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Traditional Chinese medicine (TCM) is typically prescribed as formula to treat certain
symptoms. A TCM formula contains hundreds of chemical components, which makes
it complicated to elucidate the molecular mechanisms of TCM. Here, we proposed a
computational systems pharmacology approach consisting of network link prediction,
statistical analysis, and bioinformatics tools to investigate the molecular mechanisms
of TCM formulae. Taking formula Tian-Ma-Gou-Teng-Yin as an example, which shows
pharmacological effects on Alzheimer’s disease (AD) and its mechanism is unclear, we
first identified 494 formula components together with corresponding 178 known targets,
and then predicted 364 potential targets for these components with our balanced
substructure-drug–target network-based inference method. With Fisher’s exact test
and statistical analysis we identified 12 compounds to be most significantly related
to AD. The target genes of these compounds were further enriched onto pathways
involved in AD, such as neuroactive ligand–receptor interaction, serotonergic synapse,
inflammatory mediator regulation of transient receptor potential channel and calcium
signaling pathway. By regulating key target genes, such as ACHE, HTR2A, NOS2,
and TRPA1, the formula could have neuroprotective and anti-neuroinflammatory effects
against the progression of AD. Our approach provided a holistic perspective to study the
relevance between TCM formulae and diseases, and implied possible pharmacological
effects of TCM components.

Keywords: traditional Chinese medicine, compound–protein interactions, network-based inference,
computational systems pharmacology, Alzheimer’s disease

INTRODUCTION

With more than 5,000-year history, the traditional Chinese medicine (TCM) still plays
key roles in the treatment of many diseases and disorders worldwide. However, TCM is
usually prescribed as formulae, typically consisting of many herbs in different quantity,
in which the composition theory “Monarch, Minister, Assistant and Guide” is observed
(Jiang, 2005; Xiong et al., 2013; Zhang A. et al., 2013). Thus a TCM formula contains
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hundreds of chemical components, which makes it complicated
and difficult to elucidate the molecular mechanisms of treatment.

In recent years, as the development of systems biology,
network pharmacology has emerged as a new subject for us to
understand the complex biological systems from an integrated
multi-component network view (Hopkins, 2007, 2008). Network
pharmacology is especially advantageous in analyzing ‘multi-
compound, multi-target, and multi-effect’ scenario to reveal
the molecular relationships among compounds and complex
diseases from multiple scales (Zhao et al., 2010; Li et al.,
2012). Therefore, it is very helpful for illustrating molecular
mechanisms of TCM formulae and finding active constituents
from herbs (Hao and Xiao, 2014). There are many studies
published to date, such as Radix Curcumae formula against
cardiovascular diseases (Tao et al., 2013), Qing-Luo-Yin against
Rheumatoid arthritis (Zhang B. et al., 2013) and Ge-Gen-
Qin-Lian decoction against type 2 diabetes (Li J. et al.,
2014).

In our previous study, we developed a network
pharmacological method, named network-based inference
(NBI), to predict potential drug–target interactions (DTIs)
between drugs and targets (Cheng et al., 2012). Because NBI
method only could predict potential DTIs within a known
drug–target network, we then proposed a new method, entitled
substructure-drug–target network-based inference (SDTNBI), to
predict potential targets for novel compounds without known
targets (Wu et al., 2017). SDTNBI utilizes chemical substructures
to bridge the gap between known drug–target network and
novel compounds. Recently, we further improved SDTNBI
by introducing three parameters (α, β, and γ) into it, namely
balanced substructure-drug–target network-based inference
(bSDTNBI), to identify potential targets for both old drugs and
new chemical entities (Wu et al., 2016). With these methods,
we developed computational systems pharmacology/toxicology
approaches to investigate the molecular mechanisms of
therapeutic effects of known drugs or active compounds, and
side effects of known drugs or environmental compounds
(Cheng et al., 2013a,b; Li H. et al., 2014; Li et al., 2016; Lu et al.,
2015; Wang et al., 2017).

In this study, we proposed a computational systems
pharmacology approach (Figure 1) combining our bSDTNBI
method and statistical analysis to find out the molecular
mechanisms of TCM formulae, taking formula Tian-Ma-Gou-
Teng-Yin (TMGTY) as an example. TMGTY consists of 11
Chinese herbs, such as Rhizoma Gastrodiae (Tianma), Ramulus
Uncariae Cum Uncis (Gouteng), Concha Haliotidis (Shijueming),
Fructus Gardeniae Jasminoidis (Zhizi), and Radix Scutellariae
Baicalensis (Huangqin). TMGTY was prescribed to alleviate
hypertension-related symptoms and also showed therapeutic
effects against dementia and Alzheimer’s disease (AD) (Liu et al.,
2014; May et al., 2016; Zhang et al., 2016; Chen et al., 2017).
TMGTY was one of the 10 most commonly used formulae for
treating AD in Taiwan, according to a cohort study of one million
patients (Lin et al., 2016). TMGTY was also reported to have
neuroprotective effects (Chik et al., 2013; Xian et al., 2016) and
could enhance the effect of memory acquisition (Ho et al., 2005,
2008). However, its molecular mechanisms remain elusive.

Alzheimer’s disease is a complex neurodegenerative disease
that deteriorates memory, cognition, behavior and leads to
dementia (Reitz et al., 2011). Several hypotheses were proposed
to understand the pathogenesis of AD, including amyloid
cascade hypothesis, Tau hypothesis, cholinergic hypothesis and
neuroinflammation (Ballard et al., 2011; De Strooper and Karran,
2016; Selkoe and Hardy, 2016). Huge efforts were devoted to
the discovery of anti-AD therapies based on these hypotheses,
but no curable treatment is available yet. Due to the complex
pathology of AD, drugs targeting single protein or pathway may
not fully exert expected therapeutic effects. TCM formulae, along
with network pharmacology approaches, provide a powerful tool
to investigate AD pathology, and they are also promising outsets
for anti-AD drug development (Dey et al., 2017; Lai et al., 2017).

For that purpose, we first collected chemical components
of TMGTY from related databases, and predicted potential
targets for the principal components. Those components were
subsequently enriched onto AD-related pathways to find the
most disease-relevant component groups. Then we applied gene
set enrichment analysis on the groups to examine involved
pathways and potential mechanisms in treatment of AD. In order
to explore shared mechanisms between diseases, we also mapped
disease-related proteins to a protein–protein interaction network
to find disease modules. Overlapping sub-modules was presumed
as shared mechanisms of which compound targets may affect
corresponding diseases. Thus our approach provided a holistic
perspective to look into combinations of natural compounds and
helped to illustrate their molecular mechanisms.

MATERIALS AND METHODS

The whole workflow was illustrated in Figure 1.

Data Collection and Preparation
The formula of TMGTY was ascertained through literature
survey. For each herb medicine in the formula, its constituents
were mapped from TCM Systems Pharmacology Database
(TCMSP) (Ru et al., 2014), TCM Integrated Database (TCMID)
(Xue et al., 2013) and TCM Database@Taiwan (Chen, 2011).
Then two important pharmacokinetic properties: human
intestinal absorption (HIA) and blood brain barrier (BBB)
penetration were predicted for every ingredient by our widely
used webserver admetSAR1. Ingredients with HIA and BBB
penetration classified as negatives were considered poorly
absorbed by intestine and can hardly penetrate the BBB, and
hence excluded from further analysis.

Alzheimer’s disease and hypertension related genes were
collected from The Comparative Toxicogenomics Database
(CTD) (Davis et al., 2017), Human Genome Epidemiology
(HuGE) Navigator (Yu et al., 2008), Kyoto Encyclopedia of
Genes and Genomes (KEGG) (Kanehisa and Goto, 2000;
Kanehisa et al., 2017), Online Mendelian Inheritance in
Man (OMIM) (Amberger et al., 2009), and Pharmacogenetics

1http://lmmd.ecust.edu.cn/admetsar1/
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FIGURE 1 | Experiment workflow illustration: (A) compound and data collection from multiple databases; (B) construction of known compound–target network;
(C) network link prediction via bSDTNBI method; (D) Fisher’s exact test and background distribution to identify compounds significantly related to AD; (E) detection
of AD and hypertension disease module and analysis of overlapping genes; (F) gene set enrichment analysis using DAVID v6.8 to investigate gene sets of interest.

and Pharmacogenomics Knowledge Base (PharmGKB) (Whirl-
Carrillo et al., 2012). In CTD, only genes having a curated
association to the disease were retained, i.e., genes marked
as ‘marker/mechanism’ and/or ‘therapeutic’ in the ‘direct
evidence’ column. In HuGE Navigator, genes with more than
20 publications were selected. In KEGG, ‘KEGG Disease’ was
used to find disease genes of AD (KEGG Entry ID: H00056)
and hypertension (KEGG Entry ID: H01633). In OMIM,
associated genes of AD (Phenotype MIM number: 104300) and
hypertension (Phenotype MIM number: 145500) were collected.
AD (Accession ID: PA443319) and hypertension (Accession
ID: PA444552) related genes in PharmGKB were downloaded.
The collected genes were filtered using NCBI Gene database
(Brown et al., 2015), and only protein-coding genes were
retained.

To build network prediction models, a collection of TCM
ingredients was made by combining molecules from above-
mentioned TCM databases. Small molecules from DrugBank
(Wishart et al., 2017) database were also collected.

For all ingredients, MacroModel 11.1 program (Schrödinger,
LLC, New York, NY, United States, 2016) was applied to
desalt and neutralize their structures. Then Epik 3.5 program
(Schrödinger, LLC, New York, NY, United States, 2016) was
used to generate tautomers. Only the most populated neutral
tautomers were retained. The processed compounds were further
converted to a canonical SMILES string by Open Babel toolkit
(version 2.3.1) (O’Boyle et al., 2011). Duplicates were removed

according to canonical SMILES string. Compounds without
carbon atoms were also removed from the collection.

For each ingredient, the corresponding targets were matched
from BindingDB (Gilson et al., 2016), ChEMBL (Gaulton et al.,
2017), IUPHAR/BPS Guide to PHARMACOLOGY (Harding
et al., 2017) and NIMH Psychoactive Drug Screening Program
(PDSP) Ki Database (Roth et al., 2000) under criteria that: (1)
target proteins are from Homo sapiens and have unique UniProt
accession numbers; (2) K i, Kd, IC50 or EC50 ≤ 10 µM, or
Potency ≤ 10 µM with “Activity Comment” marked as “Active.”
The Klekota–Roth (KR) fingerprint was used in this study and
generated for every ingredient using PaDEL-Descriptor software
(version 2.18) (Yap, 2011).

Construction of Compound–Target
Networks
Three compound–target network models were built by our
bSDTNBI method for new target prediction. The first was
DrugBank network which contains only small molecules from
DrugBank. The second was TCM network consisting of sole
TCM ingredients from above collections. The last was a Global
network merged by above two networks. The three models were
evaluated independently to verify whether a combined model
would outperform the others.

Ten-fold cross validation was applied to evaluate the
performance of three models. In each fold, roughly 10% of DTIs
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were split from the network, serving as test set. Resources were
redistributed among the remaining 90% of network (i.e., training
set) to predict the 10% missing links. This process was repeated
for ten times to reduce contingency. For three parameters α, β

and γ used to tune the network performance, grid optimization
was employed to search for the best set which maximizes the AUC
of 10-fold cross validation. Detailed definition and description
of these three parameters could be found in our previous
publication (Wu et al., 2016).

Several indicators were calculated to assess model
performance, such as precision (P), recall (R), precision
enhancement (eP), and recall enhancement (eR). Furthermore,
receiver operating characteristic (ROC) curves were plotted by
true positive rate (TPR) against false positive rate (FPR). In this
study, area under ROC curve (AUC) was calculated and used
as an indicator to evaluate model performance since AUC is
independent of the number of predicted targets. Basically, the
higher the AUC value, the better the model performance. Above
indicators were described in details and also widely used in
previous studies (Cheng et al., 2012; Lü et al., 2012; Wu et al.,
2016).

Target Prediction for TMGTY Ingredients
For all TMGTY ingredients, bSDTNBI was used to infer new
targets. Most of the ingredients were not in the global network
model, i.e., do not have known targets. They were represented by
molecular fingerprints to link to the global network. The method
redistributes known initial resources of drugs between different
types of nodes to infer new targets. The resource diffusion
number was set to 2 and the number of predicted targets was
set to 20. The detailed description and evaluation of the method
can be referred to our previous published papers (Wu et al., 2016,
2018).

Identification of AD-Related
Components
Considering only a very small portion of natural products have
known targets, the number of a compound’s targets related to AD
conforms approximately to hypergeometric distribution and its
probability mass function is as following:

P(X = k) =

(
K
k

)(
N − K
n− k

)
(

N
n

) (1)

Where N is the total number of genes, K is the total number of
AD-related genes, n is the number of predicted genes, k is the
number of AD-related genes in predicted genes and P(X = k)
is the probability of k AD-related genes occurring in predicted
genes for a compound.

However, the constructed network could not cover all protein-
coding genes, so in a certain network, N was the number of
protein-coding genes it covered, K was the number of all AD-
related genes in the network and n was the number of predicted
genes.

Fisher’s exact test method was implemented to assess the
significance of enrichment of AD-related genes in 20 predicted
and known genes for each compound. Compounds with
or without known targets were calculated separately. For
compounds without known targets, n was set to 20 and k
was the number of AD-related genes in n. As for compounds
having s known targets, n was set to 20+s, and k was s plus
the number of AD-related genes in n. P-value was calculated
and adjusted by Benjamini–Hochberg method, and used to rank
all compounds. Top-ranked compounds were presumed to be
critical components of this formula in treating AD.

In order to take into consideration the properties of chemical
components, all compounds collected from the three TCM
databases were used to create a background component set.
Twenty targets were also predicted for each compound. Then
every compound had k AD-related genes. The frequency
distribution of k in the background set was calculated and
approximated roughly to the probability distribution of the
background set:

P(X = k) =
NPk

NP
(2)

Where NP is the number of all collectable compounds and NPk
is the number of compounds having k AD-related genes. Then, if
a compound has k AD-related genes where P(X ≥ k) < 0.01, the
compound is probably enriched onto AD. This was considered as
a calibration and corroboration to Fisher’s exact test.

Disease Module Analysis
Due to the complexity of biological network, common proteins
may be shared among different diseases. Thus a drug acts on
a single protein may produce effect on multiple diseases. The
overlap of AD and hypertension disease modules was thus
investigated to find common proteins. The collected AD-related
proteins and hypertension related proteins were mapped onto a
protein–protein interaction network which consisted of 13,460
proteins and 141,296 physical interactions. A disease module
was calculated as the largest connected component (LCC) of
the disease-related proteins in the protein–protein interaction
network. Then the sizes of LCCs of 100,000 randomized protein
sets in the network as large as the disease-related protein set were
calculated and the distribution yielded. The statistical significance
of the disease module was calculated as a z-score:

z − score =
S− Srand

σ(Srand)
(3)

Where S, Srand, and σ(Srand) denote the size of LCC of the disease-
related protein set, the average value and standard deviation of
the LCC size random distribution, respectively. A z-score greater
than 1.96 indicates a significance p-value < 0.05, which suggests
the disease module is larger than random observation. The above
used protein–protein interaction network and algorithms were
retrieved from the work of Menche et al. (2015).

Then the overlapping proteins of these two modules were
extracted and gene set enrichment analysis was conducted to
find enriched Gene Ontology biological processes with a cut-off
adjusted p-value < 0.05.
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Gene Set Enrichment Analysis
Predicted genes and overlapping genes of AD and hypertension
modules were enriched onto KEGG Pathway and Gene Ontology
(GO) biological process to detect key targets and pathways
using the Database for Annotation, Visualization and Integrated
Discovery (DAVID) v6.8 (Sherman et al., 2007; Jiao et al., 2012).

RESULTS

Formula Ingredients and Known Targets
A total of 731 compounds were collected from the above-
mentioned three TCM databases for the formula TMGTY.
In order to evaluate the pharmacokinetic properties of this
oral administrated formula, HIA and BBB penetrations were
predicted using our in silico system admetSAR. Only compounds
that have both HIA and BBB penetrations predicted as positives
were retained. After the screening, 494 herbal compounds
were left for further study. 178 different known targets were
matched for them from above described databases. Only 68
of 494 compounds had known targets. There were 394 known
compound–target interaction pairs. All compounds and known
targets information can be found in Supplementary Table S1.

AD and Hypertension Related Genes
From a series of gene databases, a total of 195 genes were
collected and identified as AD-related genes, among which 10
are cytochrome P450 (CYPs). Two hundred and ninety-eight
genes were collected as hypertension-related genes, within which
nine were CYPs. CYPs are major catalysts contributing to the
metabolism of a broad spectrum of endogenous compounds,
xenobiotics, and nearly 90% marketing drugs (Guengerich et al.,
2016). Due to the substrate promiscuity and wide existence, CYPs
were thus excluded from this gene set. Then 185 AD-related
genes and 289 hypertension-related genes were used for further
experiment. The collected disease associated genes were listed in
Supplementary Table S2. Gene set enrichment analyses of these
gene groups were also shown in Supplementary Tables S3–S6.

Compound–Target Networks
Three compound–target interaction networks were constructed,
namely DrugBank, TCM, and Global networks. Their details were
shown in Table 1. The TCM network collected 1,495 compounds
from TCM databases with 899 known targets, among which
287 compounds were also found in DrugBank network. The
DrugBank network contains 2,672 small molecules and 1,326
protein targets. Only one hundred targets in TCM network
were different from those in DrugBank network. It was thus
combined with DrugBank network to form the Global network
in order to introduce more targets and expand known network.
In Global network, 45.1% targets were enzymes, 10.7% were
GPCRs and about 6.7% were ion channels, while 23.7% fell
into unknown category, according to IUPHAR classification
(Figure 2A). As for compounds in Global network, their chemical
space was described using three physicochemical descriptors,
i.e., molecular weight, ALogP and topological polar surface area

(TPSA), depicted in Figure. 2C. About 95% of all compounds
have a molecular weight less than 600, TPSA value less than
200Å2 and ALogP value lying in (−3, 3). Only a few TCM
compounds have vast values, whose TPSA, for example, could be
up to 800 Å2. Similarities between all compounds were assessed
by calculating Tanimoto coefficient on FCFP4 (Figure 2D).
Compounds in Figure 2D were ordered as two groups: DrugBank
small molecules and TCM compounds. Within each group,
compounds were randomly distributed. An average Tanimoto
coefficient of 0.13 was yielded, indicating a structural diversity
among the compounds. The degree distributions of compound
nodes and target nodes were calculated, as shown in Figure 2B,
which succumb to power law distribution. This demonstrated
that these networks are scale-free networks.

Our previously developed method bSDTNBI was applied
to these three networks. Ten-fold cross validation was then
conducted to assess model performance. Parameters α, β, and
γ were determined as 0.32, 0.14, and -0.48, respectively. The
performance is usually evaluated by several indicators such as
AUC, precision and recall. The higher the values of indicators
are, the better the performance is. Those indicators were listed
in Table 2 and corresponding ROC curves were plotted in
Supplementary Figure S1. All three models performed well. The
average recall values of DrugBank, TCM and Global network
models were 0.729 ± 0.014, 0.694 ± 0.020, and 0.724 ± 0.012,
respectively. A recall value around 70% indicated that, on average,
approximately 70% of a drug’s missing links were recovered
correctly during 10 rounds of 10-fold cross validation. The value
of AUC lies in [0, 1]. AUC value equals to 0.5 means the
model gives a random prediction; it equals 1 means an ideal
prediction. The AUC values of three above network models were
0.966 ± 0.002, 0.948 ± 0.005, and 0.968 ± 0.002, respectively, all
larger than 95%, exhibiting high prediction accuracy. The Global
network model outstripped the other two with greater indicator
values. The Global network model was thus selected to predict
targets for the TCM formula.

Target Prediction for Formula TMGTY
Based on the Global network, a total of 9,880 new compound–
target interaction pairs were predicted via bSDTNBI method,
which introduced 364 new targets for the 494 components
of TMGTY. Together with the 178 known targets, a total
of 542 targets formed 10,274 interactions with the 494
compounds. Compound–target pairs were hugely complemented
from previous 394 interactions between 68 compounds and 178
targets. Among most predicted targets for novel compounds,

TABLE 1 | Overview of the three compound–target interaction (CTI) networks.

Network NC NT NCTI Sparsity (%)

DrugBank 2,672 1,326 16,243 0.46

TCM 1,495 899 5,811 0.43

Global 3,880 1,426 19,800 0.36

NC, the number of compounds; NT, the number of targets; NCTI, the number of
CTIs; Sparsity: NCTI/(NC × NT).
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FIGURE 2 | Property analysis of Global network: (A) percentage of different kinds of predicted targets, according to IUPHAR classification; (B) power-law degree
distribution of two kinds of nodes: compounds (blue), targets (red); (C) chemical space of all compounds in Global network, depicted by three descriptors: MW,
ALogP, and TPSA, consisting of compounds form TCM database (blue), DrugBank database (green), and intersection (red); (D) chemical similarity of all compounds
on FCFP4 fingerprints.

many were related to AD, such as ACHE, BCHE, BACE1, and
MAOA (represented by official gene symbol). A complete list of
known and predicted targets for all ingredients can be found in
Supplementary Table S7.

Identification of AD-Related
Components
In the Global network, only 1426 proteins were included,
among which 65 proteins were AD-related. Thus, in the case of
Global network, the probability of a compound having k AD-
related targets conformed to an approximated hypergeometric
distribution which had K = 65 and N = 1,426.

Then the adjusted p-value was proposed as an indicator:
the lower is the adjusted p-value; the higher is the relevance
to AD. A stringent p-value (less than 0.01) was used
to identify compounds highly related to AD. Based on
P(X ≥ k) =0.007 < 0.01, a compound having k = 6 or more
predicted targets were considered significantly related to AD.
For compounds having known targets, Fisher’s exact test was
applied separately. Compounds having p-values less than 0.01
were also considered enriched onto AD, regardless the number
of AD-related targets they have.

Then a real distribution was investigated. A total of 57,741
compounds were collected and processed from TCMSP, TCMID,
and TCM Database@Taiwan to serve as a background set. Twenty

TABLE 2 | Ten-fold cross validation performance of the three network models.

Network AUC Precision Recall eP eR

DrugBank 0.966 ± 0.002 0.065 ± 0.001 0.729 ± 0.014 42.45 ± 0.81 47.20 ± 0.96

TCM 0.948 ± 0.005 0.049 ± 0.002 0.694 ± 0.020 28.81 ± 0.77 29.94 ± 0.83

Global 0.968 ± 0.002 0.061 ± 0.001 0.724 ± 0.012 46.41 ± 0.75 50.45 ± 0.83

AUC, area under receiver operating characteristic (ROC) curves; eP, precision enhancement; eR, recall enhancement.
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novel targets were predicted for each compound and the number
of AD-related genes was matched using previously collected AD-
related genes. The number of AD-related targets of a compound
ranged from 0 to 11.

In the background set, the probability of a natural product
having k AD-related targets was approximated to the real
frequency distribution. Only 3.0% natural products of all had
6 or more AD-related targets and 11.4% had 5 or more,
in the real distribution (Supplementary Figure S2). Thus,
P(X ≥ 6) = 0.030 < 0.05 and it further corroborated that a
compound having 6 or more AD-related targets was significantly
enriched onto AD.

All compounds in the formula were assessed by above
two methods. Twelve compounds met the criteria and thus
were considered significantly related to AD (Table 3). Detailed
information on these 12 compounds was listed in Supplementary
Table S8.

Pathways Related to TMGTY
All known and predicted genes of these 12 compounds were
enriched onto the KEGG pathways. 121 genes were significantly
enriched onto 20 pathways with the adjusted p-value < 0.05
(Supplementary Figure S3). Many target genes were enriched
onto pathways related to neurotransmitters. For example, there
were 20 targets enriched onto serotonergic synapse pathway
(adjusted p-value = 3.5 × 10−13) and 21 targets enriched
onto neuroactive ligand–receptor interaction pathway (adjusted
p-value = 3.7 × 10−7), while 10 targets were enriched onto
dopaminergic synapse pathway (adjusted p-value = 2.3 × 10−3).
There were also 15 targets enriched onto calcium signaling
pathway (adjusted p-value = 3.7 × 10−7), eight onto arachidonic
acid metabolism (adjusted p-value = 3.7 × 10−7) and seven onto
inflammatory mediator regulation of TRP channels (adjusted
p-value = 3.7 × 10−7). These pathways may involve in Ca2+

regulation and inflammation. Then a compound–target–pathway
subnetwork was built according to target prediction and gene
enrichment results, as shown in Figure 3. In the network, 11
genes had node degrees larger than 5, which indicated that they
were potential targets to half or more than half of those 12
representative compounds. These genes were CYP3A4, ACHE,
ABCG2, BACE1, CYP2D6, MAPT, MAOA, PTPN1, EHMT2,
PTGS1, and CYP19A1.

Overlap of AD and Hypertension Disease
Modules
A total of 172 AD-related proteins and 264 hypertension-related
proteins were mapped onto the protein–protein interaction
network. AD disease module and hypertension disease module
were identified as the LCCs consisting of 86 and 166 proteins,
respectively. The z-scores of AD and hypertension modules
were 14.2 and 11.7, suggesting that the calculated modules were
significantly larger than random expectations. Nineteen genes
were shared by AD and hypertension, namely ABCB1, AHR,
APOE, BCL2, CAT, CRP, ESR1, F2, GPX1, GSK3B, IL1B, LEP,
MME, MTOR, NOS2, NOS3, PON1, SOD1, and SOD2. The
disease relationship network was shown in Supplementary Figure

S4. Then 26 key GO biological processes with p-values < 0.05
were identified by conducting gene set enrichment analysis on
these 19 genes (Supplementary Figure S5). Biological processes
such as response to reactive oxygen species, response to
hydrogen peroxide, positive regulation of nitric oxide (NO)
biosynthetic process, regulation of blood pressure, removal of
superoxide radicals, and NO mediated signal transduction all
together indicate that these overlapping genes are related to the
progression of hypertension and inflammation.

DISCUSSION

The Computational Systems
Pharmacology Approach Is Valuable for
TCM Study
In this study, a computational systems pharmacology approach
consisting of network link prediction, statistical analysis and
bioinformatics tools was proposed to study TCM formula
TMGTY, which has demonstrated a great advantage in
investigation of molecular mechanisms of TCM formulae.

The network link prediction was performed with our
bSDTNBI method, which was specifically developed for target
prediction of new compounds outside of the compound–
target network. Due to the scarcity of TCM ingredient–target
interaction information, TCM ingredient–target network was
highly incomplete and only covered a small range of targets,
i.e., 899 targets, which limited its adaptability and impaired
its prediction ability. Since an overlap of 287 compounds
was found between collected TCM ingredients and DrugBank
small molecules, a combined Global network was then used
in order to cover more targets. The combined Global model
also outperformed the other two. Comparing to other network
prediction models for natural products (Fang et al., 2017a,b)
which had approximately 750 drug targets in their global models,
our global model covered a much wider range of targets, i.e.,
1,426 drug targets, which empowered our model a greater
potential to predict more diverse and credible targets for natural
products with higher accuracy (using AUC value as an evaluation
indicator).

The statistical analysis was conducted by Fisher’s exact test.
Comparing to gene set enrichment analysis methods (Huang
et al., 2009), hypergeometric distribution was used to enrich AD-
related genes on compounds. Natural products were enriched
onto AD through AD-related genes using Fisher’s exact test.
For each compounds in the formula TMGTY, its known and
predicted targets were identified as whether AD related or non-
related. From the perspective of our bSDTNBI method, this
resource diffusion method can in a way be envisaged as a
distance-based similarity method. In the network, the more
and the shorter the paths between a compound node and AD-
related target nodes, the more resource it would be portioned
from AD-related target nodes, i.e., more AD-related targets
would be predicted for this compound. This implied certain
intrinsic similarities between compounds represented by network
topologies. Since the prediction cannot be perfectly accurate,
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TABLE 3 | The 12 compounds were identified highly related to AD, using a cut-off p-value < 0.01.

ID Structure Number of Source Adjusted

AD-related genes p-value

TMGTY067 7 Gouteng 0.003503

TMGTY332 6 Sangjisheng 0.007194

TMGTY215 6 Huangqin 0.007194

TMGTY408 6 Huangqin 0.007194

TMGTY405 6 Yejiaoteng 0.007194

TMGTY404 6 Tianma 0.007194

TMGTY293 6 Sangjisheng 0.007194

TMGTY291 6 Huangqin Zhizi 0.007194

TMGTY114 6 Zhizi 0.007194

TMGTY115 11 Yimucao Zhizi Huangqin 0.007194

TMGTY441 6 Zhizi 0.007194

TMGTY387 6 Yejiaoteng 0.007194
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FIGURE 3 | The compound–target–pathway subnetwork of 12 compounds relating to AD. Compound was denoted by blue triangle, target by magenta circle and
pathway by green rectangular. Known compound–target interaction was represented as gray line, predicted compound–target interaction as salmon line and
target–pathway association as blue line. This figure was plotted using Cytoscape 3.3.0.

it was reasonable to consider that a compound having more
predicted AD-related targets compared to non-related targets was
more topologically similar to compounds having known AD-
related targets, and thus more relevant to AD. Then Fisher’s exact
test was a good statistical tool to assess the relevance.

The cut-off p-value for compound selection and further
analysis was set to 0.01. Twelve compounds were selected and a
total of 121 targets were predicted for them. If the cut-off p-value

were set to be 0.05, then 108 compounds would meet the criterion
and 256 targets predicted. Compounds with a p-value between
0.01 and 0.05 were also considered relating to AD. However, 24
out of 121 targets for 12 compounds were AD-related while only
30 out of 256 targets for 108 compounds were AD-related. This
suggested that many targets, especially AD-related targets, were
shared among compounds with p-value less than 0.05. So the
compounds with p-value less than 0.01 and their corresponding
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targets were representatives of the molecular mechanisms of
formula TMGTY against AD.

The gap between compounds and diseases were bridged
by combining above methods. The link between compounds,
target genes and diseases was established and analyzed in
the context of network science. Complex compound–protein
and protein–protein interaction networks were both taken into
consideration to facilitate the apprehension of the formula’s
mechanisms. Since TCM formulae have complicated constituents
and are intrinsically multi-targeted and effective to diverse
symptoms, our computational systems pharmacology approach
provides a more comprehensive perspective to understand their
mechanisms on a systematic level, and is easy to apply to various
formulae, thus valuable to TCM study.

Evaluation of the Systems Network
Pharmacology Approach
In order to further validate the performance of our approach,
another traditional Chinese herbal formula Kai-Xin-San (KXS)
was analyzed using this approach. KXS is a famous formula
used for the treatment of neurosis and AD, which consists
of four herbs: Panax ginseng (Renshen), Wolfiporia cocos
(Fuling), Polygala tenuifolia (Yuanzhi), and Acorus tatarinowii
(Shichangpu) (Zhou et al., 2012; Wang et al., 2015; Chu et al.,
2016).

Three hundred and eighty-eight compounds were collected
and 369 new targets predicted, then 28 representative compounds
were identified and their targets were enriched onto KEGG
pathway and GO biological process (Supplementary Tables S9–
S13 and Supplementary Figure S6).

Among enriched pathways, nitrogen metabolism,
neuroprotective ligand–receptor interaction, serotonergic
synapse, dopaminergic synapse, arachidonic acid metabolism,
linoleic acid metabolism, and tryptophan metabolism may be
involved in AD pathology. GO biological process enrichment
analysis indicated that KXS may involve in oxidation–reduction
process, steroid metabolic process, memory, heterocycle
metabolic process, lipoxygenase pathway and synaptic
transmission, dopaminergic. These enrichment analyses
suggested that KXS may exert neuroprotective effect by
regulating metabolism networks, reversing oxidative damage in
brain, as well as targeting neurotransmitter pathways.

Chu et al. (2016) discovered that KXS could alleviate cognitive
deficits in AD model rats and more nerve cells survived than
that in the control group. KXS could also regulate metabolism
network, such as linoleic acid metabolism and arachidonic acid
metabolism, by affecting certain metabolites to show anti-AD
effects (Chu et al., 2016). Qiong et al. (2016) found that in rat
models KXS could reduce the level of 3-nitro tyrosine (3-NT),
and increase the activity of choline acetyltransferase, indicating
antioxidant effects of KXS. Zhu et al. (2016a,b) discovered that
KXS could induce synaptic protein expression in hippocampus
neuron in rats and neuronal differentiation in PC12 cells.

In 28 representative compounds, Apigenin, Paeonol were
reported to be important anti-AD compounds (Su et al., 2014).
Eudesmin could up-regulate the expression of GABAA and

Bcl-2, and it has significant anticonvulsant and sedative effects
(Liu et al., 2015). 2′-O-Methylisoliquiritigenin was reported to
have antioxidant activity and it was also active against human
neuroblastoma cells (Batovska and Todorova, 2010). Marmesin
was reported to have AChE inhibitory effects (Tumiatti et al.,
2008; Cabral et al., 2012). Bergapten was discovered to have anti-
inflammatory effects by suppressing the ROS and NO generation
(Yang et al., 2018). Myrcene and eugenol was reported to have
anti-inflammatory and antioxidant activities (Irie, 2006; Rufino
et al., 2015).

The analyses of KXS further validated and proved our
approach would be useful in the analyses of TCM formulae and
identification of key herbal constituents. Detailed description of
KXS can be found in Supplementary Data.

The precision values of three network models were among
0.049–0.065. Different from machine learning methods,
bSDTNBI is a network-based method, and its evaluation
indicators are from recommender systems (Zhou et al., 2010; Lü
et al., 2012). The precision is defined as:

P =
1
c
·

c∑
i=1

TPi(L)

L
(4)

Where C is the number of compounds, L is the number of
predicted targets and TPi(L) is the number of recovered missing
links of compound i from test set in L targets. Hence, the more
targets predicted, the smaller the precision.

The precision value of approximately 0.06 is relatively high
(L = 20), comparing to previous network-based studies. Fang
et al. (2017b) constructed network models with precision values
ranged from 0.010 to 0.049. Precision values were among 0.042
to 0.072 in the work of Wu et al. (2016). They tested 56 available
compounds predicted to act on estrogen receptor α (ERα), and
27 compounds were identified as active agonists or antagonists
(Wu et al., 2016). Wu et al. (2018) also constructed global
network models with precision values ranging from 0.045 to
0.055. The comparison also further validated the performance of
our approach.

Potential Mechanisms of TMGTY in
Treating AD
In the compound–target–pathway subnetwork, many enriched
pathways were related to AD. For example, among target
genes enriched onto serotonergic synapse pathway, 5-
hydroxytryptamine receptor 2A (5-HT2A), 5-hydroxytryptamine
receptor 2C (5-HT2c), and 5-hydroxytryptamine receptor 6
(5-HT6) were reported to be related to AD (Wilkinson et al.,
2014). 5-HT2A and 5-HT2c can modulate processing of amyloid
protein precursor (APP) (Nitsch et al., 1996). Antagonists of
5-HT6 can improve cognitive performance involving stimulation
of glutamate, acetylcholine, and catecholamine release in brain
(Benhamú et al., 2014). 5-HT6 antagonists may also stimulate
neurite outgrowth and inhibit mTOR pathway (Claeysen et al.,
2015). All 12 compounds were predicted to act on targets
in the pathway, mostly 5-HT receptors. Oxidative stress also
contributes to neurodegeneration in AD (Barnham et al.,
2004). The excessive generation of reactive oxygen species
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(ROS) leads to free radical-mediated processes harmful to brain
cells (Balaban et al., 2005). Monoamine oxidase A (MAO-A)
and monoamine oxidase B (MAO-B) are involved in ROS
production while catalyzing various amines (Melo et al., 2011).
Acetylcholinesterase (AChE) was predicted to potentially interact
with 10 compounds, which was also a neurotransmitter receptor.
Thus it may also play an important role. Inhibitors of AChE,
such as U.S. Food and Drug Administration (FDA) approved
drugs donepezil and galantamine can stabilize or slow decline
in cognition (Hansen et al., 2008). Efforts are made to develop
multi-target drugs to improve therapeutic efficacy. Ladostigil,
for example, is a multi-target drug designed to have AChE,
butyrylcholinesterase (BChE) and brain selective MAO-A and
MAO-B inhibitory activities (Mangialasche et al., 2010). This
design strategy suggests an indigenous advantage of TCM
formula in treating complex diseases, such as AD in this case: its
multi-targeting attribute. Furthermore, compound TMGTY404
(Dauricine), from the main herb Rhizoma Gastrodiae, may
potentially act on dopamine receptors, which could also help
to stabilize neurodegeneration and cognitive decline in AD
(Martorana and Koch, 2014). Twenty-one targets enriched onto
neuroactive ligand–receptor interaction pathway were mostly
neurotransmitter receptors. All above pathways suggested that
this formula may exert neuroprotective effect by targeting
various neurotransmitter receptors to treat AD.

Moreover, there were other enriched pathways may be
involved in AD pathology, such as calcium signaling pathway,
inflammatory mediator regulation of TRP channels and
arachidonic acid metabolism. Ca2+ plays an important role in
neuronal development, synaptic transmission and regulation of
many neuronal metabolic pathways (Missiaen et al., 2000). It
was also reported that the perturbed cellular Ca2+ homeostasis
correlates with amyloid plaques and neurofibrillary tangles in
AD (Hölscher, 1998). Several studies further revealed that the
neurotoxicity of Aβ was diminished if cells were incubated
in Ca2+-free medium (Mattson et al., 1993) and Ca2+ from
endoplasmic reticulum (ER) and mitochondria is involved into
the pathogenesis of neuronal degeneration (Pereira et al., 2004;
Takuma et al., 2005). Compounds that target neurotransmitters
such as cholinergic receptors and 5-HT receptors may regulate
the Ca2+ homeostasis, since Ca2+ signaling is initiated by
neurotransmitters (Putney, 2003). Transient receptor potential
(TRP) channels are plasma membrane cation channels consisting
of six subfamilies: TRPA (ankyrin), TRPC (canonical), TRPM
(melastatin), TRPML (mucolipin), TRPP (polycystin), and
TRPV (vanilloid) (Moran, 2017). Aβ increases the production
of ROS which further activates TRPC5, TRPM2, TRPM7,
and TRPV1 and then triggers Ca2+ influx and induces NO
production, finally leads to neurodegenerative and inflammatory
processes (Yamamoto et al., 2007). In this case, TRPA1 was
predicted as potential target for compounds TMGTY332,
TMGTY293, and TMGTY291. TRPA1 is involved in the
TRPA1-Ca2+-PP2B signaling cascade which contributes to
Aβ-triggered inflammation and AD pathogenesis. Aβ can trigger
TRPA1-dependent Ca2+ influx and then enhance the activity
of protein phosphatase 2B (PP2B), which then activates NF-κB
and nuclear factor of activated T cells (NFAT), leading to

produce pro-inflammatory cytokines. The inhibition of TRPA1
channel can slow down AD progression (Lee et al., 2016). The
predicted target genes of these 12 compounds including TPRA1,
PTGS1, PTGS2, HTR2A, CHRM1, NOS2, and ALOX5 are
all important protein-coding genes in these pathways related
to AD. Hence the speculation can be made that this TCM
formula may exert its therapeutic effect against AD by targeting
those proteins to regulate Ca2+ and NO level and mollify
neuroinflammation.

In order to further corroborate the prediction, a literature
review was conducted to check if any of these 12 compounds
is already experimentally validated to have therapeutic effect
against AD. TMGTY404 (Dauricine) was reported to have
neuroprotective effect, which could reduce energy depletion
and oxidative stress, thus attenuate neuronal apoptotic cell
death (Li and Gong, 2007). Dauricine was predicted to
have interactions with six AD-related targets: MAO-A, AChE,
dopamine receptor D1 (D1 receptor), 5-HT1A, MAO-B and
beta-secretase 1 (BACE1). Targeting MAO-A and MAO-B
could reduce the generation of ROS and targeting AChE,
D1 receptor and 5-HT1A together could improve cognitive
performance. Thus Dauricine may exert neuroprotective effect
through predicted AD-related targets. TMGTY115 (Apigenin)
was also reported to have antioxidant and anti-inflammatory
properties. Similarly, Apigenin could reduce ROS, protect from
Aβ-induced toxicity and suppress inflammatory mediators such
as NO and prostaglandin in rat and mouse cell experiments
(Venigalla et al., 2015).

Above all indicated the formula TMGTY may treat AD
through complex mechanisms, showing both neuroprotective
and anti-neuroinflammatory effects.

Overlapping Genes of AD and
Hypertension Disease Modules
Nitric oxide plays a key role in the regulation of many
physiological processes, such as vasodilation, inflammation, and
neurodegeneration (Förstermann and Münzel, 2006; Brown,
2010). NO is generated by three NO synthase (NOS) isoforms:
neuronal NOS (nNOS, encoded by NOS1), inducible NOS
(iNOS, encoded by NOS2), and endothelial NOS (eNOS, encoded
by NOS3). eNOS is constitutively expressed in the vascular
endothelium where NO is continuously produced and involved
in the regulation of vascular tone and blood pressure (Lundberg
et al., 2015). In neurons, nNOS is activated by an influx of
calcium to produce NO (Hall and Garthwaite, 2009). iNOS is
highly expressed in inflammatory states and can produce high
amounts of NO and other reactive nitrogen species such as
peroxynitrite (Beckman et al., 1990). In diseased brain, iNOS is
found mainly in microglia and astrocytes and may contribute
to neuronal death and inflammatory neurodegeneration (Bal-
Price and Brown, 2001; Brown and Bal-Price, 2003). So the
overlapping genes may function in these enriched biological
processes and involve in the regulation of blood pressure
and NO levels in brain, thus contribute to the pathology of
both AD and hypertension. Some other enriched biological
processes such as positive regulation of neuron death and
negative regulation of neuron apoptotic process suggested that
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FIGURE 4 | The network of TMGTY herbs (green nodes) and AD, hypertension related genes (blue nodes) in detected disease modules. Herbal interactions with AD
genes were noted as cyan edges, hypertension genes as yellow edges and common genes were red edges.

these genes may also engage in the physiology of neuron
cells.

These enriched biological processes further suggested that
common disease genes should be investigated from a more
systematic view. Among common disease genes, several genes
were connected in protein–protein interaction network, which
suggested that these genes may together exert certain biological
effects. The analyses of these genes may also help to understand
the concept ‘Syndrome’ in TCM. Hence, a sub-module was
defined as a group of genes containing more than two
connected gene nodes in disease modules, which was involved
in specific biological processes. Genes enriched onto those
above-mentioned biological processes were APOE, BCL2, CAT,

ESR1, GPX1, GSK3B, IL1B, LEP, MTOR, NOS2, NOS3, SOD1,
and SOD2. Eleven out of these 13 genes were from two sub-
modules of common genes, i.e., sub-module 1 (AHR, APOE,
ESR1, GSK3B, MTOR, NOS2, NOS3) and sub-module 2 (BCL2,
CAT, GPX1, SOD1, SOD2). Drugs acting on common genes,
especially genes in sub-modules, may show therapeutic effect
on both AD and hypertension. Several genes from sub-modules
were potential targets to the 12 representative compounds.
ESR1 was predicted to interact with TMGTY405, TMGTY404,
TMGTY115, and TMGTY387; BCL2 was the possible target
of TMGTY408, TMGTY405, and TMGTY387; NOS2, NOS3
may interact with TMGTY067, and GSK3B with TMGTY115.
Taking compound TMGTY067 (Angustidine) as an example,
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it was predicted to interact with two protein-coding genes
NOS2 and NOS3 in the sub-module 1. NOS2 and NOS3
were involved in the regulation of blood pressure, removal of
superoxide radicals and NO mediated signal transduction. Thus
Angustidine may potentially regulate both the blood pressure
and neuro-inflammation and worth further investigation on its
pharmacological effects through biological experiments.

The Synergistic Effect of TMGTY
Tian-Ma-Gou-Teng-Yin was prescribed for neurodegenerative
diseases (Chik et al., 2013) such as AD (Liu et al., 2014; Lin
et al., 2016) and Parkinson’s disease (PD) (Pan et al., 2015),
and also the prevention of hypertension (Zhang et al., 2016).
Upon previously detected disease modules, a network illustration
of potential interactions between herbs and AD, hypertension
related gene targets was constructed to speculate the synergistic
effect of herb formula (Figure 4). According to node degrees,
AD-related genes were usually potential targets of multiple
herbs, such as ACHE (of 10 herbs), BACE1 (9), MAPT (9),
and PPARG (8). Thus TMGTY may have a synergistic effect
on neurotransmitter-involved pathways to alleviate symptoms
of AD. Nine common disease genes in the disease relationship
network were predicted to be targets of herb components. Six
of them were in sub-module 1, i.e., ESR1 (10), NOS2 (5),
NOS3 (5), AHR (5), GSK3B (4), and MTOR (3). All herbs had
potential effect on both AD and hypertension disease modules.
Tianma and Gouteng were reported to have anti-AD effects on
in vitro or in vivo models (Su et al., 2014). The water extract
of Tianma and Gouteng showed antioxidant and antiapoptotic
effects on neuronal differentiated PC12 cells (Xian et al., 2016).
Yejiaoteng was a commonly prescribed herb for the treatment of
AD and sleeping disorder, and a Yejiaoteng decoction was also
reported to have sedative-hypnotic effect in an animal model
(Chen et al., 2015). Studies have shown that Huangqin had
antioxidant and anti-neuroinflammatory effects in PC12 cells and
mice models (Shang et al., 2006; Jeong et al., 2011). Yimucao
extract was tested to have cerebral protective effect by reducing
neurological impairment, oxidative damage and apoptosis in
cerebral occluded rats (Loh et al., 2009). The extract of Zhizi
also had antioxidant activity (Debnath et al., 2011). Five herbs,
Gouteng, Tianma, Yimucao, Zhizi, and Duzhong, were predicted
to interact with genes in sub-module 1. Many of these herbs
were involved in the production of ROS, and had antioxidant
effects. Genes in the sub-module 1 were directly enriched onto
GO biological processes such as positive regulation of neuron
death and NO mediated signal transduction. Thus acting on sub-
module 1 to regulate NO-related oxidative state may be attributed
to the formula’s common protective effects against both AD and
hypertension.

A herb usually contains hundreds of compounds, and
thus possesses a multi-target quality which results in multiple
therapeutic effects. Subtly designed herb formulae consisting
of several herbs may have synergistically enhanced therapeutic
effects against certain symptoms. These symptoms may be a
manifestation of functional gene groups. Thus a herb formula
may possess complicated pharmacological activities.

CONCLUSION

In this study, we proposed a computational systems
pharmacology approach to investigate the molecular mechanisms
of TCM formula TMGTY. We first collected the principal
components of this formula and predicted targets for them.
Then using hypergeometric distribution and Fisher’s exact
test, those compounds were enriched onto AD through target
proteins. The most representative compounds were selected
and gene set enrichment analysis was conducted. Our approach
revealed that formula TMGTY may have neuroprotective and
anti-neuroinflammatory effects in treating AD. We further
analyzed disease modules of AD and hypertension and found
that some sub-modules of genes were shared between two
diseases. Compounds (for example, Angustidine) targeting
proteins in sub-modules (such as NOS2 and NOS3) may effect
on both AD and hypertension.

Yet there are also limitations of our approach. To filter formula
ingredients using predicted HIA and BBB properties may lead
to an omission of some compounds. The incompleteness of herb
ingredients, AD-related genes and PPI network would bring bias
to the prediction and analysis. Furthermore our approach cannot
discriminate whether a compound agonize or antagonize a target
receptor, as well as the causal relationship between compounds
and AD. For example, Isorhynchophylline and Gastrodin were
not identified as top compounds since they were not predicted
to have significant number of AD-related target genes. They
had insufficient known target information and the prediction
may be biased by above reasons. Thus the performance of
our approach needs to be further improved, for example, by
integrating drug-phenotype data. However, our approach is from
a holistic perspective and easy to integrate new data to increase
performance. At last but not least, our approach did not consider
the quantity of each component in the formula, which is difficult
currently and should be taken into account in future.
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