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Natural killer (NK) cells are involved in innate immune responses and play a major role
in tumor surveillance and in defense against viruses. Human NK cells recognize human
leukocyte antigen (HLA) class I molecules via surface receptors [killer immunoglobulin-like
receptor (KIR) and NKG2A] delivering signals that inhibit NK cell function and kill HLA class
I-deficient target cells, a frequent event in tumors or virus-infected cells. NK cell triggering
is mediated by activating receptors that recognize ligands expressed primarily on tumors
or virus-infected cells. NK cells play also a key role in the cure of high-risk leukemias.
Thus, donor-derived “alloreactive” NK cells are fundamental effectors in adult acute myeloid
leukemia and in pediatric acute lymphoblastic leukemia patients undergoing haploidentical
hematopoietic stem cell transplantation (HSCT). Alloreactive NK cells mediate killing of
leukemia cells and patient’s dendritic cell, thus preventing respectively leukemic relapses
and graft-vs-host responses. Cytofluorimetric analysis of KIRs expressed by NK cells allows
to define the size of the alloreactive NK subset and the selection of the best potential
donor. Recently, it has been shown that also the expression of activating KIRs, in particular
the (C2-specific) KIR2DS1, may contribute to donor NK alloreactivity. It has also been
established a correlation between the size of the alloreactive NK cell population and the
clinical outcome. Notably, the alloreactive NK cells derived from donor’s hematopoietic
stem cells are generated and persist in patients over time.The high survival rates of patients
undergoing haploidentical HSCT highlight an important new reality in the setting of allograft
performed to cure otherwise fatal leukemias. Novel approaches are in progress to further
improve the clinical outcome based on the infusion of donor alloreactive NK cells either as
a component of the transplanted cell population or as in vitro expanded NK cells.
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HAPLOIDENTICAL HEMOPOIETIC STEM CELL
TRANSPLANTATION
For over 40 years, allogeneic hematopoietic stem cell transplan-
tation (allo-HSCT) from an human leukocyte antigen (HLA)-
matched donor, either related or unrelated, has been increasingly
used to treat patients affected by several malignant or non-
malignant disorders. Thanks to this procedure, thousands of
subjects have been cured of their original disease (Copelan, 2006).
However, only 25% of patients who need an allograft have an
HLA-identical sibling available and for <60% of the remaining
patients a suitable, HLA-compatible, unrelated volunteer can be
found (Rocha and Locatelli, 2008). In the absence of an HLA-
matched donor, alternative donors/sources of hematopoietic stem
cells (HSC), such as unrelated umbilical cord blood (UCB) and

HLA-haploidentical relatives, are being increasingly used (Gluck-
man, 2006; Rocha and Locatelli, 2008; Locatelli et al., 2009). In
particular, the majority of patients have a family member, iden-
tical for one HLA-haplotype and fully mismatched for the other
(i.e., haploidentical), who can immediately serve as HSC donor
(Martelli et al., 2002; Locatelli et al., 2009). Thus, HSCT from an
HLA-haploidentical relative (haplo-HSCT) offers an immediate
transplant treatment virtually to any patients lacking a matched
donor or a suitable UCB unit.

A major breakthrough in the history of successful haplo-HSCT
was the demonstration that an efficient T cell-depletion of the graft
prevented both acute and chronic graft-vs-host disease (GvHD),
even when the donor was a relative differing for an entire HLA-
haplotype from the recipient (Reisner et al., 1983). The importance
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of T cell-depleted haplo-HSCT was first shown in children with
severe combined immunodeficiency (SCID; Reisner et al., 1983)
and it can now be estimated that hundreds of SCID patients have
been transplanted worldwide using an HLA-haploidentical related
donor, with a high rate of long-term, either partial or complete,
immune reconstitution (Antoine et al., 2003). However, while the
infusion of bone marrow (BM) cells obtained from an HLA-
haploidentical relative was associated with a high engraftment
rate in children with SCID, it was associated with an unaccept-
ably high incidence of graft failure in patients with acute leukemia
(Reisner and Martelli, 1999). In these cases, due to the exten-
sive T cell-depletion of the graft, the balance between competing
host and donor T cells shifts in favor of the unopposed host-vs-
graft rejection (Reisner and Martelli, 1999). As a possible solution
to this obstacle, the use of “megadoses” of granulocyte colony-
stimulating factor (G-CSF)-mobilized peripheral blood-derived
HSC was shown, in animal models, to overcome the barrier of
HLA incompatibility and to elude the residual anti-donor T lym-
phocyte reactivity of the recipient (Bachar-Lustig et al., 1995). An
effective translation of this approach into the clinical setting was
first reported in a pilot study performed in adults with acute
leukemia (Aversa et al., 1994). In this study, Aversa et al. (1994)
transplanted “megadoses” of T cell-depleted HSC from BM or
G-CSF-mobilized peripheral blood without any subsequent phar-
macological GvHD prophylaxis. The reported engraftment rate
was above 90% with a cumulative incidence of both grade II–
IV acute and chronic GvHD below 10%. Clinical trials performed
using purified CD34+ cells have confirmed that sustained engraft-
ment of donor hematopoiesis, without the occurrence of GvHD,
can be obtained in the majority of adult patients and that a sub-
stantial proportion of them, especially when affected by acute
myeloid leukemia (AML) or myelodysplastic syndromes, become
long-term survivors (Aversa et al., 1998; Ruggeri et al., 2002).

In view of the role played by donor T cells in mediating the
graft-vs-leukemia (GvL) effect, it could be expected that a rel-
evant proportion of patients given this type of allograft would
experience leukemia relapses. This expectation was only partly
confirmed by clinical results, since among adult patients affected
by AML, a subgroup of patients given T cell-depleted HSCT from
an HLA-disparate relative had a particularly low risk of leukemia
relapse (Aversa et al., 1998; Ruggeri et al., 2002). These patients
were transplanted from a donor having natural killer (NK) cells
that were “alloreactive” toward recipient targets. NK cell alloreac-
tivity was originally described by Moretta et al. (1990a) over 20
years ago when killing of allogeneic lymphoblasts was observed in
vitro and associated with defined NK cell subsets (Moretta et al.,
1990a) identified by the expression or lack thereof of novel sur-
face molecules (Moretta et al., 1990b), subsequently identified as
HLA class I-specific receptors (Ciccone et al., 1992b, 1994; Moretta
et al., 1993, 1996; Wagtmann et al., 1995). The emergence of the
concept of the efficacy of NK cell alloreactivity in this transplan-
tation setting has represented a sort of revolution in the field of
haplo-HSCT, underlining for the first time that not only adap-
tive immunity, but also innate immunity is a crucial element for
guaranteeing a successful clinical outcome (Moretta et al., 2008;
Locatelli et al., 2009). Indeed, it became evident that the therapeu-
tic effect of haplo-HSCT is largely dependent on the GvL effect

exerted by NK cells which originate from donor HSC (Ruggeri
et al., 2002; Moretta et al., 2008; Locatelli et al., 2009) and largely
contribute to eradicate leukemia cells surviving the preparative
regimen.

Thus, while for many years the absence of the T cell-mediated
GvL effect was considered to render the recipients of a T cell-
depleted allograft more susceptible to leukemia relapse (Horowitz
et al., 1990), it is now evident that, in haplo-HSCT, an efficient
GvL effect can be mediated by donor-derived alloreactive NK cells
which compensate for the lack of T cell intervention.

NK CELL RECEPTORS AND FUNCTION
Natural killer cells are important players of the innate immu-
nity. They are regulated by a number of receptors that finely
tune potent effector functions, including cytolytic activity against
different target cells and release of cytokines that play a major
role in inflammation and immunoregulation (Trinchieri, 1989;
Moretta et al., 1994; Janeway and Medzhitov, 2002; Moretta and
Moretta, 2004).

A group of inhibitory receptors interact specifically with major
histocompatibility (MHC) class I molecules (Ciccone et al., 1992b;
Moretta et al., 1993, 1996; Long, 1999). These receptors prevent
NK cell-mediated attack against normal (i.e., MHC class I+)
autologous cells. Cells in which MHC class I expression is com-
promised/downregulated (e.g., by tumor transformation or viral
infection) become susceptible to NK-mediated killing. In humans,
the inhibitory receptors for HLA class I molecules, namely: (1)
killer immunoglobulin (Ig)-like receptors (KIR2DL/3DL) that
belong to the Ig superfamily and are specific for determinants
shared by groups of HLA-A, -B, or -C allotypes (referred to as
KIR-ligands; reviewed in Moretta et al., 1996; Lanier, 1998; Long,
1999; Table 1), (2) CD94/NKG2A, a heterodimer related to C-
type lectins that recognizes HLA-E, an HLA class Ib molecule
(Lanier, 1998; Lopez-Botet et al., 2000), and (3) LILRB1 (ILT2,
LIR-1, CD85j) that displays broad HLA class I specificity and inter-
acts with UL18 human cytomegalovirus (HCMV) glycoprotein
(Colonna et al., 1997; Cosman et al., 1997). Notably, activating
forms of KIRs (KIR2DS/3DS; Moretta et al., 1995, 1996; Lanier,
1998), and CD94/NKG2C also exist. Activating KIRs may be rel-
evant for recognition and killing of leukemia cells and dendritic
cells (DCs; see below), while CD94/NKG2C appears to be involved
in the control of HCMV infections (Gumà et al., 2004; Della Chiesa
et al., 2012; Foley et al., 2012). In addition, NK cells are equipped
with several triggering receptors responsible for NK cell activa-
tion in the process of natural cytotoxicity. An important role in
tumor cell killing is exerted by NKp46 (Sivori et al., 1997; Pessino
et al., 1998), NKp30 (Pende et al., 1999), and NKp44 (Vitale et al.,
1998; Cantoni et al., 1999), a group of activating receptors that are
mostly restricted to NK cells and that are collectively named“natu-
ral cytotoxicity receptors”(NCRs). In particular, NKp46 expressed
both in human and in mouse NK cells represents the most reli-
able marker for NK cell identification (Sivori et al., 1997; Walzer
et al., 2007). The cellular ligands recognized by these receptors
are still elusive, with the exception of B7-H6, a ligand for NKp30
(Brandt et al., 2009). Another receptor that plays a major role
in NK cell-mediated recognition and killing of some tumors is
NKG2D, a type II membrane protein characterized by a lectin-like
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Table 1 | KIRs and KIR-ligands.

KIR Domain composition KIR-ligand Function Reference

2DL1 D1 + D2 HLA-CLys80 (C2) Inhibitory Ciccone et al. (1992a), Biassoni et al. (1995)

2DL2/2DL3 D1 + D2 HLA-CAsn80 (C1), HLA-B*46:01,

HLA-B*73:01

Low affinity: HLA-CLys80 (C2)

Inhibitory Ciccone et al. (1992a), Biassoni et al. (1995),

Moesta et al. (2008)

2DL4 D0 + D2 HLA-G Inhibitory and activating* Rajagopalan et al. (2001)

2DL5 D0 + D2 Unknown Inhibitory

3DL1 D0 + D1 + D2 HLA-BBw4 and some HLA-ABw4 Inhibitory Gumperz et al. (1997), Stern et al. (2008)

3DL2 D0 + D1 + D2 HLA-A*03 and HLA-A*11 Inhibitory Döhring et al. (1996), Pende et al. (1996)

2DS1 D1 + D2 HLA-CLys80 (C2) Activating Stewart et al. (2005), Chewning et al. (2007)

2DS2 D1 + D2 Unknown Activating

2DS3 D1 + D2 Unknown Activating

2DS4 D1 + D2 HLA-A*11 and some HLA-C alleles Activating Graef et al. (2009)

2DS5 D1 + D2 Unknown Activating

3DS1 D0 + D1 + D2 HLA-BBw4 (?) Activating Martin et al. (2002)

*KIR2DL4 may function as an inhibitory receptor in cytotoxicity while it triggers IFN-γ production.

domain (Wu et al., 1999). NKG2D recognizes the stress-inducible
MHC class I-related chain A/B (MICA/B) or UL16-binding pro-
teins (ULBP; Raulet, 2003). Other activating receptors include 2B4
(Moretta et al., 1992; Valiante and Trinchieri, 1993) specific for
CD48, NK, T, and B cell antigen (NTB-A; Bottino et al., 2001)
mediating homotypic interactions, NKp80 (Vitale et al., 2001)
specific for AICL1 (Welte et al., 2006), DNAM-1 (Shibuya et al.,
1996) specific for poliovirus receptor (PVR, CD155), and Nectin-2
(CD112; Bottino et al., 2003) also involved in cell-to-cell adhesion
and in leukocyte extravasation (Reymond et al., 2004). Notably,
PVR and Nectin-2 are frequently over-expressed on tumor cells
and leukemia blasts (Bottino et al., 2003). Recognition of self-
ligands that are induced by viral infection, tumor transformation,
and in general cell stress may represent an important mechanism
by which NK cells can identify and remove abnormal cells.

KIR REPERTOIRE AND SPECIFICITY FOR HLA CLASS I
ALLELES
The ability of NK cells to sense allelic differences on hematopoietic
target cells was first suggested by the hybrid resistance phe-
nomenon in which NK cells can reject parental BM grafts in F1
hybrid mice (Bennet, 1987). Studies in both humans and mice
clarified the general mechanisms underlying NK cell function
and their capability of selectively killing tumor cells. In humans,
two surface molecules expressed by subsets of NK cells that were
capable of modulating NK cell function were identified (Moretta
et al., 1990a,b, 1993; Wagtmann et al., 1995). They were shown
to function as inhibitory receptors specific for distinct HLA-C
alleles (Moretta et al., 1993). Molecular cloning revealed novel
members of the Ig superfamily characterized by two extracellular
Ig-like domains (KIR2D) and by a cytoplasmic tail containing two
immunoreceptor tyrosine-based inhibition motif (ITIM; Moretta
et al., 1990a,b, 1993; Wagtmann et al., 1995). Three Ig-like domain

KIRs (KIR3D) were also identified (Colonna and Samaridis, 1995).
They recognize either a group of HLA-B alleles sharing the
HLA-Bw4 supertypic specificity or certain HLA-A alleles.

Among the activating forms of KIRs, the specificity for HLA
class I molecules has been unequivocally documented only for
KIR2DS1 and KIR2DS4 (Table 1; Moretta et al., 1995; Stewart
et al., 2005; Chewning et al., 2007; Graef et al., 2009). KIRs are
clonally distributed on NK cells and individual cells express dif-
ferent sets of inhibitory or activating KIRs. Notably, most (but not
all) NK cells express at least one self-reacting inhibitory receptor,
either a KIR or CD94/NKG2A (Moretta et al., 1996).

While in an autologous setting NK cells can kill only cells that
do not express sufficient HLA class I molecules (Ciccone et al.,
1994), in a non-self environment NK cells may kill allogeneic
cells. It became evident that such “alloreactive” NK cells could kill
allogeneic cells, both in vitro and in vivo, when they expressed
inhibitory KIRs that did not recognize HLA class I alleles on target
cells (Ciccone et al., 1992b, 1994; Moretta et al., 1993; Pende et al.,
2005). In addition, these alloreactive NK cells should not express
CD94/NKG2A+ (Pende et al., 2005) because HLA-E molecules are
present in all HLA class I+ cells.

Notably, other factors may greatly contribute to NK alloreac-
tivity. In particular, killing of target cells may also depend on
the surface density of certain activating receptors (such as NCRs)
on NK cells and on the expression of their ligands on target
cells (Costello et al., 2002; Pende et al., 2005). More importantly,
activating KIRs (in particular KIR2DS1) were shown to play a
substantial role in mediating alloreactivity (Chewning et al., 2007;
Pende et al., 2009). KIR2DS1 activating receptor recognizes the C2
specificity (Chewning et al., 2007). It is worthy to note that, in NK
cells derived from C1/C2 or C1/C1 donors, activation via KIR2DS1
may overcome also the KIR2DL2/3-mediated inhibition, resulting
in an efficient lysis of C2/C2 leukemic cells (Pende et al., 2009).
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In addition, KIR2DS1 can overcome the CD94/NKG2A-mediated
inhibition, again resulting in killing of C2/C2 leukemias. Thus, the
expression of KIR2DS1 may reveal NK cells endowed with potent
alloreactivity and allow a more precise definition of the size of the
alloreactive NK cell subset (Pende et al., 2009).

IDENTIFICATION OF ALLOREACTIVE NK CELLS
Phenotypic identification of the alloreactive NK cell subset and
assessment of the NK cytolytic activity against leukemic cells
represent important criteria in donor selection. Multi-color
flow-cytometric analysis using appropriate combinations of mon-
oclonal antibodies (mAb) allows the identification and definition
of the size of the alloreactive NK cell population (Chewning
et al., 2007; Pende et al., 2009). Substantial progress has been
made recently after the identification of mAbs discriminating
between inhibitory and activating KIRs. Thanks to these mAbs, it
is now possible to distinguish KIR3DL1 from KIR3DS1, KIR2DL1
from KIR2DS1, and KIR2DL3 (but not KIR2DL2) from KIR2DS2
(Pende et al., 2009). This is most important because the expres-
sion of activating KIRs, in particular KIR2DS1, recognizing alleles
belonging to the C2 specificity may exert a positive effect and
greatly contribute to NK alloreactivity, provided that patient’s cells
express C2 alleles. Notably, the beneficial effect is more evident in
leukemia blasts of pediatric acute lymphoblastic leukemia (ALL)
that express higher levels of HLA class I molecules than AML blasts.
In addition, the presence of activating KIRs can also be assessed
by analyzing the KIR genotype and using appropriate redirected
killing assays (Chewning et al., 2007). Cytolytic activity of donor
NK cells against patient’s leukemic blasts or, alternatively, against
appropriate EBV-induced B cell lines should be evaluated to select
the HSCT donor with the best alloreactive capacity. In general, the
degree of cytolytic activity correlates with the size of phenotypi-
cally defined alloreactive NK cell subsets (Chewning et al., 2007;
Pende et al., 2009).

The fact that alloreactive NK cells are generated in the recip-
ient after the allograft was documented in the early studies by
Ruggeri et al. (2002). More recent studies by our group have con-
firmed and extended these findings. Donor’s alloreactive NK cell
populations have been identified on the basis of both phenotypic
and functional (i.e., cytolytic activity) criteria in a large cohort
of pediatric patients with high-risk leukemias even over 5 years
after transplantation (Moretta et al., 2008, 2011). In these studies,
a great variability in the size of the alloreactive NK cell popula-
tion was detected in different donors and in post-transplantation
patients. Importantly, most patients characterized by high pro-
portions of alloreactive NK cells were disease-free after long time
intervals (Pende et al., 2009). In addition, a correlation between
the size of the alloreactive NK subset and the clinical outcome was
found. After transplantation of positively selected CD34+ cells,
KIR+ alloreactive NK cells were detectable at 6–7 weeks after trans-
plantation and, in most instances, the pattern of expressed KIRs
was similar to that originally found in the donor (Moretta et al.,
2008, 2011; Pende et al., 2009).

A major and fascinating question is why alloreactive NK cells
do not mediate GvHD. Early experimental evidence suggested
that NK cells predominantly attack the hematopoietic cells of
the host, while sparing tissues that are common targets of T

cell-mediated GvHD. For example, in the hybrid resistance phe-
nomenon in the mouse, NK cells rejected BM graft, but did not
attack other tissues (Bennet, 1987). More recent studies in mice
showed that allogeneic cells can mediate GvL effect in the absence
of GvHD (Asai et al., 1998). Ruggeri et al. (2002) obtained direct
evidence that murine alloreactive NK cells did not cause GvHD,
whereas infusion of allogeneic T cells killed all the mice. In the
same murine model, alloreactive NK cells were also shown to
kill host antigen-presenting cells. This effect can contribute to
reduce the risk of GvHD. The molecular basis of the resistance
of recipient normal tissues other than the hematopoietic ones
is the lack of ligands for activating NK receptors. These ligands
become expressed or up-regulated by cells of different histotypes
upon cell stress, viral infection, or tumor transformation (Moretta
et al., 2006). Accordingly, NK cells cannot attack normal resting
cells.

Notably, recent reports have proposed a novel approach for
optimal donor selection based on the KIR genotype analysis. These
studies provide evidence that the selection of donors with KIR B
haplotypes was associated with significant improvements in both
overall and relapse free survival, suggesting that activating KIRs,
particularly those located in the centromeric portion, play a posi-
tive role in GvL in adult AML patients (Cooley et al., 2010; Symons
et al., 2010).

It should be mentioned that some studies failed to establish an
association between the presence of donor NK alloreactivity and
a favorable clinical outcome of transplanted patients (Leung et al.,
2004; Nguyen et al., 2005; Vago et al., 2008). This can be explained
taking into account (1) the type of grafted cells (manipulated vs
un-manipulated), (2) the type of conditioning regimen, (3) the
source (PBSC vs BM) and, importantly, the number of stem cells
used (“megadoses” in haplo-HSCT), (4) the type of GvHD pro-
phylaxis, and (5) the clinical status of the patient at the time of the
allograft (early vs advanced disease).

RECENT ADVANCES AND FUTURE PERSPECTIVES
There is no doubt that studies on NK cell receptor specificity
and function allowed a rapid exploitation of these results in the
treatment of high risk leukemias. Nonetheless, further relevant
progresses are expected from the use of donor alloreactive NK cells
as a tool for improving the clinical outcome of severe malignancies
and for preventing GvHD.

The capability of alloreactive NK cells to kill host DCs, which
are known to initiate T cell-mediated GvHD through presentation
of host alloantigens to donor T cells, suggested a novel and interest-
ing experimental approach in mice (Asai et al., 1998; Shlomchik
et al., 1999). Infusion of mature, donor-vs-recipient alloreactive
NK cells prevented GvHD to such an extent that mice that were
given these cells could receive mismatched BM grafts containing
up to 30 times the lethal dose of allogeneic T cells in the absence
of clinical or histological evidence of GvHD (Asai et al., 1998).
Transfer of such an approach to humans is particularly promising
to prevent or treat GvHD, in view of the role of the lytic activity
of donor-derived NK cells toward recipient T lymphocytes in the
control/prevention of graft rejection.

As mentioned above, in the haplo-HSCT setting, after the infu-
sion of pure CD34+ cells, the first appearance of KIR+ alloreactive
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NK cells from HSC precursors may require 6–8 weeks and thus
their anti-leukemia effect is relatively delayed. In case of high
residual tumor burden and/or of rapidly proliferating leukemia
blasts, this may result in leukemic relapses. To minimize this
risk, mature alloreactive NK cells isolated from the haploidentical
donor may be infused at short time intervals after HSCT. These
mature donor NK cells could be properly activated ex vivo with
interleukin-15 for further improving the clinical results of haplo-
HSCT. Another promising and even less cumbersome approach
is represented by the use of a recently developed method of graft
manipulation based on the negative selection of T lymphocytes
carrying the α/β chains of the T cell receptor (TCR) coupled
with a B cell-depletion through an anti-CD19 mAb. T lympho-
cytes carrying the α/β chains of TCR are the lymphocyte subset
responsible for the occurrence of GvHD, and thus their elimi-
nation allows to prevent the occurrence of this life-threatening
complication of an allograft. This novel approach permits to
transfer to the recipient not only high numbers of CD34+ cells,
but also of mature donor NK cells and TCRγ/δ+ T cells which

can display their protective effect against leukemia re-growth and
life-threatening infections (Chaleff et al., 2007; Handgretinger,
2012). Alloreactive NK cells are immediately available and may
promptly exert their anti-leukemic and GvHD-preventing effect
(Figure 1). A formal clinical trial using this approach is ongo-
ing in our department and the preliminary results are extremely
encouraging (Locatelli et al., unpublished). Likewise, preliminary
experimental data indicate that, already 1 month after the allograft,
pediatric patients receiving this novel type of HSCT from an HLA-
haploidentical donor have peripheral mature NK cells that fully
express KIRs and are endowed with a good lytic capacity against
leukemia cells.

Regarding other possible settings in which alloreactive NK cells
can be of relevant clinical interest, recent studies reported on
the infusion of third-party purified NK cells in patients with
either relapsed or first CR AML, who had not received allo-
geneic HSCT (Miller et al., 2005; Rubnitz et al., 2010). These
patients were given immunosuppressive chemotherapy (com-
bining fludarabine and cyclophosphamide) and interleukin-2,

FIGURE 1 | A novel strategy for HSC transplantation from haploidentical

donors. In this protocol, HSC-enriched cell populations are obtained by
negative selection upon removal of TCR α/β+ T cells and CD19+ B cells.
Notably, in addition to CD34+ cells, these cell suspensions contain mature
NK cells and TCR γ/δ+ T cells. Using this strategy, two sources of alloreactive
NK cells will come into play: (1) those generated from CD34+ cells after 6–8
weeks from transplantation and (2) those present in the fresh cell suspension

infused into patients. It is evident that the prompt availability of
alloreactive effector cells may greatly improve the anti-leukemia
effect and the removal of residual patient’s DCs and T lymphocytes,
thus ensuring a more efficient prevention of leukemic relapses,
GvHD and graft-rejection. In addition, transplanted NK and γ/δ
T cells may provide a first line of defense against different infectious
agents.
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respectively, before and after NK cell infusion in order to pre-
vent rejection and favor NK cell function. NK cells transiently
engrafted and expanded in vivo. The clinical results were particu-
larly encouraging. This appears as a promising novel therapy for
reducing the risk of relapse in patients with AML treated with
conventional chemotherapy. Another promising approach to con-
trol leukemia progression resides in the NK cell manipulation
using anti-KIR mAb (Romagné et al., 2009). This mAb, currently
tested in phase II clinical trials on patients with AML or multi-
ple myeloma, confers specific, stable blockade of KIR and induces
NK-mediated killing of HLA-matched tumor cells in vitro and
in vivo.

Altogether these data indicate that the discovery of NK recep-
tors and NK cell alloreactivity has represented a true revolution
in the field of allo-HSCT, underlining that not only adaptive

immunity, but also innate immunity may be crucial for guar-
anteeing a successful clinical outcome.
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