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Abstract: Existing material identification for loose particles inside sealed relays focuses on the
selection and optimization of classification algorithms, which ignores the features in the material
dataset. In this paper, we propose a feature optimization method of material identification for loose
particles inside sealed relays. First, for the missing value problem, multiple methods were used
to process the material dataset. By comparing the identification accuracy achieved by a Random-
Forest-based classifier (RF classifier) on the different processed datasets, the optimal direct-discarding
method was obtained. Second, for the uneven data distribution problem, multiple methods were used
to process the material dataset. By comparing the achieved identification accuracy, the optimal min–
max standardization method was obtained. Then, for the feature selection problem, an innovative
multi-index–fusion feature selection method was designed, and its superiority was verified through
several tests. Test results show that the identification accuracy achieved by RF classifier on the
dataset was improved from 59.63% to 63.60%. Test results of ten material verification datasets
show that the identification accuracies achieved by RF classifier were greatly improved, with an
average improvement of 3.01%. This strongly promotes research progress in loose particle material
identification and is an important supplement to existing loose particle detection research. This is
also the highest loose particle material identification accuracy achieved to in aerospace engineering,
which has important practical value for improving the reliability of aerospace systems. Theoretically,
it can be applied to feature optimization in machine learning.

Keywords: sealed relays; material identification; missing value processing; standardization and
normalization processing; feature selection; RF classifier

1. Introduction

As an important part of various pieces instruments, the reliability of sealed relays
directly affects the reliable operation of aerospace equipment [1]. Among many reliability
problems associated with sealed relays, the loose particle problem is the most important.
The production process of sealed relays is relatively complex. In the production process,
copper wires, solder particles, aluminum chips, wire skins, and other particles may be
encapsulated inside the relays [2]. These substances generated inside or brought in from
outside and destroy the original state of the relays are called loose particles [3]. Under over-
weight, weightless, or sudden shock conditions, loose particles inside sealed relays could
move randomly [4]. They may strike internal contacts or components, causing inoperative
phenomenon or abnormal operation of the sealed relay [5]. An invalid sealed relay could
cause operational failure of aerospace equipment and lead to aerospace accidents, resulting
in huge losses [6,7].

Particle impact noise detection (PIND) experiments can be used to effectively detect
loose particles inside sealed relays [8–10] and screening for invalid products [11,12]. From
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the perspective of the entire sealed relay production process, such testing occurs during
pre-delivery inspection at the end of the production process. During the inspection process,
if it can be determined not only whether there are any loose particles inside the sealed relay
but also the material constituting the loose particles, the production link that produced the
loose particles can be traced. In this way, by further standardizing details and requirements
of the corresponding production link, the loose particle problem can be effectively reduced.
In recent years, the Loose Particle Detection Research (LPDR) group of the Institute of
Electrical and Electronic Reliability, Harbin Institute of Technology, where the authors are
located, has been devoted to the exploration of and research on loose particles, such as
their materials, locations, and weights [13–20]. By combining signal processing technology
and machine learning methods, the group aims to provide reference information for the
inspection of loose particles in aerospace engineering.

One of the research directions of the authors is the material identification of loose
particles inside sealed relays. On the basis of a sufficient literature review and experimental
testing in the early stage, we propose to transform the loose particle material recognition
problem into a multi-classification problem in machine learning. The theoretical basis for
conducting research in this way is that if acoustic emission sensors were placed on the
surface of a sealed relay, the sensors could collect the generated loose particle signals. Thus,
if the materials of the loose particles were different, the loose particle signals generated
by the collision would also be different. This would allow for analysis of the differences,
which could be applied it to build a feature dataset and, ultimately, trained classifiers with
different materials as labels. Specifically, we placed loose particles of different materials
inside sealed relays and generated loose particle signals. The loose particle material dataset
(material dataset) can be formed by extracting the pulse area, spectral centroid, and other
features that could reflect the material information from the signals. Combined with the
Random Forest algorithm, the classifier was trained on it, and a detailed description can be
found in Section 2.

Following this idea, in previous research, we extracted fourteen time-domain and
frequency-domain features from loose particle signals and built a material dataset. We
trained the classifier on the material dataset based on Decision Tree and Random Forest and
concluded that the Random-Forest-based classifier (RF classifier) achieved the best classifi-
cation results, i.e., achieved the highest material identification accuracy. The RF classifier
achieved the highest material identification accuracy on the loose particle dataset of 59.63%.
It should be noted that in the early stages, we focused on improving the classification
performance of the classifier in algorithm selection and parameter optimization, which
ignored the material dataset, especially the features and data distribution in the dataset. In
machine learning, high-quality datasets are often more important than good classification
algorithms [21]. The features are the basis for constructing the dataset. Therefore, the better
the feature optimization effect of the dataset, the higher the quality of the dataset, the better
the classification performance of the trained classifier, and the higher the identification
accuracy achieved.

In machine learning, work related to feature processing of datasets is known as feature
engineering. Many scholars have carried out research on feature engineering and achieved
good research results. For example, Ma et al. [22] proposed a feature selection method for a
forest optimization algorithm based on contribution degree. The proposed method used a
contribution degree policy embedded in the forest optimization algorithm. The goal of the
contribution degree was to guide the search process of the forest optimization algorithm
to select features according to high correlation and low redundancy among them. The
algorithm was fully validated on datasets from the UCI repository. Combining adversarial-
based learning and distributed techniques, Wu et al. [23] proposed a new hybrid binary
particle swarm optimization method incorporating information gain theory. The converted
information gain value was used as a weight coefficient to adaptively adjust the flight speed
of the particles. A support vector machine (SVM) algorithm was applied to evaluate the
performance of feature optimization from two perspectives, including user identification
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accuracy and feature reduction rate. Wang et al. [24] proposed an ensemble feature selection
algorithm based on a multimodal optimization technique. Differential evolution based on
a fitness Euclidean-distance ratio (FERDE) algorithm was utilized to search for multiple
diverse feature subsets in the huge feature space. A set of diversity-based classifiers was
constructed based on these subsets and ensembles to improve the final classification perfor-
mance. Sreedharan et al. [25] adopted a feature extraction method based on scale-invariant
feature transformation to extract features from face points. Later, a meta-heuristic called
grey wolf optimization (GWO) was used to select the best features. Demir et al. [26] inves-
tigated missing data and redundant features and proposed a method including missing
feature completion with statistical moments (means) and feature selection using novel
group optimization methods. To select meaningful features, a feature selection method
based on chaotic Darcy optimization was proposed, which selected the thirty-one most
discriminative features of the complete HCC dataset. Aghdam et al. [27] proposed a novel
feature selection method based on particle swarm optimization to improve the performance
of text classification. Particle swarm optimization is inspired by the social behavior of
fish flocking or bird flocking. The complexity of the proposed method is very low due to
the application of a simple classifier. Yazdani et al. [28] proposed two feature selection
methods by modifying the main operators of the biogeography-based optimization algo-
rithm. The difference between these methods is the use of binary versus integer encoding.
Simulations were performed on datasets with different feature dimensions and categories.
Pourpanan et al. [29] combined incremental learning fuzzy min–max (FMM) neural net-
works with brain storm optimization (BSO) to take on feature selection and classification
problems. Ten benchmark questions and a real-world case were used for testing and
research to evaluate the effectiveness of the proposed FMM-BSO.

Based on summarizing the relevant research results, we chose to shift our research
focus to the features in the material dataset and thus proposed a feature optimization
method of material identification for loose particles inside sealed relays. First, the missing
values in the material dataset were processed, which is summarized as the missing value
processing stage. We used a variety of statistical methods to fill in the missing values and
applied the RF classifier to make predictions on the processed dataset. Thus, multiple
identification accuracies were obtained. We used the direct-discarding method to process
the missing values and applied the RF classifier to make predictions. By comparing the
identification accuracies achieved by the RF classifier on the datasets processed by statistical
method with those achieved by the direct-discarding method, the best missing value
processing method can be obtained. Second, different standardization and normalization
processing methods were used to deal with the problem of large difference in numerical
distribution between features in the dataset, which was summarized as the standardization
and normalization processing stage. Specifically, we used z-score standardization, min–max
standardization, and row normalization to process the material dataset and applied the RF
classifier to make predictions. The optimal standardization and normalization processing
method can be obtained by comparing the obtained identification accuracies. Then, we
studied the feature selection method based on the “filtering method” and designed a multi-
index-fusion feature selection method, which is summarized as the feature selection stage.
We used the new feature selection method to select features that contribute considerably to
the identification accuracy of the RF classifier on the dataset and further constructed a new
material dataset. The RF classifier achieved the highest identification accuracy on this new
dataset. With this, we had obtained the best missing value processing method, the best
standardization and normalization processing method, and the multi-index-fusion feature
selection method and completed the design of the feature optimization method proposed
in this paper. Finally, we constructed several material verification datasets to test the above
feature optimization method. The practicability and robustness of the proposed method
were proven by comparing the identification accuracy achieved by the RF classifier on the
verification datasets before and after optimization.
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2. Related Works
2.1. Loose Particle Material Identification Experimental System

We used the DZJC-III PIND loose particle automatic detection system (loose particle
automatic system), which was independently designed and manufactured by the LPDR
group, to build the loose particle material identification experimental system, as shown
in Figure 1. The system consists of three parts. The first part is the PIND experimental
platform, including the sealed relay (under test), vibrating table, vibrating table driving
device, couplant, etc. It is used to stimulate the sealed relay so that the loose particles inside
the relay collide with the inner wall of the relay and a loose particle signal is generated.
The second part is the loose particle detection system, as shown in Figure 2. The acoustic
emission sensor provided by the system is placed on the surface of the relay, which is
used to capture the generated loose particle signal, and is implemented in the system
for signal conditioning and synchronization. Finally, the digital signal data are saved on
the host computer in “dat” format [30]. The third part is algorithm processing, mainly
completed on the host computer. Based on the obtained signal data, steps including
data preprocessing, pulse extraction, pulse matching, feature extraction and the material
identification algorithm (machine learning classification algorithm) are completed.

Sensors 2022, 22, 3566 4 of 24 
 

 

2. Related Works 

2.1. Loose Particle Material Identification Experimental System 

We used the DZJC-III PIND loose particle automatic detection system (loose particle 

automatic system), which was independently designed and manufactured by the LPDR 

group, to build the loose particle material identification experimental system, as shown in 

Figure 1. The system consists of three parts. The first part is the PIND experimental plat-

form, including the sealed relay (under test), vibrating table, vibrating table driving de-

vice, couplant, etc. It is used to stimulate the sealed relay so that the loose particles inside 

the relay collide with the inner wall of the relay and a loose particle signal is generated. 

The second part is the loose particle detection system, as shown in Figure 2. The acoustic 

emission sensor provided by the system is placed on the surface of the relay, which is used 

to capture the generated loose particle signal, and is implemented in the system for signal 

conditioning and synchronization. Finally, the digital signal data are saved on the host 

computer in “dat” format [30]. The third part is algorithm processing, mainly completed 

on the host computer. Based on the obtained signal data, steps including data prepro-

cessing, pulse extraction, pulse matching, feature extraction and the material identifica-

tion algorithm (machine learning classification algorithm) are completed. 

Host computer

Vibrating table driving 

device

DZJC-III PIND loose particle 

automatic detection systemSealed relay 

(under test)

Vibrating table

Acoustic emission sensor

Couplant

Lower computer

Material identification 

algorithm

Feature extraction

Pulse matching

Pulse extraction

Data preprocessing

 

Figure 1. Block diagram of the loose particle material identification experimental system. 

 

Figure 2. DZJC-III PIND loose particle automatic detection system. 

2.2. Technology Implementation Process 

Based on the proposed loose particle material identification experimental system, the 

implementation processes of loose particle material identification are as follows. 

Step 1: Multiple sealed relay samples of the same type as the sealed relay (under test) 

were prepared in advance, and each sealed relay sample contain loose particles of only 

Figure 1. Block diagram of the loose particle material identification experimental system.

Sensors 2022, 22, 3566 4 of 24 
 

 

2. Related Works 

2.1. Loose Particle Material Identification Experimental System 

We used the DZJC-III PIND loose particle automatic detection system (loose particle 

automatic system), which was independently designed and manufactured by the LPDR 

group, to build the loose particle material identification experimental system, as shown in 

Figure 1. The system consists of three parts. The first part is the PIND experimental plat-

form, including the sealed relay (under test), vibrating table, vibrating table driving de-

vice, couplant, etc. It is used to stimulate the sealed relay so that the loose particles inside 

the relay collide with the inner wall of the relay and a loose particle signal is generated. 

The second part is the loose particle detection system, as shown in Figure 2. The acoustic 

emission sensor provided by the system is placed on the surface of the relay, which is used 

to capture the generated loose particle signal, and is implemented in the system for signal 

conditioning and synchronization. Finally, the digital signal data are saved on the host 

computer in “dat” format [30]. The third part is algorithm processing, mainly completed 

on the host computer. Based on the obtained signal data, steps including data prepro-

cessing, pulse extraction, pulse matching, feature extraction and the material identifica-

tion algorithm (machine learning classification algorithm) are completed. 

Host computer

Vibrating table driving 

device

DZJC-III PIND loose particle 

automatic detection systemSealed relay 

(under test)

Vibrating table

Acoustic emission sensor

Couplant

Lower computer

Material identification 

algorithm

Feature extraction

Pulse matching

Pulse extraction

Data preprocessing

 

Figure 1. Block diagram of the loose particle material identification experimental system. 

 

Figure 2. DZJC-III PIND loose particle automatic detection system. 

2.2. Technology Implementation Process 

Based on the proposed loose particle material identification experimental system, the 

implementation processes of loose particle material identification are as follows. 

Step 1: Multiple sealed relay samples of the same type as the sealed relay (under test) 

were prepared in advance, and each sealed relay sample contain loose particles of only 

Figure 2. DZJC-III PIND loose particle automatic detection system.



Sensors 2022, 22, 3566 5 of 24

2.2. Technology Implementation Process

Based on the proposed loose particle material identification experimental system, the
implementation processes of loose particle material identification are as follows.

Step 1: Multiple sealed relay samples of the same type as the sealed relay (under test)
were prepared in advance, and each sealed relay sample contain loose particles of only one
type of material. Therefore, N sealed relay samples contain loose particles of N materials
inside. We selected one of the sealed relay samples.

Step 2: The selected sealed relay sample was fixed to the PIND experimental platform,
and mechanical excitation was applied to it by driving the vibrating table so that the loose
particle inside the sample would be in a collision or sliding state.

Step 3: The loose particle signal collected by the acoustic emission sensor was sent to
the loose particle detection system for conditioning and collection, and the collected signal
data were sent to the host computer for storage.

Step 4: The signal data were processed, and multiple features that reflect the material
information were extracted from the processed signal data to form the material data, i.e., the
data representing the material of the loose particle inside the sealed relay sample selected
in Step 1.

Step 5: The sealed relay sample selected in Step 1 was adjusted, in fact, it is to adjust
the material of the loose particle contained inside the sealed relay. Step 1 to Step 4 were to
obtain the data representing the new material. The material dataset representing different
materials of loose particles was built by selecting the 1st to Nth sealed relay samples in
order and repeating Step 1 to Step 4.

Step 6: Multiple classifiers based on different machine learning classification algo-
rithms were trained on the material dataset, the prediction performance of each classifier
was evaluated, and the best-performing classifier was obtained. Then the inherent parame-
ters were optimized to achieve optimal performance.

Step 7: The sealed relay (under test) was fixed on the PIND experimental platform,
and mechanical excitation was applied to cause the loose particle within to be in a collision
or sliding state. Step 3 and Step 4 were repeated, the material data to be predicted (without
labels) were compiled, and the optimal classifier was applied to make predictions. Then,
the predicted loose particle material was obtained.

In our previous research, we used the optimal RF classifier mentioned above. At
present, the highest identification accuracy achieved by the RF classifier on the existing
material dataset is 59.63%.

2.3. Sealed Relay Samples

Based on common loose particles found inside sealed relays, we chose copper wires,
solder particles, aluminum particles, hot glue particles, wire coatings made of PVC material
(PVC particles), wire coatings made of silica gel (silica gel particles)—a total of six kinds of
materials—as the experimental objects. Considering the improvement in manufacturing
sealed relays in recent years, a large number of test results show that the number of
loose particles inside sealed relays was does not exceed three; therefore, our sealed relay
sample contained one loose particle. The LPDR group coproduced, with Guizhou Space
Appliance Co., Ltd., Guizhou, China, and obtained sealed relay samples containing loose
particles of the abovementioned six materials. A model of the sealed relay samples, material
information, and weight information about the loose particles are shown in Table 1, and
the sealed relay samples are shown in Figure 3.
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Table 1. Model of the sealed relay samples, material information, and weight information about the
contained loose particles.

Model One Model Two Model Three

Material Weight Material Weight Material Weight

Copper wires

0.04 mg

Solder
particles

0.03 mg

Aluminum
particles

0.03 mg
0.08 mg 0.07 mg 0.06 mg
0.11 mg 0.11 mg 0.10 mg
0.15 mg 0.15 mg 0.15 mg
0.19 mg 0.19 mg 0.19 mg

Hot glue
particles

0.03 mg

PVC particles

0.03 mg

Silica gel
particles

0.6 mg
0.08 mg 0.07 mg 0.9 mg
0.12 mg 0.11 mg 1.2 mg
0.15 mg 0.15 mg 1.4 mg
0.16 mg 0.19 mg 1.6 mg
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2.4. Experimental Conditions

Based on the obtained sealed relay samples containing loose particles of different
materials, we used the loose particle detection system to conduct experiments. The experi-
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mental conditions were set in strict accordance with the Chinese GJB65B standard [31] and
are shown in Table 2.

Table 2. Experimental conditions specified according to the Chinese GJB65B standard.

Impact Acceleration Vibration Frequency Vibration Acceleration

200 g 27 Hz 5 g
200 g 40 Hz 5 g
200 g 100 Hz 5 g

We needed to select the weights of the loose particles contained in the sealed relay
samples according to the sensitivity range of the acoustic emission sensor. In previous
research, we tested whether the loose particle signal generated by loose particles of different
weights could be collected by an acoustic emission sensor and obtained the weight range
of the loose particles of the six materials used in the present experiment. Specifically, the
weight range of silica gel loose particles is 0.6 mg to 1.6 mg, and the weight range of loose
particles of other materials is 0.02 mg to 0.2 mg. It can be seen form the Table 1 that the
weights of the loose particles contained in the sealed relay samples were all within the
detectable range.

2.5. Feature Description

The loose particle signal generated by collision or sliding is an acoustic emission signal
in a broad sense. From the perspective of acoustic emission signal identification, loose
particle material identification is based on the principle of “inferring the acoustic emission
source from the acoustic signal features”. Therefore, we selected the time-domain and
frequency-domain features from the loose particle signal according to the above principle.
First, the vibration frequencies generated by the collision of loose particles of different
materials are different, and frequency-domain features, such as spectral centroid and
Mersenne Cepstral coefficient, can be selected. Second, because the hardness of loose
particles of different materials is different, the collision duration and the degree of close-
to-elastic collision are also different. Time-domain features, such as pulse length and the
degree of symmetry between left and right, can be selected. Because the masses of loose
particles of different materials are different, the energies of the loose particles when they
collide are also different. Time-domain features, such as pulse area and energy density, can
be selected. In addition to the influence of the materials, the loose particle signal is also
affected by the experimental conditions. Under different impact accelerations, vibration
frequencies, and vibration acceleration conditions, the energies obtained by the loose
particles detection system through different excitations are also different. Therefore, the
experimental conditions can also be used as the loose particle signal features. It can be seen
from Table 2 that the impact acceleration and vibration acceleration are fixed, so only the
vibration frequency can be used as the loose particle signal feature.

Finally, we decided to extract a total of fourteen features from the signal, which reflect
the material information of the loose particle. The specific descriptions are shown in Table 3.
It should be noted that the “symbolic representation” in the table represents the name
of the features in the dataset. Therefore, each piece of data in the material dataset is of
1 × 15 specification. The first column of the data represented in the label also represents
the specific material. The second to fifteenth columns of data represent the fourteen
abovementioned features.

Table 3. Detailed description of loose particle features.

Feature Name Feature Description Symbolic Representation

Pulse area Area of the pulse signal. s

Degree of symmetry between left and right Initiation process of the signal
characterized by the symmetry angle. Dczy
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Table 3. Cont.

Feature Name Feature Description Symbolic Representation

Characterize the onset speed of the signal
from the perspective of the pulse rising speed

Initiation velocity of the signal
characterized Pulse Rise Percentage. Tp

Duration Difference between the start and the
end time. Tl

Energy density Measure of the distribution
characteristics of the signal energy. MD

Pulse ratio Ratio of pulse duration to pulse length. ZB

Crest factor Extreme degree of the peak value in
the waveform. bf

Degree of symmetry between upper
and lower Ratio of rise time to fall time. dcsx

Area ratio Area ratio of the spectrum. dp

Zero-crossing rate
Value of the sign change of a section of
signal; its magnitude is related to the

frequency of the signal.
zerorate

Variance Used to calculate the difference between
each variable and the overall mean. var

Spectral centroid
Used to describe the spectral distribution

and characterize the frequency of the
loose particle signal.

mainHz

Cepstral coefficient
Obtained from the square root of the

mean square frequency; used to describe
the energy spectrum.

MSF

Cepstral coefficient difference
Obtained from the square root of the

frequency variance; also used to describe
the energy spectrum.

MSFcha

3. Methods

The research processes of the proposed feature optimization method are as follows.
First, statistical methods [32–34], such as mean, median, Lagrange interpolation [35], and
Newton interpolation [36], were used to fill in the missing values in the material dataset, and
the direct-discarding method was used for processing. We applied the RF classifier to make
predictions on the dataset processed by the abovementioned methods; on which dataset the
RF classifier achieved the highest identification accuracy. Then, the optimal missing value
processing method was obtained, and the processed material dataset was saved. Second, the
differences in the numerical distribution of each column feature in the material dataset were
analyzed. We used z-score standardization [37], min–max standardization [38], and row
normalization [39] methods to process the dataset so as to ensure that all rows and columns
in the dataset were treated equally by the RF classifier. Then, the optimal standardization
and normalization processing method was obtained, and the processed material dataset was
saved. Then, we studied the feature selection method based on “filtering method” [40–42]
and used Pearson coefficient [43] and p-value [44] to select the features in the material
dataset. On this basis, we designed a multi-index-fusion feature selection method, which
can effectively select the features that contribute considerably to the identification accuracy
of the RF classifier in the dataset and obtained the final material dataset with the best
quality, on which the RF classifier also achieved the highest identification accuracy. This
completed the design process of the proposed feature optimization method, which will be
described in detail below.
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3.1. Missing Value Processing

With the help of the loose particle material identification experimental system, we
obtained the initial material dataset. The dataset contains 1,039,776 pieces of data. Among
them, there are 175,416 data points with the label “0”, 169,943 data points with the label “1”,
177,936 data points with the label “2”, 168,796 data points with the label “3”, 173,105 data
points with the label “4”, and 174,580 data points with the label “5”. It should be noted that
labels “0” to “5” represent the six materials in Table 1. Affected by many factors, such as
low energy of the loose particle signal and discontinuous signal collection, some missing
values inevitably appeared during the establishment of the material dataset. Table 4 lists
detailed information about the missing values in the initial material dataset.

Table 4. Description of missing values in the material dataset.

Label Total Number of Data Points Number of Missing Values

0 175,416 231
1 169,943 243
2 177,936 186
3 168,796 84
4 173,105 208
5 174,580 157

According to complete data in the dataset, five statistical methods, including mean
filling, median filling, mode filling, Lagrange interpolation filling, and Newton interpo-
lation filling, were used to process the missing values, and five processed datasets were
obtained. In addition, we used the direct-discarding method to discard the whole section
of data where the missing values were located, retaining the data without missing values
to obtain the sixth dataset.

On this basis, we applied the RF classifier to make predictions on the above six
datasets. In order to obtain relatively accurate prediction results, the RF classifier made ten
predictions on each dataset and obtained ten prediction accuracies. We took the mean value
of ten prediction accuracies as the final achieved identification accuracy in order to reduce
the random influence. Table 5 lists the prediction accuracies achieved by the classifier on
the six tested datasets.

Table 5. Prediction accuracies achieved by the RF classifier on six datasets.

Number

Method
Mean/% Median/% Mode/%

Lagrange
Interpolation/%

Newton
Interpolation/%

Direct
Discarding/%

1 57.92 58.02 57.90 59.45 59.32 59.83
2 58.05 57.85 57.89 59.51 59.36 59.06
3 58.01 57.88 57.84 59.43 59.29 59.75
4 57.92 58.01 57.86 59.46 59.51 59.99
5 57.96 57.87 57.83 59.45 59.42 59.37
6 58.10 57.89 57.91 59.46 59.36 59.64
7 58.05 57.91 57.82 59.50 59.47 59.52
8 57.99 57.93 57.89 59.51 59.41 59.70
9 58.12 57.89 57.82 59.47 59.37 59.94
10 58.08 57.85 57.84 59.46 59.49 59.50

Mean value 58.02 57.91 57.86 59.47 59.40 59.63

It can be seen from the table that the RF classifier achieved the highest identification
accuracy (59.63%) on the material dataset processed by the direct-discarding method. This
is the same missing value processing method that we used previously. Meanwhile, the RF
classifier achieved a slightly lower identification accuracy on the dataset processed by other
statistical methods. Therefore, for the material dataset, the direct-discarding method is the
best missing value processing method. This also shows that if the dataset contains a small
proportion of missing values, they should be discarded directly without worrying about
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losing part of the information; this will improve the overall quality of the dataset. After the
missing value processing stage, we a material dataset that does not contain missing values.
The material dataset contains a total of 1,038,667 valid data points, which can be used for
standardization and normalization processing.

3.2. Standardization and Normalization Processing

We further analyzed the numerical distribution of the features within the material
dataset and found that the data scales between the features of each column were quite
different. For example, the value range of the spectral centroid was 0.9 to 1, whereas
the value range of the Cepstral coefficient difference was 400 to 800, and the data scale
difference between the two was more than 400 times. Therefore, we standardized and
normalized the material dataset, aiming to align the data distribution of the row features
or column features within the dataset [45] and ensure that all the features in the material
dataset are equally treated by the RF classifier. We selected the three methods of z-score
standardization, min–max standardization, and row normalization.

3.2.1. z-Score Standardization

The main purpose of z-score standardization is to unify the data of different levels
into the same level and measure the data by the calculated z-score value so as to ensure
its comparability [46]. The mean value of the processed data is zero, and the standard
deviation is one [47]. The calculation formula is:

z = (x− µ)/σ (1)

In the formula, z is the normalized value, x is the pre-normalized value, µ is the mean
value of the column, and σ is the standard deviation of the column.

3.2.2. Min–Max Standardization

Min–max standardization replaces the input value with the output result of the fol-
lowing formula [48]:

m = (x− xmin)/(xmax − xmin) (2)

In the formula, m is the normalized value, x is the pre-normalized value, xmin is the
minimum value of the column, and xmax is the maximum value of the column.

3.2.3. Row Normalization

Row normalization refers to the normalization of each row of the dataset, which means
that the vector length of each row is the same [49]. We consider each row to be a vector
in space:

x = (x1, x2, . . . , xn) (3)

The L2 norm of the vector, x, is defined as [50]:

norm(x) =
√

x2
1 + x2

2 + · · ·+ x2
n, n = 14 (4)

It can be seen from Equation (4) that we used the L2 norm [51]. Other types of functions
can also be chosen, as long as each row vector is constrained by the same type of norm.

3.2.4. Results Analysis

We used the above three methods to process the material dataset obtained in the miss-
ing value processing stage. Similarly, we applied the RF classifier to make ten predictions
on the three processed datasets, taking the mean value of the ten classification accuracies
so as to indirectly characterize the processing effects of the three methods. Table 6 lists the
prediction accuracies achieved by the RF classifier on the three datasets.
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Table 6. Prediction accuracies achieved by the RF classifier on the three datasets.

Number

Method z-Score
Standardization/%

Min–Max
Standardization/%

Row
Normalization/%

1 63.86 63.96 63.00
2 63.95 63.99 62.89
3 63.27 63.40 63.01
4 63.37 63.31 62.94
5 63.45 63.38 63.01
6 63.31 63.41 63.01
7 63.34 63.27 63.17
8 63.42 63.51 62.93
9 63.40 63.41 62.97
10 63.40 63.41 63.08

Mean value 63.48 63.51 63.00

It can be seen from the table that the RF classifier achieved the highest average
identification accuracy of 63.51% on the dataset processed by min–max standardization,
which was significantly improved compared to 59.63% accuracy before processing (in
the missing value processing stage). In addition, we can also see that the identification
accuracies achieved by the RF classifier on datasets processed by z-score standardization
and row normalization were also significantly improved, although there are still some gaps
compared with the former. Similarly, after standardization and normalization processing,
we obtained a material dataset with relatively regular data distribution, which can be used
for feature selection.

3.3. Feature Selection

In machine learning, the prediction performance of the classifier increases with an
increase in the number of used features [52]. However, when the number of features is
oversaturated, redundant features degrade the prediction performance of the classifier.
Therefore, it is necessary to select features from the original dataset that contribute most
to the prediction performance of the classifier. It is necessary to filter out features that
contribute considerably to the identification accuracy of the RF classifier. Feature selection
can eliminate irrelevant and redundant features, thereby reducing the number of features,
reducing the training or running time, and improving identification accuracy [53]. We
studied the existing feature selection methods and adopted methods based on Pearson
correlation coefficient and p-value. We performed feature selection on the dataset after min–
max standardization processing and analyzed the feature selection effects. Furthermore, we
effectively combined the feature selection method based on Pearson correlation coefficient
and p-value and proposed a new multi-index-fusion feature selection method. Therefore,
the effective features that contribute considerably to the identification accuracy of the
RF classifier were selected, and a high-quality material dataset was constructed. The
new feature selection method effectively improved the prediction performance of the RF
classifier on the material dataset and considerably improved the identification accuracy of
the existing loose particle material identification.

3.3.1. Feature Selection Method Based on Pearson Correlation Coefficient

Pearson correlation is also called product–difference correlation or product–moment
correlation. The Pearson correlation coefficient can be used to measure the linear rela-
tionship between the features of each column in the material dataset [54]. The greater the
absolute value of the Pearson correlation coefficient, i.e., the closer the correlation coefficient
is to 1 or −1, the stronger the correlation between the two variables used in the calculation.
The closer the correlation coefficient is to 0, the weaker the correlation between the two
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variables [55]. Assuming that there are two variables, X and Y, the Pearson correlation
coefficient between the two variables can be calculated as follows [56]:

ρX,Y =
cov(X, Y)

σXσY
=

E(XY)− E(X)E(Y)√
E(X2)− E2(X)

√
E(Y2)− E2(Y)

(5)

In the formula, E represents the calculation of mathematical expectation between two
variables, and cov represents the calculation of covariance between two variables.

When using the feature selection method based on Pearson correlation coefficient on
the material dataset, we treated labels as a fixed variable and other column features as
another variable. Thus, Pearson correlation coefficients between each column feature and
the label can be calculated. In this case, the closer the calculated correlation coefficient
is to 1 or −1, the more important the column features used for calculation. Values of the
calculated correlation coefficient closer to 0 indicate that the column features used for
calculation are relatively less important. We used Pandas to calculate Pearson correlation
coefficients between each column feature and the label in the material dataset and draw a
heat map, as shown in Figure 4.
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In the heatmap shown in Figure 4, the lighter the color, the weaker the correlation
between the two features; the darker the color, the stronger the correlation between the two
features. The diagonal area from the upper left corner to the lower right corner represents
the correlation of the feature with itself, so the color is the darkest. Taking this diagonal
area as the dividing line, the two obtained triangular areas are actually the same. They
both express the correlation between features. The value in each square shown in the figure
represents the calculated Pearson correlation coefficient between the two features on the
abscissa and ordinate of the corresponding square. For example, the first row of squares
in the figure represent the Pearson correlation coefficients between the label and itself or
between the label and the fourteen features. It can be seen that the correlation between
labels and individual features is weak.

Furthermore, by setting the threshold of the absolute value of the Pearson correlation
coefficient to 0.1, we selected and retained the three features of energy density (MD),
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spectral centroid (mainHz), and Cepstral coefficient (MSF). We processed the dataset after
min–max standardization processing and reserved only the column data corresponding
to the three column features to form a new dataset. The RF classifier was used to make
predictions, and the achieved average identification accuracy was 48.76%. Compared
with the identification accuracy achieved by the RF classifier on the dataset after min–max
standardization processing, the identification accuracy decreased significantly. This is
because the feature selection method based on Pearson correlation coefficient selected a
small number of features, so a considerable amount of material information contained in
the original dataset was lost.

The Pearson correlation coefficient describes the linear correlation between compo-
nents. It can also be found from Figure 4 that the linear correlation between labels and
features in the material dataset is weak. Therefore, we further investigated the non-linear
correlation between labels and features.

3.3.2. Feature Selection Method Based on p-Value

Hypothesis testing, also known as statistical hypothesis testing involves first making
a certain hypothesis and then collecting data by sampling to make statistical inferences
about whether the hypothesis should be rejected or accepted [57]. In feature selection, the
principle of hypothesis testing is “whether the feature has a relationship with the response
variable”. Therefore, the null hypothesis in this paper is “whether the features in the
material dataset have a relationship with labels”, i.e., the response variable is the label. It
is necessary to test each feature and determine whether it has a significant relationship
with the label. To some extent, the detection logic of the feature selection method based on
Pearson correlation coefficient described above is the same. Specifically, if the correlation
between a feature and the label is too weak, then the hypothesis that the “feature has no
relationship with the label” is considered true. If a feature is sufficiently relevant to the
label, then the hypothesis can be rejected, and the feature is considered to be related to
the label. p-value is a common evaluation index in hypothesis testing. The p-value is a
decimal between 0 and 1 that represents the probability that given data appear by chance
under hypothesis testing. The lower p-value, the greater the probability of rejecting the
null hypothesis [58]. That is, in the material dataset, the lower the p-value, the greater the
probability that a given feature is related to the label and the more it should be retained.

Commonly used hypothesis testing methods are Z test, t-test, chi-square test, F test,
etc. In this article, the we to use chose the t-test. A t-test uses the t-distribution theory to
infer the probability of a difference so as to compare whether the difference between two
means is significant. In this article, the material dataset was established, and the feature
data of the dataset were known. From another point of view, the built material dataset only
contained limited feature data that did not fully reflect the value and distribution of all
feature data. Therefore, for such a normal distribution with a finite number of samples and
an unknown population standard deviation, t-test is most appropriate. In addition, Z test is
a hypothesis testing method based on information about the normal distribution, given the
known population mean and variance. The chi-square test is used for categorical variables.
The values of the feature data in this article were continuous unknown values, rather than
discrete categories. The F test is a hypothesis testing method for a known statistical model
based on variance information. Therefore, none of these three methods are suitable for this
research. The results of hypothesis testing can be seen as a description of the non-linear
relationship between labels and features in the material dataset. Therefore, by studying
the hypothesis testing results, analysis of the non-linear relationship between labels and
features can be completed.

In machine learning, the threshold for p-value is 0.05; i.e., features with a p-value
less than 0.05 are worth preserving. Therefore, we calculated the p-value of each feature
and set the screening threshold at 0.05 to filter out the unqualified features in the material
dataset. Ultimately, we selected a total of fourteen features, which is the same number
of features as previously used, indicating that the effect of using this method for feature
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selection is not great. It can be seen from the feature selection effect that the non-linear
correlation between labels and features in the material dataset is strong. Therefore, we
considered comprehensive analysis and utilization of the linear correlation and the non-
linear correlation between labels and features.

3.3.3. Multi-Index-Fusion Feature Selection Method

According to the feature selection results based on Pearson correlation coefficient,
the number of selected features is too small to construct a dataset containing sufficient
information. It shows that the conditions for feature selection were too strict, with few
features qualifying. According to the feature selection results based on p-value, all features
in the material dataset were selected. This indicates that the conditions used for feature
selection were too broad to filter out poor performers. Judging from the linear correlation
or non-linear correlation between labels and features in the material dataset, there is a
strong non-linear correlation and a weaker linear correlation between the two. From the
global point of view, an extreme bias towards a certain correlation leads to an unsatisfactory
feature selection effect. Therefore, we need to comprehensively consider both correlations
to come up with a feature selection method that combines both correlations so that they are
in a balanced state.

Based on the analysis and summary of the feature selection effects of the above two
methods, we attempted to effectively combine the Pearson correlation coefficient and p-
value to design a new multi-index-fusion feature selection method. In this method, we
no longer used a single evaluation index to evaluate and select features. Instead, two
evaluation indices were used together to evaluate the features in the dataset, and the
final evaluation results of features were obtained after comprehensive consideration of
two evaluation results. According to the results, we selected the features with excellent
performance to achieve the purpose of feature selection. The specific implementation steps
of the proposed method are as follows:

Step 1: Equation (6) was used to calculate the absolute values of Pearson correla-
tion coefficient between features and labels in the material dataset, which are expressed
as ri(i = 1, 2, . . . , 14). Among them, i is the feature number, which is in the same order as
that listed in Table 3.

r = | 1
n− 1

n

∑
i=1

(
Xi − X

σX
)(

Yi −Y
σY

)| (6)

In the formula, Xi−X
σX , X, and σX are the standard fraction, mean, and standard

deviation of label Xi, respectively; and Yi−Y
σY , Y, and σY are the standard fraction, mean,

and standard deviation of feature Yi, respectively.
Step 2: Based on the obtained absolute values of the Pearson correlation coefficient of

each feature and label in the dataset, ri was ranked from large to small according to the
numerical value. In this way, we obtained the first ranking number through ri, expressed
as Ni(i = 1, 2, . . . , 14).

Step 3: In the above process, we used a single evaluation index (Pearson correlation
coefficient) to rank fourteen features. In the next step, we used the second index (p-value)
to evaluate fourteen features in the same way. Similarly, we calculated the p-value(s) of all
features in the dataset and expressed them as si(i = 1, 2, . . . , 14). We ranked si from small
to large according to the numerical value. In this way, we obtained the second ranking
number, expressed as Ns(s = 1, 2, . . . , 14).

So far, we used the second index (p-value) to rank the fourteen features. Finally, it was
necessary to conduct a comprehensive analysis based on the two ranking results to achieve
the final evaluation of the fourteen features.

Step 4: According to the same feature, we accumulated the two ranking results to
obtain fourteen cumulative sums, which are expressed as Ei(i = 1, 2, . . . , 14). We ranked
Ei from small to large according to the numerical value. Finally, we obtained the compre-
hensive ranking number, which is expressed as Ne(e = 1, 2, . . . , 14).
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It should be noted that when Ne of multiple features is the same, we made the
following supplementary rules: the lower the ranking of Ni, the lower the comprehensive
ranking of Ne we artificially set; that is, the higher the priority. For example, Ni = 3 and
Ns = 5 obtained the same Ne with Ni = 6 and Ns = 2. However, under the supplementary
rules, because the former Ni = 3, the latter Ni = 6; thus, the comprehensive ranking, Ne, of
Ni = 3 and Ns = 5 is lower than that of Ni = 6 and Ns = 2.

Step 5: The feature selection experience shows that when the number of selected
features accounts for more than half of the features in the dataset, the prediction effect
obtained by the classifier can be ideal based on the dataset built by these selected features.
Therefore, we combined the grid search method and retained the top eight to top fourteen
features by referring to the comprehensive ranking number, Ne, and formed seven datasets.
We applied the RF classifier to make predictions on each dataset and achieved multiple
identification accuracies. By comparing on which dataset the RF classifier achieved the
highest identification accuracy, the combination of features used to construct that dataset is
optimal. Then, the optimal feature selection result was obtained.

We applied the multi-index-fusion feature selection method to the material dataset
after min–max standardization processing and obtained rankings of fourteen features at
different feature selection stages. The specific description is shown in Table 7.

Table 7. Feature selection effects of the material dataset.

Feature

Stage Absolute Value
of Pcc 1

Ranking
Number

p-Value Ranking Cumulative Sum
of Rankings

Comprehensive
Ranking

s −0.0701 4 0 1 5 4
dczy 0.0574 9 0 1 10 9
Tp 0.0684 5 0 1 6 5
Tl 0.0636 7 0 1 8 7

MD −0.1945 3 0 1 4 3
ZB 0.0636 7 0 1 8 7
bf −0.0062 14 4.325047 × 10−7 14 28 14

dcsx −0.0137 13 1.521347 × 10−28 13 26 13
dp 0.0392 10 1.666064 × 10−221 10 20 10

mainHz −0.2025 2 0 1 3 2
var −0.0317 12 6.039703 × 10−145 12 24 12

MSF −0.2077 1 0 1 2 1
MSFcha −0.0331 11 2.512781 × 10−158 11 22 11
zerorate 0.0641 6 0 1 7 6

1 Pcc: Pearson correlation coefficient.

According to the comprehensive rankings in Table 7, we formed seven new datasets
by referring to the combination of the top eight to top fourteen features and implemented
them in the grid search method. We applied the RF classifier to make ten predictions on
seven datasets and found that the RF classifier achieved the highest average identification
accuracy on dataset formed by the following twelve features: pulse area (s), degree of
symmetry between left and right (dczy), pulse rise proportion (Tp), duration (Tl), energy
density (MD), pulse ratio (ZB), area ratio (dp), spectral centroid (mainHz), variance (var),
Cepstral coefficient (MSF), Cepstral coefficient difference (MSFcha), and Zero crossing
rate (zerorate). The highest identification accuracy was 64.46%. The multi-index-fusion
feature selection method retained twelve columns of feature data in the material dataset;
1× 13 columns were formed, which is less than the original 1× 15 columns, and the achieved
identification accuracy was significantly improved compared with that before selection.

Table 8 lists the feature selection effects of feature selection methods based on Pearson
correlation coefficient, p-value, and the multi-index-fusion feature selection method. It can
be seen from the table that compared with the identification accuracy of 63.51% achieved
by the RF classifier on the material dataset containing fourteen features, the RF classifier
achieved an identification accuracy of 64.46% on the material dataset that contained twelve
features after feature selection. Despite the reduction in two columns of feature data in the
material dataset, the identification accuracy achieved by the RF classifier was improved by
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0.95%. Similarly, we also found that compared to using a single evaluation index, the multi-
index-fusion feature selection method organically combined the two evaluation indices
and achieved an average identification accuracy higher than either of them. In other words,
the average identification accuracy of the multi-index-fusion feature selection method is
higher than that of the traditional feature selection based on the “filtering method”. This
shows the superiority of the new feature selection method on the material dataset.

Table 8. Feature selection effects of different feature selection methods.

Method Before Feature
Selection/%

After Feature
Selection/% Increase/%

Pearson correlation coefficient 63.51 48.79 −14.72
p-value 63.51 63.51 0

Multi-index-fusion 63.51 64.46 0.95

The proposed feature optimization method of material identification for loose particles
inside sealed relays achieved the highest identification accuracy of 64.46% on the material
dataset, which is significantly improved compared with 59.63% obtained in our previous
study. Table 9 lists the identification accuracies achieved by the RF classifier in the missing
value processing stage, standardization and normalization processing stage, and feature
selection stage.

Table 9. Identification effects in different processing stages.

Stage Identification Accuracy/%

Missing value processing 59.63
Standardization and normalization 63.51

Feature selection 63.60

3.4. General Procedure

We summarized the above-mentioned research process and obtained the general
procedures of the feature optimization method of material identification for loose particles
inside sealed relays:

Step 1: Missing value processing stage. For the missing values in the material dataset,
the direct-discarding method was used for processing.

Step 2: Standardization and normalization stage. In order to solve the problem of
irregular data distribution in the material dataset, the min–max standardization method
was used for processing.

Step 3: Feature selection stage. In order to improve the prediction performance of
the RF classifier, the multi-index-fusion feature selection method was used to retain the
features with a large contribution to the prediction performance of the RF classifier.

According above description, the overall quality of the processed material dataset was
significantly improved compared with that before. This concludes the description of the
general procedures of the proposed feature optimization method.

4. Verification and Analysis

In the previous description, we carried out missing value processing, standardization
and normalization processing, and feature selection processing for the material dataset and
obtained the optimal processing method at each stage. In the missing value processing stage,
the direct-discarding method achieved the best performance. In the standardization and
normalization stage, the min–max standardization method achieved the best performance.
In the feature selection stage, the designed multi-index-fusion feature selection method
achieved the best performance. In the “verification and analysis” stage, we prepared new
sealed relay samples, used the loose particle material identification experimental system
to conduct experiments, and built a material verification dataset. We tested the obtained
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optimal feature optimization methods of each stage on the material verification dataset,
thus proving the robustness of the processed feature optimization method.

4.1. Preparation Works
4.1.1. Material Verification Dataset

In order to verify the testing effect of the proposed feature optimization method of
material identification for loose particles inside sealed relays in real-world application
scenarios, we prepared new sealed relay samples. Following step 7 in the technology
implementation process in Section 2.2 and with the help of the loose particle material
identification experimental system, we obtained the verification steps in the “verification
and analysis” stage. This is also an extension of Step 7 in the technology implementation
process in Section 2.2.

Step 1: We fixed the sealed relay sample on the PIND experimental platform and
applied mechanical excitation to it by driving the vibration table so that the loose particle
inside the sealed relay sample was in a collision or sliding state.

Step 2: The generated loose particle signal was collected by the acoustic emission
sensor provided by the loose particle detection system and sent to the detection system for
signal conditioning and synchronization, and the collected signal data were sent to the host
computer for storage.

Step 3: We processed the signal data and extract fourteen features that considerably
contribute to the identification accuracy of the RF classifier from the processed signal data
to obtain multiple pieces of data.

Step 4: We adjusted the sealed relay sample selected in step 1 and repeated steps 1 to
3 to obtain data representing the new material. By sequentially selecting the sealed relay
samples, a material verification dataset representing loose particles of different materials
can eventually be built.

Step 5: We followed the general procedures in Section 3.4 and performed feature
optimization on the material verification dataset so as to obtain a high-quality material
verification dataset.

Step 6: We applied the RF classifier to make predictions on the material verification
dataset, obtained the predicted label of each data point in the dataset, and completed the
prediction of the material of loose particles.

Following steps 1 to 4 and through a large number of balanced experiments, we built
a material verification dataset representing the loose particles of six materials, the specific
descriptions of which are shown in Table 10.

Table 10. Detailed description of the material verification dataset.

Label Total Number of Data Points Label Total Number of Data Points

0 9994 3 10,006
1 10,021 4 10,105
2 9987 5 10,018

4.1.2. Performance Evaluation Index

In order to evaluate the effect of the proposed feature optimization method, it is neces-
sary to apply the RF classifier to make predictions on the processed material dataset and
indirectly indicate the processing effect of the feature optimization method by measuring
the obtained identification accuracy. Therefore, we selected the identification accuracy as
the evaluation index to measure the prediction performance of the RF classifier.

Suppose that the dataset is D =
{(

x(1), y(1)
)

, . . . ,
(

x(N), y(N)
)}

, y(i) ∈ {0, 1, . . . , 5}
is the ground truth corresponding to the feature data x(i), and f (i) ∈ {0, 1, . . . , 5} is the
label predicted by the RF classifier. The identification accuracy achieved by the RF classifier
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can be expressed as the ratio of the number of data points correctly predicted to the total
number of data points [59,60]. The formula is as follows:

A =
1
N

N

∑
n=1

I( f (i) = y(i)) (7)

In the formula, I is the indicator function; when f (i) = y(i), I
(

f (i) = y(i)
)
= 1.

4.2. Analysis of Feature Optimization Effects

Following Step 5 of the verification steps in Section 4.1.1, we first processed missing
values in the material verification dataset. That is, the missing values in the dataset were
directly discarded, and the RF classifier was used to make predictions on the processed
material verification dataset, with an achieved identification accuracy of 67.53%. Next, min–
max standardization processing was performed on the material verification dataset. We
also applied the RF classifier to make predictions on the processed dataset, with an achieved
identification accuracy of 69.88%. Finally, according to the results of the multi-index-fusion
feature selection method, we retained the corresponding twelve columns of feature data
in the dataset to form a new material verification dataset. We applied the RF classifier to
make predictions, with a final achieved identification accuracy of 70.64%. Table 11 lists the
identification accuracies achieved by the RF classifier on the material verification dataset
after missing value processing, standardization and normalization processing, and feature
selection. It should be noted that the above achieved identification accuracy is the average
value of the prediction accuracy obtained by ten predictions so as to reduce the influence of
random errors.

Table 11. Identification effects in different verification stages.

Stage Identification Accuracy/%

Missing value processing 67.53
Standardization and normalization 69.88

Feature selection 70.14

It can be seen from the table that the RF classifier achieved satisfactory identification
accuracy on the material verification dataset processed in each stage, and the achieved
identification accuracy in each stage improved significantly compared to the previous stage.
This is consistent with the improvement trend of identification accuracy achieved by the RF
classifier on the processed material dataset in each stage, which is shown in Table 9. This
clearly demonstrates the practicability and robustness of the proposed feature optimization
method of material identification for loose particles inside sealed relays.

Following the same verification steps, we once again prepared multiple sealed relay
samples and ultimately built ten material verification datasets. We followed step 5 of the
verification steps in Section 4.1.1, processed the ten material verification datasets, and
obtained the feature optimization effects shown in Table 11. “Before optimization” refers to
the identification accuracy achieved by the RF classifier on the material verification dataset
built in step 4 of the verification stage. “After optimization” refers to the identification
accuracy achieved by the RF classifier on the material verification dataset processed in
step 5 of the verification stage. It should be noted that if there are missing values in the
material verification dataset, the RF classifier cannot be trained on that dataset. Therefore,
the identification accuracy of “before optimization” in Table 12 refers to the identification
accuracy achieved by the RF classifier on the dataset after the missing value processing.
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Table 12. Feature optimization effects achieved by the RF classifier on ten material verification datasets.

Number Before Optimization/% After Optimization/% Increase/%

1 67.53 70.14 2.61
2 64.82 68.19 3.37
3 60.89 64.13 3.24
4 62.05 64.88 2.83
5 61.22 64.27 3.05
6 65.70 68.16 2.46
7 64.69 67.75 3.06
8 62.49 66.08 3.39
9 63.76 66.91 3.15

10 66.62 69.58 2.96

It can be seen from the table that the proposed feature optimization method not only
achieved an obvious optimization effect on the material dataset but also achieved satisfac-
tory identification accuracies on the ten material verification datasets, which effectively
proves the practicability and robustness of the method in engineering applications. It can
be concluded that the average improvement of identification accuracy achieved by the
RF classifier was 3.01%. In the feature selection stage, we also used the feature selection
methods based on Pearson correlation coefficient and p-value. It was found that most of the
identification accuracies achieved by the RF classifier on the material verification datasets
processed by these two methods were decreased, a small part was basically unchanged,
and only one was slightly improved. This effectively illustrates the superiority of the
multi-index-fusion feature selection method proposed in this paper.

5. Discussion

The problem of loose particles is an important factor that affects the reliable operation
of sealed relays. With further research on loose particle detection technology, this problem
has attracted increasing attention from scholars. Based on our previous research on material
identification, in this paper, we transferred our research focus from the selection and
optimization of classification algorithms to feature optimization of the material dataset and
designed a complete set of feature optimization methods, including directly discarding
missing values, performing min–max standardization processing, and applying the multi-
index-fusion feature selection method. The proposed feature optimization method achieved
considerable effects on both the material dataset and ten material verification datasets, and
its feasibility was verified. The contributions of this paper can be summarized as follows:

(1) From another perspective, we considered how to improve the identification accu-
racy of existing loose particle material identification methods and transferred our
research focus from the selection and optimization of classification algorithms to the
optimization of the internal features in the material dataset.

(2) Methods in feature engineering were applied to conduct preliminary optimization pro-
cessing on the material dataset, including missing value processing, standardization,
and normalization processing. This effectively ensured a complete dataset and that
the numerical distribution of all column features in the dataset had an approximately
equal scale.

(3) The feature selection methods based on the “filtering method” were studied, and the
feature selection effects of the feature selection methods based on Pearson correlation
coefficient and p-value were analyzed. Accordingly, a multi-index-fusion feature
selection method was designed. Thus, the features that contribute considerably to
the prediction performance of the RF classifier were selected, and a new high-quality
material dataset was constructed.

(4) The feature optimization method proposed in this paper was tested many times
on validated datasets. Test results show that the RF classifier achieved the highest
identification accuracy on the material dataset that processed by the proposed feature



Sensors 2022, 22, 3566 20 of 24

optimization method in this field. It has important reference value to trace the
production process of loose particles in the manufacturing process of sealed relays.
This method is an important supplement to existing loose particle detection technology
and has extremely high application value for improving the reliability of aerospace
system. In theory, it can be extended to the design of feature optimization methods
for other datasets in machine learning.

It should be noted that the material dataset shown in Table 4 and the material verifica-
tion dataset shown in Table 10 were both artificially controlled to maintain the data balance
of each label in the dataset. However, in real-world applications, due to the differences
among the materials, the energy and duration of the loose particle signals generated by the
collision would be different, inevitability introducing the data imbalance problem. After
conducting the same number of PIND experiments, the amount of data extracted from the
loose particle signal generated by loose particles of some materials was about two times
greater than that generated by loose particles of other materials. With this in mind, the
first processing method the preferred method, i.e., artificially increasing the number of
experiments of loose particles that formed less data. In combination with the LR-SMOTE
algorithm put forward by Liang et al. [14] of the LPDR group, we will study the possible
imbalance data problem from the algorithm level in the future.

It is also worth noting that the proposed multi-index-fusion feature selection method
directly summed the ranking numbers based on Pearson correlation coefficient and
p-value and then ranked according to the cumulative sum. In this process, we treated
the evaluation results based on Pearson correlation coefficient and p-value equally. In the
future, before directly accumulating the ranking numbers of the two, we will consider
introducing the weight coefficient. In other words, we will multiply the two rankings by
the weight coefficient and the opposite of the weight coefficient, respectively, and add the
weighted rankings; then, a new ranking is carried out according to the new cumulative
sum. In this way, by adjusting the weight coefficient, we can set the bias to the evaluation
results based on Pearson correlation coefficient or p-value, and to some extent, we can
avoid the situation of repeated comprehensive ranking numbers. For example, if Ni = 3,
Ns = 5, and Ni = 6, Ns = 2 has the same Ne = 8, and add the following weight coefficient
regulations: Ni multiplied by 0.8 weight coefficient, Ns multiplied by 0.2 weight coefficient;
then, the new Ne of Ni = 3, Ns = 5 is 3.4, and the new Ne of Ni = 6, and Ns = 2 is 5.2. It is
obvious that the weighted comprehensive ranking number of Ni = 3 and Ns = 5 is smaller,
so it will be selected first. It should be noted that weight settings can be adjusted according
to actual conditions.

The most considerable innovation presented in this paper is the shift of research focus
from the selection and optimization of the classification algorithms to the features within
the material dataset. The root of the impact on the prediction performance of the RF
classifier lies in the loose particle signal. Therefore, a more complete statement can be made
as follows: the collection of high-quality loose particle signals is crucial to the preliminarily
constructed material dataset, the material dataset after feature optimization is crucial to
the preliminarily trained RF classifier, and the parameter-optimized RF classifier is crucial
to the loose particle material identification accuracy. Therefore, in future research, it is
necessary to study how to collect high-quality loose particle signals. On the one hand, it is
necessary to study the selection and layout of acoustic emission sensors in order to collects
loose particle signal with as much energy as possible. On the other hand, it is necessary to
study the excitation conditions of loose particles, that is, to set the best matching excitation
conditions for loose particles of different materials and different weights.

6. Conclusions

In our early research on loose particle material identification, we focused on the
applicable machine learning classification algorithm and parameter optimization. In this
paper, we chose to transfer our research focus to the features within the material dataset.
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First, we compared the processing effects of mean filling, median filling, mode filling,
Lagrange interpolation filling, Newton interpolation filling, and the direct-discarding
method, which completed the tasks of the missing value processing stage and obtained the
optimal direct-discarding method.

Second, we compared the processing effects of z-score standardization, min–max
standardization, and row normalization, which completed the tasks of the standardiza-
tion and normalization processing stage, obtaining the optimal min–max standardization
processing method.

Then, we studied the feature selection methods based on Pearson correlation coefficient
and p-value and combined the two to further propose a multi-index-fusion feature selection
method, which completed the task of the feature selection stage. The feasibility and
superiority of the proposed feature selection method were proven by several tests.

Finally, we applied the complete feature optimization route of “directly discarding
missing values, performing min–max standardization processing, and applying the multi-
index-fusion feature selection method” to the test of ten material verification datasets,
which fully verified the practicability and robustness of the proposed feature optimization
method. The test results of the material dataset show that the identification accuracy
achieved by the RF classifier on the dataset before and after feature optimization was
improved from 59.63% to 63.60%. The test results of ten material verification datasets show
that the identification accuracy achieved by the RF classifier on the datasets before and
after feature optimization was greatly improved, with an average increase in identification
accuracy of 3.01%.

The test results show that the proposed feature optimization method of material
identification for loose particles inside sealed relays has a significant effect on improving
the prediction performance of the RF classifier, and the identification accuracies achieved
on the dataset before and after optimization were significantly improved. Moreover, the
proposed method performed well in multiple verification tests, which clearly proved its
practicability and robustness. It is worth noting that the highest identification accuracy
achieved by the RF classifier is also the highest identification accuracy achieved by loose
particle material identification in the loose particle detection field to date.
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