26,55,56] and meta-analyses
[44,57,58] have been proposed, yet they are not fit to solve the problem
highlighted in this research. While being popular and relying on large
datasets, machine learning approaches lack the deterministic basis that
is required for predictive simulations/extrapolations (i.e., for scenarios
not included into the calibration dataset) [27,59]. Markov models, on
the contrary, are traditionally used in decision-making modeling in
health outcome studies [26,54,60,61]. These models have proven utility
in certain settings; however, they cannot be used for extrapolations to
various treatments and populations if individual data for the calibration
of particular Markov chain transitions are limited [26,55,60].

Likewise, pharmacoeconomic and cost-effectiveness analyses have
been performed to assess the benefits of more efficient cancer screening,
where cancer staging and progression as well as preventive strategies are
being accounted for [4–7,26]. Even though these model-based analyses
represent various approaches to survival assessment, they usually are
limited to a specific sub-group of patients. When it comes to the analysis
of survival data of the whole patient cohort, it becomes a challenge to
integrate multiple sources of data, due to a high level of heterogeneity in
studies and patient populations.

One may operate with point estimates, such as median OS and PFS,
including 1-,2-, 5-year milestone survival characteristics, to build out a
standard meta-analysis [57,62]. Such an approach, however, provides
only the metrics that were included in the analysis – for example, me-
dian survival cannot be retrieved, if standard meta-analysis is performed
for another metric, long-term 5-year OS. There is, therefore, a lack of
methodologies to perform meta-analyses of exhaustive TTE data pooled
from numerous studies and run model-based indirect comparisons of
various treatments in whole patient cohorts which would not have been
tested head-to head in standalone RCTs. In the present study, a
comprehensive model-based approach to assess NSCLC survival and
burden was developed.

The treatment effect in stratified patient sub-groups representing
different cancer stages, treatments, and targetable mutations was

described using flexible AFT survival models. Subsequently, OS in the
whole patient cohort was calculated as a weighted sum of survival
functions corresponding to clinically relevant proportions between
specific sub-groups of patients with early and advanced NSCLC.

A key novelty of our modeling approach lies in the ability of the
model to produce personalized OS predictions, for patient cohorts pre-
senting a variety of baseline characteristics. Single RCTs focus on the
outcomes in dedicated patient cohorts and following a set of inclusion
criteria; thus, it would not be possible to determine the outcomes for the
whole cohort. On the other hand, epidemiology data represent a good
source of pooled OS data, yet these data are retrospective and take de-
cades to be compiled and published; furthermore, they might not
include outcomes data in specific patient sub-groups of interest. Here,
we combine both RCT and epidemiology data sources, to provide a
robust modeling approach to predict long-term OS.

We incorporated the effects of optimal therapies from single RCTs in
advanced and metastatic NSCLC, including checkpoint inhibitor im-
munotherapies and targeted treatments. We evaluated how a substantial
benefit of a single therapy in a selected sub-population (advanced
NSCLC) translates into a lesser benefit in the whole patient population.
For example, in the osimertinib RCT [49], an astounding effect in OS
prolongation was shown, as compared to standard anti-EGFR therapies,
yet only ~15 % of the NSCLC population feature a targetable EGFR
mutation and, therefore, the magnitude of benefits that osimertinib
shows in the RCT will be smaller in a heterogeneous cohort in
RWE/RWD setting. However, in Asian population the prevalence of
EGFR mutation may be remarkably higher (up to 48 %) [12,63]. So that
may accordingly prolong the survival of the whole cohort (Fig. S5 rep-
resenting the graphical user interface of the platform running a special
scenario with higher prevalence of EGFR subjects).

Finally, in current analysis for Caucasian population, osimertinib
would not be expected to have the same impact in a heterogeneous
NSCLC population as compared to, for example, checkpoint inhibitor
immunotherapies, which recently have been tested in patients with or
without high PD-L1 expression and show improvements in all eligible
patient sub-groups, accounting for over 80 % of all NSCLC patients [1,
19]. Here we consider pembrolizumab a good representation of immune
therapy as it is explicitly mentioned in the guides [64]. However, an
additional meta-analysis of immune checkpoint inhibitors therapy
comparative efficacy may be further introduced using the methods
presented in this research or utilizing the other techniques [65]. The
modeling platform proposed here may allow, in fact, to quantify an ef-
ficacy target for the whole NSCLC population, upon considerations of
treatment effects in specific sub-groups of patients, prevalence of these
patients in the whole population, as well as other relevant factors.

In the present work, we evaluated improvements in OS for the whole
NSCLC cohort, if an increased fraction of patients with early NSCLCwere

Fig. 5. Sensitivity analysis of advanced NSCLC prevalence. Effect of changing prevalence of advanced stages on NSCLC disease burden. Bands indicate 95 % con-
fidence intervals. Line type represents different treatment schemes for advanced stages (dashed – optimal therapy, solid – conventional therapy). Colors represent
distribution options (red – equal distribution of stages I, II, IIIa, yellow – stages II & IIIa are kept constant, stage I is prevalent). A. LYG. B. QALY gained.
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to be identified, e.g., based upon improved detection / detection pro-
cedures. To further understand the effect of therapies in a whole cohort
of patients, we inspected how early-stage NSCLC prevalence contributes
to OS. Our modeling findings together with published sources suggest
that it is more effective to invest into detection procedures than to
source costly specialized treatments, since earlier cancer detection leads
to prolonged OS [1,26,66]. A similar result was previously obtained
using Markov Chain modeling based on a cost-effectiveness analysis of
various detection methods, supporting the use of more frequent (e.g.,
bi-annual) cancer detection [26].

Since it has been established that higher early-stage NSCLC preva-
lence plays an important role in improving survival in the mixed cohorts,
the presented modeling platform can be extended to include innovative
therapies for earlier disease stages, to augment the number of therapies
derived from different sources [30]. For example, a novel treatment such
as pembrolizumab or durvalumab in unresectable cancer can be intro-
duced, to quantify further survival prolongation of earlier-stage patients
(for the subjects with stage III, locally advanced NSCLC) [67–70].
However, for these innovative treatment schemes OS is available only
for previously treated subjects to the moment. Likewise, RCTs with
various radiotherapy scenarios may also be integrated into the treatment
scheme and parameterized accordingly, as a first-line treatment option
for localized tumors [71,72]. These updates will increase the sensitivity
of the outcome prediction to treatment scheme details.

The benefits brought upon by innovative therapies remain a topic of
interest, from both perspectives of prolonging the life of patients and
finding the most economically effective approach. Here, to further
illustrate applications of our modeling platform, we presented phar-
macoeconomic evaluations based on LYG and QALY gained, thereby
quantifying the benefit of earlier disease detection, with optimal treat-
ment schemes. Our findings are supported by multiple cost-effective
analyses evaluating various detection programs and prevention ap-
proaches, to enforce early NSCLC detection [4–7]. Thus, both timely
cancer diagnostics and optimal therapy application are drivers of pro-
longed OS and improved quality of life. Also, it should be noted that
quantitative health economics outcomes may depend on utility assess-
ment for different stages [4,73].

Likewise, since there are various methods to evaluate interventions
and apart from their impact on survival, expansions of the presented
modeling approach can be made to introduce respective costs per QALY
gained for the considered scenarios representing cost-effectiveness as-
sessments. Multiple confounding variables such as treatment availability
and corresponding cost may also be researched and integrated, to pre-
dict disease burden for specific regions and countries. It is noteworthy
that in current analyses the acquired LYG and QALY gained character-
istics are comparable within the scenarios for the same time intervals –
up to 24 months (for advanced NSCLC sub-cohort) and up to 60 months
(for the whole cohort). Within the same time interval, the survival
outcomes as well as LYG are comparable for differently composed (by
treatment and disease stages) scenarios. QALY gained comparability is
acquired by means of proper weighting on heath state utilities.

The modeling platform presented here illustrates how RCTs and
epidemiology data may be used to describe survival of a whole patient
cohort. The results we derived may lack the precision and predictive
accuracy of a “pure” model-based meta-analysis, due to the absence of
individual patient-level data [58,74] as well as external data for model
validation. Additional sources of individual patient-level RWE/RWD
and RCT outcome inclusion are desirable to overcome these challenges.

In conclusion, the modeling platform presented here provides an
integrative tool to assess and predict survival in mixed cohorts of pa-
tients; it also allows for an assessment of quality of life and health
economics characteristics. This platform also offers a robust approach to
quantify the benefits of early cancer screening/detection over the whole,
highly heterogeneous population. Furthermore, the effect of optimal/
innovative treatment for an advanced and metastatic NSCLC sub-cohort
was evaluated. The estimated survival prolongation was extended to

quality-of-life adjustment, to describe cancer burden. This platform can
be applied by pharmaceutical developers and drug regulators to deter-
mine necessary changes in treatment and screening regimens, to
meaningfully prolong OS to targeted margins. A further potential
application of this platform lies in health economics and budget impact
assessments, in support of decision-making at different levels in
healthcare.
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