
RESEARCH ARTICLE

Solution to travelling salesman problem by

clusters and a modified multi-restart iterated

local search metaheuristic

Gustavo Erick Anaya Fuentes, Eva Selene Hernández Gress*, Juan Carlos Seck Tuoh

Mora, Joselito Medina Marı́n

Engineering Academic Area, Autonomous University of Hidalgo, Pachuca, Hidalgo, Mexico

* evah@uaeh.edu.mx

Abstract

This article finds feasible solutions to the travelling salesman problem, obtaining the route

with the shortest distance to visit n cities just once, returning to the starting city. The problem

addressed is clustering the cities, then using the NEH heuristic, which provides an initial

solution that is refined using a modification of the metaheuristic Multi-Restart Iterated Local

Search MRSILS; finally, clusters are joined to end the route with the minimum distance to

the travelling salesman problem. The contribution of this research is the use of the meta-

heuristic MRSILS, that in our knowledge had not been used to solve the travelling salesman

problem using clusters. The main objective of this article is to demonstrate that the proposed

algorithm is more efficient than Genetic Algorithms when clusters are used. To demonstrate

the above, both algorithms are compared with some cases taken from the literature, also a

comparison with the best-known results is done. In addition, statistical studies are made in

the same conditions to demonstrate this fact. Our method obtains better results in all the 10

cases compared.

1 Introduction

Travelling Salesman Problem TSP is well known in the literature and is considered one of the most

difficult problems to solve, besides being very useful to solve various problems in manufacturing.

The first time who someone tried to solve this problem was addressed by Dantzig, Fulkerson and

Johnson [1] algorithm on an IBM 7090 computer, the method used was Branch and Bound,

through this method it was found that the average computational time was too high to be feasible

to solve. Since then, TSP has been solved by various Metaheuristics such as Ant Colony ACO, Sim-

ulated Annealing RS, Genetic AlgorithmsGA, among others, but new algorithms continue to

emerge, and it is interesting proven them in classic problems.

All the methods used to solve TSP have found a limit on their computational runtime, we

attemting to solve problems with many cities or nodes [2], because this problem is NP Hard

[3]. For this reason, the TSP remains a subject of current research to try new and different heu-

ristic strategies. There are different applications in problems with a lot of nodes. For example,

the Family Travel Salesman Problem, that is motivated by the order picking problem in ware-

houses where products of the same type are stored in different warehouses or in separate places
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in the same warehouse [4]. Other application of the TSP is in the technical approach to solve

the fuel optimization problem in separated spacecraft interferometry missions [5]. Also, differ-

ent problems can be converted to TSP with a lot of nodes, one of them is the Vehicle Routing

Problem [6], and other is the Job Shop Scheduling Problem [7]; in the the last case a problem

with 30 jobs and 10 machines is a TSP with 300 cities. Other applications are in Tas, Gendreau,

Jabali and Laporte [8] and in Veenstra, Roodbergen, Vis and Coelho [9]. In a different topic,

different clustering techniques have been used to solve problems with many nodes, such as

clusters based in prototypes, centers, graphs and densities [10]. Some authors have already

solved the TSP by clusters, see for example the work of Phienthrakul [11], what hence forth we

will named as CTSP (Clustering the Traveling Salesman Problem). In this research, he solved

the problem with Ant Colony, Simulated Annealing and Genetic Algorithms., but the best

results that he obtained were with Genetic Algorithms.

Our proposal is the solution of CTSP applying a combination of heuristics as the NEH and a

modification of the metaheuristic Multi Restart Iterated Local Search MRSILS [12], all these

terms together will be named as CTSPMRILS (The Travelling Salesman Problem with Clusters,

NEH and Multi Restart Iteration Local Search). Until today, no one who has solved it in this

way has been found, and this is the innovative part. The approach in this paper is tested in 10

instances of Phienthrakul [11]. The CTSPMRILS finds satisfactory results in all the instances

proved. The aim of this article is to demonstrate that the proposed algorithm CTSPMRILS is

more efficient than Genetic Algorithms when clusters are used.

This article is structured as follows: section 2 shows the TSP background, the clustering

techniques and their application in the TSP, and also some basic aspects related to the NEH
heuristic and MRSILS; section 3 presents the description and problem statement, where

defines the problem solving in mathematical terms; section 4 describes the development of the

proposed algorithm in this article; later in section 5 the results are presented; in section 6 a dis-

cussion of the results is provided. Finally, section 7 presents the conclusions of this research.

2 Background

2.1 The travelling salesman problem

The TSP can be formally defined as follows (Buthainah, 2008). Let a network G = [N,A,C], that is

N the set nodes, A the set of arcs, and C = [cij] the cost matrix. That is, the cost of the trip since

node i to node j. The TSP requires a Halmiltonian cycle in G of minimum cost, being a Hamilto-

nian cycle, one that passes to through each node i exactly once. TSP is a problem of permutation

that aims to find the path of shorter length or minimum cost in an unguided graph than repre-

sents the cities or nodes to be visited. The TSP starts in a node, visiting all the nodes one by one

to finally return to the initial node, in such a way must form routes and no sub-paths. The TSP

can be modeled through Integer Programming [13] and in the symmetric case, Branch and Cut

algorithms have been developed. Although the search for optimal solutions of large instances of

the symmetric TSP via Branch and Cut have been reached, this effort is two-fold; one must invest

in a relevant algorithmic and implementation effort. The implementation effort is unfortunately

now far too high for a newcomer [14]. TSP is considered NP-complete and is one of the biggest

challenges faced by analysts, even through various techniques that are available [15].

To deal with the complexity of the problem, TSP has been studied extensively with meta

heuristics, see for example, the works of Dorigo [16] with colony of ants, Cerny [17] with the

Monte Carlo Method; Jog et al. [18], Chattarjee et al. [19], Larrañaga et al.[20], Moon et al.

[21], Fogel [22], Also, different versions of GA have been presented in Kurian, Mathew and

Kumar [15] intended to improve efficiency in solving the TSP, so far without finding a method

or technique that ensures finding the optimum in polynomial time. Current trends to solve
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TSP problems includes the Clustering Technique or solve the TSP separately generating

smaller problems as described in the next section.

2.2 Clustering techniques

Arising from the difficulties in finding solutions for the TSP in feasible time, works such as Dutta

and Bhattacharya [23] discusses various techniques of clustering based on policies and methods

of clusters, they show the steps for the clustering process and discuss some important concepts

related to class data and the characteristics of selection and evolution of the cluster, which is a

term that has its beginnings in Amdahl’s Law [24]. In addition, the results found by Dutta and

Bhattacharya [23] indicate that clustering techniques can be classified into 7 groups: based on dis-

tances, densities, models, on pictures, in seeds, spectra and hierarchies used in data mining. Clus-

tering has been used to solve different problems applied in different fields, for example Nizam

[25], proposed clustering as a powerful control system voltage stability and presents a new tech-

nique for clustering called neural Kohonen network. The formation of these clusters can simplify

the control voltage. Vijayalakshmi, Jayanavithraa, Ramya [26] observed in the field of genetics

that are measured levels of thousands of genes simultaneously, using microarray technology. In

this technology, genetic clusters approach is used to find genes with similar functions. Under this

approach, several clustering algorithms are used in clusters; as proposed by Vijayalakshmi et al.

[26], which is an automatic algorithm that provides the ability to find a strong global convergence

towards an optimal solution.

Weiya, Guohui and Dan [27], proposed a novel method called cluster graph consistent

approach, the solution obtained by this method is close to the optimal with a discrete solution.

The different techniques of clustering are also analyzed for data mining by authors such as

Saroj and Chaudhary [28]. Clusters group is a subject of active research in many fields such as

statistics, identifying patterns and learning machines. Cluster analysis is an excellent tool to

work with a lot of data.

Moreover, Kaur and Kaur [29] uses clustering in Data Mining by k-means clustering to

divide the data into k clusters; Besides, Nadana and Shriram [30] proposed a methodology

called Megadata based on a model of clustering for large data sets. The experimental results

showed that it is possible to find a better quality of clusters without improving the computa-

tional time.

Kaur and Singh [31] proposed an advanced clustering algorithm to direct large data sets.

This advanced method for clustering allows to measure the distance of each object, also

requires a simple data structure for each iteration. Their experimental results proved that the

advanced method of clustering algorithm can improve the effectiveness of the speed and accu-

racy of the algorithm by reducing the computational complexity.

Tavse and Khandelwal [32] classified data internet clusters for application in data transmission,

achieving better efficiency, longer life and stability of the network, optimizing data classification.

Refianti et al [33] compared two algorithms called: affinity propagation and k-means, both gro-

uped data clusters. The data are regarding the timing of completion of the thesis students. The

results show that the k-means algorithm provides more accurate results with cluster data and

more effectively than affinity propagation, while this provides different values for the centroids

after five tests. In the next section, clustering to find better solutions to the TSP is presented.

2.3 Clusters applied to the travelling salesman problem

Different methods and techniques have been used to solve the TSP clustered, as Lin-Kernighan

proposed by Karapetyan and Gutin [34]. Also, the GA with clusters CAG presented recently at

work Sivaraj, Ravichandran and Devipriya [35], who notes that using CAG manages to find
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the optimal solution in less time that standard GA named SGA, this was observed in three

cases shown in Sivaraj et al. [35]. The latter author developed an unsupervised learning mecha-

nism, used to group similar objects in clusters, ensuring that despite the different techniques

for clustering that are available, there is a general strategy that works in the same way on differ-

ent problems. However, the conclusion is that it is better to use simple mechanisms.

In the origins of the clusters Tsai and Chiu [36] proposed a very similar to CTSPmethod

called hierarchical clustering, which adopts an ambitious strategy to gradually mix objects and

build a classification structure called dendrogram. Nevertheless, the quality of its clusters is

unreliable. To overcome the problem, a global optimum strategy for the construction of the

dendrogram is to find the optimal circular route that minimizes the total distance to visit all

objects along the arms of the dendrogram, which is modeled as a TSP and is solved using a

method of search variable in the neighborhood. When the cluster dendrogram is modeled, it is

based on information provided by the order. Through these experiments, the quality of this

clustering method is superior to traditional methods.

Nagy and Negru [37] discussed methods to cluster which can be used to treat spatial and

temporal patterns in a large amount of data. They use 55 cities to apply the methods of detec-

tion. His approach allows us to observe the existence of different spatial and temporal clusters.

Vishnupriya and Sagayaraj [38] implemented clustering algorithms for techniques used in

data mining, making possible the analysis of data sets, using the algorithm k-means to calculate

the value of the cost based on the Euclidean distance like TSP.

Nidhi [39] proposes the k-means algorithm for the problem of increasing data with several

clusters generated dynamically and without repetition, which reduces the computational time,

providing more accurate results. Therefore, the initial grouping is done with statistical data,

using k-means. Then the next points, the largest distance between the centroid and the farthest

point is used to define the next point that is in the cluster, repeating the process to cover the

total data.

Derived from the works mentioned above, it becomes necessary to define a heuristic that

may help to solve the TSPwith feasible results, hence, in this article the use of NEH and

MRSILS algorithms is proposed as a feasible alternative.

2.4 NEH y multi-restart iterated local search

Nawas, Enscore and Ham [40] proposed a heuristic called NEHwhich intends to solve the Job

Shop Scheduling Problem, Liu Song and Wu [41] improved this algorithm with two tech-

niques. First, to reduce the computational time per block properties are developed and intro-

duced in the NEH algorithm to obtain a shorter the computational time. Second, tiebreaker

rules are applied to obtain good solutions. The simulation results show that these two tech-

niques improve the results obtained in the NEHAlgorithm.

Mestrı́a [42] also proposed a heuristic method to solve the CTSP, which it is a generalization

of TSPwhere a set of nodes is divided into disjointed clusters with the aim of finding the mini-

mum cost of the Hamiltonian cycle. Mestrı́a, [42] developed two random descendants in the

neighborhood, with iterated local search called ILS algorithm to solve the CTSP. The computa-

tional time obtained shows that the heuristic methods are competitive using software in parallel.

Grasas, Juan and Lorenzo [43] found that ILS is one of the most popular solutions using

simple heuristics. ILS is recognized by many authors as relatively simple as well as having a

structure capable of dealing with combinatorial optimization problems COPs. The ILS has

been successfully applied to provide near optimal solutions for different problems of logistics,

transportation, production etc. However, it has been designed to solve problems in determin-

istic scenarios, therefore, it does not reflect the actual stochastic nature of the systems.

The TSP by clusters and a modified MRILS metaheuristic
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Dong, Chen, Huang and Nowak [44] proposed the MRSILS to solved Flow Shop Scheduling

Problem, MRSILS generates an initial solution as well as constructs in negligible time and the

corresponding ILS performs. This is repeated until a termination criterion, it can be set as the

maximum number of iterations for the local search procedure or the maximum allowable

computational time.

Seck et al. [12] modifies theMRSILS algorithm with an uncomplicated process which gener-

ates minor changes by means of permutations for improving the initial solution before using

MRSILS, then a minor variation is made in the MRSILS to obtain better performance. The

experiments show that the new algorithms produce slightly better results than the original one.

Thus, it is proposed to try MRSILS and NEH heuristic to apply on clusters of the problem

described below.

3 Description and problem statement

The TSP can be defined as follows: Find the shortest route for a sales person starting from a

city, visiting each in a specific group of cities just once and returning to the starting point [45].

The TSP can be defined as an undirected graph G = (V,E) if symmetric, or as a direct graph

G = (V,A) if it is asymmetric. The set V = {1,. . .n} is a set of vertices or nodes, E = (i,j): i, j�V,

i<j a set of arches undirected, A = {(i,j): i, j�V, i6¼j} a set of directed arcs. A is the cost matrix

C = Cij defined on E or possibly on A. The cost of the matrix satisfies the triangle inequality

[46] provided Cij� Cik+Ckj, for all i,j.k; where vertices are points in in the plane Pi = (Xi,Yi);

and Cij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðXi � XjÞ
2
þ ðYi � YjÞ

2
q

is the Euclidean distance. The triangle inequality is satis-

fied if Cij is the length of the shortest path from i to j in G.

Anil, Bramel and Hertz [47] defines the CTSP considering ordering the clusters for TSP,

where a traveling salesman starts and ends its journey in a specific city must visit a set of n
points divided into k clusters not connected, the k points of that cluster are visited before the

points of the cluster k+1 for k = 1,2,. . .,k–1 seeking the minimum total travel distance.

Given a complete undirected graph G = (V,E) where k+1 clusters denoted by Ci� V, for

each i = 0,1,2,. . .,k, preestablished. It is assumed that Ci \ Cj = 0 for all 1�i, j�k, i6¼j, and C0 is

denoted as a single node 0�V and may be a deposit C0 = 0. The CTSP seeks to determine the

minimum distance of commuter travel agent starting and ending in the same city and visiting

each of them, which are referred to as V and are in one way. To solve this problem, Phienthra-

kul [11] proposed a technique called k-means, to group in clusters with the steps described

below:

1. Choose an integer value for k.

2. Select k objects arbitrarily (use these as initial set of k centroids).

3. Assign each of the objects to a cluster, which is closest to the centroid.

4. Recalculate the centroid of k clusters.

5. Repeat steps 3 and 4 until the centroids do not change more.

Another technique proposed by the author is called Gaussian Mixed Model applied by the

normal distribution forming clusters. The model uses the Maximization Algorithm Hope EM
[48], to adjust the Gaussian distribution of the data. The algorithm starts by defining the num-

ber of clusters k and selecting the settings k of Gaussian distributions

λ = (μ1,μ2,. . .,μk,σ1,σ2,. . .,σk) where each cluster has a normal probability distribution with

N ðmi; si
2Þ.
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This article proposes to use k-means algorithm and recalculate the centroids by deducting

the arithmetic mean of the coordinates X and Y, to obtain a new centroid and iterate until the

centroids no change more, allowing the algorithm to be more efficient by using the arithmetic

mean instead of a fit test that requires more steps.

4 Development

This article seeks to solve the TSP in combination with clusters, NEH and MRSILS, such com-

bination henceforth it is called as CTSPMRSILS, which consist in grouping nodes in clusters to

find the minimum distance in each of them, but unlike the proposed by Phienthrakul [11] it is

modified to work with a proposed heuristic that provides solutions for each cluster with a

combination of the NEH [49] and MRSILS algorithms, which is explained by applying it to the

instance burma14 instance of TSPLIB [50], as shown in the following steps:

1. Let n the number of cities or nodes to visit by the commercial traveler, the number of groups

or clusters in which the total of nodes is divided, calculating k. So that k ¼
ffiffin
2

p
, rounding

the value of k when necessary. To illustrate the solution to the problem, coordinates X and

Y are taken from burma14 [50], which are shown in Table 1; for this example,

k ¼
ffiffiffi
14

2

q
� 3:

2. k clusters are represented individually by nodes called centroids placed at random coordi-

nates on the TSP; in this case, k random numbers are the centroids in X between the mini-

mum value of the coordinates 14.05 and 25.23 as maximum; similarly, the random number

in Y is between the minimum 92.54 and maximum 98.12. Thus, the centroid N = (Coordi-
nate X, Coordinate Y) is obtained for N = 1,2,k. And the following centroids are generated:

Centroid 1 = (22, 98);

Centroid 2 = (18, 97);

Centroid 3 = (23, 9).

Table 1. Coordinates instance burma14, TSPLIB [50].

Coordinates X Coordinates Y

1 16.47 96.10

2 16.47 94.44

3 20.09 92.52

4 22.39 93.37

5 25.23 97.24

6 22.00 96.05

7 20.47 97.02

8 17.20 96.29

9 16.30 97.38

10 14.05 98.12

11 16.53 97.38

12 21.52 95.59

13 19.41 97.13

14 20.09 94.55

https://doi.org/10.1371/journal.pone.0201868.t001
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3. Subsequently, n nodes are grouped by assigning each of them to the nearest centroid, such

that no node remains without assigned centroid; as it is shown in Table 2 for this example.

Table 2 also shows the distance between each node and each cluster; each node is assigned

to the nearest cluster, using the expression of the distance between two points Franklin [51]:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðX1 � X2Þ
2
þ ðY1 � Y2Þ

2

q

ð1Þ

The assignment of the nodes to the clusters is as follows, cluster 1 = 5, 6, 7, 12; cluster 2 = 1,

2, 8, 9, 10, 11, 13, 14 and cluster 3 = 3, 4.

4. Then, the arithmetic mean of the coordinates is calculated in X and Y for each cluster, with

the intention of finding a representative node in each of them; these nodes replace the cen-

troids of step 3. Steps 3 and 4 are repeated until the centroids no change more. For example,

burma14 [50] centroids are updated as:

Centroid 1 = (22.31,96.48);

Centroid 2 = (17.07, 96.42);

Centroid 3 = (21.24,92.96).

Table 2. Clusters allocation by the minimum distance from the node to the centroid.

Node Centroid 1 Centroid 2 Centroid 3 Cluster

1 5.85 1.78 7.23 2

2 6.58 2.98 6.69 2

3 5.78 4.93 2.95 3

4 4.65 5.70 0.71 3

5 3.32 7.23 4.79 1

6 1.95 4.11 3.21 1

7 1.82 2.47 4.75 1

8 5.10 1.07 6.67 2

9 5.73 1.74 8.00 2

10 7.95 4.11 10.31 2

11 5.51 1.52 7.81 2

12 2.46 3.79 2.98 1

13 2.73 1.42 5.47 2

14 3.94 3.22 3.30 2

https://doi.org/10.1371/journal.pone.0201868.t002

Table 3. Reallocation of centroids.

CIX CIY C2X C2Y C3X C3Y

25.23 97.24 16.47 96.10 20.09 92.54

22.00 96.05 16.47 94.44 22.39 93.37

20.47 97.02 17.20 96.29

21.52 95.59 16.30 97.38

14.05 98.12

16.53 97.38

19.41 97.13

20.09 94.55

https://doi.org/10.1371/journal.pone.0201868.t003
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Table 3 shows the coordinates of clusters 1,2 and 3; C1, C2,C3 respectively in the X and Y
axes, also from it the average of the coordinates of each cluster and in both axis are obtained to

recalculate the centroids, therefore, such averages are: for C1,μx = 22.31 and μγ = 96.48; for C2,

μx = 17.07 and μγ = 96.42; for C3,μx = 21.24 and μγ = 92.96.

Repeating steps 3 and 4, Table 4 is obtained; in which there is only one modification com-

pared to Table 3. The clusters are remapped as shown in Table 4.

Now new centroids are:

Centroid 1 = (22.31, 96.48);

Centroid 2 = (16.63, 96.69);

Centroid 3 = (20.85, 93.48);

For the next iteration, there is no reassignment of nodes to a different cluster, allocations

are equal to those of Table 4, so the step 4 in this iteration found the following clusters:

Cluster 1 = 5-6-7-12;5

Cluster 2 = 1-2-8-9-10-11-13;

Cluster 3 = 3-4-14.

5. In this step the NEH algorithm is applied to each of the k clusters, hereinafter the algorithm

only be explained with the cluster 2, which is the largest for this example, calculating the cost

or distance of each of the nodes to the other nodes belonging to the cluster in Table 5.

6. Nodes are sorted in ascending order relative to the travel expense, thereby Table 6 for Clus-

ter 2 is obtained. Chosen as initial cluster nodes in question in the order obtained in the

previous step with what you have for each cluster route.

Table 4. Reallocation of centroids.

CIX CIY C2X C2Y C3X C3Y

25.23 97.24 16.47 96.10 20.09 92.54

22.00 96.05 16.47 94.44 22.39 93.37

20.47 97.02 17.20 96.29 20.09 94.55

21.52 95.59 16.30 97.38

14.05 98.12

16.53 97.38

19.41 97.13

https://doi.org/10.1371/journal.pone.0201868.t004

Table 5. NEH start cost cluster 2.

Node 1 2 8 9 10 11 13 Cost

1 0.0 1.6 0.7 1.2 3.1 1.2 3.1 11.2

2 1.6 0.0 1.9 2.9 4.4 2.9 3.9 17.9

8 0.7 1.9 0.0 1.4 3.6 1.2 2.3 11.4

9 1.2 2.9 1.4 0.0 2.3 0.2 3.1 11.3

10 3.1 4.4 3.6 2.3 0.0 2.5 5.4 21.6

11 1.2 2.9 1.2 0.2 2.5 0.0 2.8 11.2

13 3.1 3.9 2.3 3.1 5.4 2.8 0.0 20.9

https://doi.org/10.1371/journal.pone.0201868.t005
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This order of the nodes is:

Centroid 1 = (22.31, 96.48);

Centroid 2 = (17.07, 96.42);

Centroid 3 = (21.24, 92.96)

7. In this step the first two nodes of the list are chosen to exchange them and the permutation

that provides the minimum cost is chosen, this is shown in Table 7 for cluster 2.

This permutation is joined by the third node 9, moving its position in the list, Table 8 is

obtained.

The best result obtained in Table 9 can be considered as 9-11-8-1; and it is incorporated to

node 2, for Table 10.

The best result is that follows the path 9-11-8-1-2, to which node 13 is incorporated as

shown in Table 11. The smaller travel distance in Table 11, is the path 13-9-11-8-1-2, so that

the end node 10 of this cluster permuting as shown in Table 12.

The results in each cluster by NEH algorithm are: cluster1, π´ = 7 − 12 − 6–5 with cost of

5.8812; cluster2, π = 13−8−9−11−1−2−10 with cost of 11.3536 and cluster3, π´ = 4−3−14 with

cost of 4.4552.

8. The next step is to apply the MRSILS algorithm to each of the clusters starting from the ini-

tial solution generated by the NEH and arbitrarily define the number of iterations of the

procedure that are performed, as well as a provisional store π with a default capacity num-

ber nπ, which stores the value of π at the end of each iteration. In this initial solution, π,

each of the nodes are moved, respecting the order in which they appear, changing their

position and choosing the one with the lowest cost or maintaining the one already stored, if

it has a lower cost. To see the example of the 13th node, refer to the Table 13. The initial

solution provided by NEH for Cluster 2 was 13-8-9-11-1-2-10 and then node 8 is showed in

Table 14. In which the value of π with π´ = 13−8−9−11−1−2−10 and we observe that π´ = π,

such that it does not change its value.

Table 6. NEH initial nodes sortered for cluster 2 output nodes.

Output nodes Cost

11.00 11.21

1.00 11.25

9.00 11.37

8.00 11.44

2.00 17.92

13.00 20.93

10.00 21.61

https://doi.org/10.1371/journal.pone.0201868.t006

Table 7. Permutation 11–1, cluster2.

Permutations Cost

11–1 1.2814

1–11 1.2814

https://doi.org/10.1371/journal.pone.0201868.t007
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Table 9. Permutation 8-9-11-1, cluster2.

Permutation Cost

8-9-11-1 2.9249

9-8-11-1 3.9744

9-11-8-1 2.2638

9-11-1-8 2.2657

https://doi.org/10.1371/journal.pone.0201868.t009

Table 8. permutations 9-11-1, cluster2.

Permutations Cost

9-11-1 1.5114

11-1-9 1.5212

11-1-9 2.5726

https://doi.org/10.1371/journal.pone.0201868.t008

Table 10. Permutation 2-9-11-8-1, cluster2.

Permutation Cost

2-9-11-8-1 5.2087

9-2-11-8-1 7.9193

9-11-2-8-1 5.9138

9-11-8-2-1 5.1583

9-11-8-1-2 3.9238

https://doi.org/10.1371/journal.pone.0201868.t010

Table 11. Permutation 13-9-11-8-1-2, cluster2.

Permutation Cost

13-9-11-8-1-2 7.0438

9-13-11-8-1-2 9.7046

9-11-13-8-1-2 7.8994

9-11-8-13-1-2 8.6489

9-11-8-1-13-2 9.3639

9-11-8-1-2-13 7.9087

https://doi.org/10.1371/journal.pone.0201868.t011

Table 12. Permutation 10-13-9-11-8-1-2, cluster2.

Permutation Cost

10-13-9-11-8-1-2 12.4945

13-10-8-9-11-1-2 13.6786

13-8-10-9-11-1-2 11.5472

13-8-9-10-11-1-2 11.6758

13-8-9-11-10-1-2 11.4081

13-8-9-11-1-10-2 12.8459

13-8-9-11-1-2-10 11.3536

https://doi.org/10.1371/journal.pone.0201868.t012
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Then the next node 9 moves position. See Table 15, in this case π´ = 13−8−11−9−1−2−10 is

updated because it has a lower cost compared with π. Each of the remaining nodes is changed

into its position, the results being as follows. For the 11th node p0 ¼13−8−11−9−1−2−10, for

node 1, π´ = 13−8−9−11−1−2−10, the change of node 2 keeps π´ constant. Finally, for node 10,

π´ = 13−8−9−11−10−1−2.

The procedure is repeated in each cluster to a predetermined number of iterations. The value

of π in each cluster is stored in the stack named πwith capacity nπ in each cluster. When the

number of iterations exceeds the value of nπ, the worst of the values in πwill be eliminated from

the iteration nπ+1. In addition, when a new iteration is initiated a perturbation is made on the

best value of π by generating two random positions to make a shift. These are called Aleat and

Aleat2 using this new individual generated as π for start the next iteration of MRSILS. For exam-

ple, if the best element of π is 13-8-11-9-1-2-10, Aleat1 = 3 and Aleat2 = 6. The perturbed solu-

tion is 13-8-10-11-9-1-2. In this example, only one iteration is perfomed, and the metaheuristic

MRSILS is concluded. Now the clusters are: Cluster1, π = 7−12−6−5 with cost of 5.8812; Cluster2,

π = 13−8−11−9−1−2−10 with cost of 11.2294 and Cluster3, π = 4−3−14 with cost of 4.4552.

9. Now, with this routes for each cluster, a procedure is performed to obtain a single route; for

this, initially the centroid 1 distance is calculated for each of the remain centroids, in order

to identify which cluster is closest to cluster 1; and this cluster is called cluster near CC: For

burma14, the distance from centroid 1 = (22.31, 96.48) is calculated, to each of the rest of

the centroids, using the Eq (1) whereby Table 16 is obtained; it is observed that centroid 3 is

closest to centroid 1, and then it is called cluster near Cc.

10. The distance between centroid 1 and each of the nodes in Cc are calculated, and the closest

node to centroid 1 is chosen; it is named as nodeC2. The distances between centroid 2 and

each of the nodes or cluster 1 are calculated, also the nearest node to centroid 2 is chosen

Table 13. Permutation node 13 in cluster2.

Permutation Cost

13-8-9-11-1-2-10 11.3536

8-13-9-11-1-2-10 13.0601

8-9-13-11-1-2-10 14.7702

8-9-11-13-1-2-10 13.7140

8-9-11-1-13-2-10 14.4295

8-9-11-1-2-13-10 14.0205

8-9-11-1-2-10-13 14.4400

https://doi.org/10.1371/journal.pone.0201868.t013

Table 14. Permutation node 8 in cluster2.

Permutation Cost

8-13-9-11-1-2-10 13.0601

13-8-9-11-1-2-10 11.3536

13-9-8-11-1-2-10 13.1588

13-9-11-8-1-2-10 11.4482

13-9-11-1-8-2-10 11.7790

13-9-11-1-2-8-10 11.9232

13-9-11-1-2-8-10 14.3388

https://doi.org/10.1371/journal.pone.0201868.t014
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and named as node C1. Subsequently, Cluster 1 is joined with Cc, through the nodeC1 and

nodeC2. The distances between Centroid1 and each of the nodes Cc., where the centroid 1

coordinates are X = 22.31 and Y = 96.48, are shown in Table 17.

Table 17 shows the closed node to centroid 1 is 14, so node C2 = 14. The distance of Cc with

coordinates X = 20.85 and Y = 93.48 is calculated for each node of cluster 1, as shown in

Table 18. That can find the node of cluster 1 and it is closer to the centroid 2, in this case corre-

sponds to node 12 so node C1 = 12.

11. Now, it is checked which of the nodes attached to node C2 of Cc, is located closer to it,

thereby choosing the direction of travel within the cluster. The last node of the path in Cc, is

called ClusterEnd2, remaining free according to the algorithm until joining the last cluster

with it. Similarly, the last node in cluster 1 is called ClusterEnd1. For the example, the dis-

tance of nodeC2 = 14, to respect node 3 and node 4, is calculated. Table 19 shows such dis-

tances. So, node 3 is the closest, the direction the Cc route must follow as 14-3-4; in

addition,ClusterEnd2 = 4

To end the direction of travel for cluster 1, it is necessary to end the nearest node to node

node C1 = 12 between 6 and 7; which are the only possible consecutive as obtained in for its

respective Cluster, as shown in Table 20.

Thus, node 6 is closest to node 12, the direction of the Cluster1 path is 12-6-5-7 and Cluster-
End1 = 7, and then the nodes near the centroids are joined so that node 12 joins node 14 as

shown in (Fig 1). The ClusterEnd1 and ClusterEnd2 nodes remain free until they join the rest

of the clusters; In case they were the only clusters, these nodes join to obtain a final route. In

case of a greater number of clusters, it is necessary to continue with next step.

12. The next cluster to join is defined by finding the minimum distance between ClusterEnd2

and each of the remaining centroids. For this case, only one cluster is yet to be joined, in

such a way that the distance of each node of this final cluster corresponding to cluster 3,

with respect to ClusterEnd2, it is calculated, as shown in Table 21.

Table 21 identifies that the cluster 2closest to ClusterEnd2 is 13; and it is named as nodeC3.

Subsequently, the node nearest to nodeC3, which is 8 and 10, is identified, to assign the direc-

tion to the route, these calculations are in Table 22.

Table 15. Permutation node 9 in cluster2.

Permutation Cost

9-13-8-11-1-2-10 14.1096

13-9-8-11-1-2-10 13.1588

13-8-9-11-1-2-10 11.3536

13-8-11-9-1-2-10 11.2294

13-8-11-1-9-2-10 13.5657

13-8-11-1-2-9-10 11.8986

13-8-11-1-2-9-10 13.3581

https://doi.org/10.1371/journal.pone.0201868.t015

Table 16. Distance from centroid 1 to each centroid.

Centroid 2 Centroid 3

Centroid 1 5.67611663 3.33640525

https://doi.org/10.1371/journal.pone.0201868.t016
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The closest to the nodeC3 is the node 8, so the sequence of cluster 2 is 13-8-11-9-1-2-10, in

addition the last node is called ClusterEnd3, in this case it corresponds to 10.

13. The previous step is repeated until k clusters. Finally, the last node of cluster k is joined to

ClusterEnd1 to have the final path of the algorithm as shown in (Fig 2).

The final route is obtained: 7-5-6-12-14-3-4-13-8-11-9-1-2-10-7 at a cost of 37.6361. In the

next section the results obtained in various instances reported in TSPLIB [50], are compared

in both methods Genetic Algorithms and the proposed method described in this section.

5 Results

As already mentioned, the objective of this article is to demonstrate that CTSPMRSILS, is more

efficient than GA when clusters are used in TSP. For comparing them, a GA was programmed

with the same parameters of [11], a) Selection Method: Tournament, b) Crossover Rate = 0.9,

c) Mutation rate = 0.8, d) Number of generations = 5n and e) Number of individuals = 3n and

n is the number of nodes. The 10 instances suggested by the same author were compared in

cost and computational time, the last numbers in the name of the instance represent the num-

ber of nodes, for example, rat783 has 783 cities, the distance between the nodes were taken of

TSPLIB [50]. Additionally, 30, 50 and 100 runs were used in both methods. The results are

shown in Table 23 for the cost and in Table 24 for the time, in both cases, CTSPMRSILS
obtains better results. It is important to mention that for the case pcb442 it was not possible to

run the GA with 100 runs and for rat783 it was not feasible 30, 50 or 100 runs. Due to the com-

plexity of the calculations a program was developed in the specialized software MatlabR2015a,

and all the examples were solved in a computer with Core Intel Xeon Processor 3.2 GHz—

Quad—Memory 8 GB.

In addition, 95% confidence intervals and means were carried out to guarantee the certainty

of the result, in both indicators minimum cost in Table 25 and computational time in

Table 26, t-student was used for the mean test, in every case, a test for variances was did before,

due to the amount of data the tests of variances and means are based on a normal distribution.

CTSPMRSILS, represents μ1 and the GA represents μ2.In both cases, there is statistical evidence

to affirm that the μ1 is less than μ2, which means that the minimum cost and time are obtained

with CTSPMRSILS.

Table 17. Distance from Cc to each node.

Node X Y Distance to Centrode 1

14 20.09 94.55 2.94

3 20.09 92.54 4.52

4 22.39 93.37 3.11

https://doi.org/10.1371/journal.pone.0201868.t017

Table 18. Distance from centroid 2 to cluster 1 nodes.

Node X Y Distance to centroid 2

7 20.47 97.02 3.56

12 21.52 95.59 2.21

6 22 96.05 2.81

5 25.23 97.24 5.77

https://doi.org/10.1371/journal.pone.0201868.t018
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Table 19. Distance node 14 to close nodes (3,4).

Node Distance to node 14

3 2.01

4 2.59

https://doi.org/10.1371/journal.pone.0201868.t019

Table 20. Distance node 12 to close nodes (6,7).

Node Distance to node 12

6 0.6648

7 1.7741

https://doi.org/10.1371/journal.pone.0201868.t020

Fig 1. Union of clusters through nearby nodes for MRSILS.

https://doi.org/10.1371/journal.pone.0201868.g001

Table 21. Distance ClusterEnd2 to cluster 2 nodes.

Node Distance to node 14

13 4.80

1 6.52

9 7.29

11 7.10

8 5.96

2 6.02

10 9.60

https://doi.org/10.1371/journal.pone.0201868.t021
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Also, the best results of the CTSPMRSILSwere compared with the best-known result

reported in the TSLIB [50], the same was done with the results of Piehtrankul [11], see

Table 27; in [11] clusters with the k-means method and Genetic Algorithms are used. The

comparison method was the percentage relative error, being 10.99% in CTSPMRSILS against

22.28% obtained with [11]. Which means that the proposed method is better than GA in

clusters.

6 Discussion

This article seeks to improve the efficiency of algorithms to solve problems with a larger num-

ber of nodes, to achive this goalclustering is used. In this research, computational experiments

on 10 different instances of TSPLIB [50] are solved with the intention for comparing two

methods: CTSPMRSILS and GA when are used in clusters. In this research, computational

experiments on 10 different instances of TSPLIB [50] are solved with the intention for

Fig 2. Union of clusters and final route for MRSILS.

https://doi.org/10.1371/journal.pone.0201868.g002

Table 22. Distance between 8 and 10 to 13 nodes.

Node Distance to node 13

8 2.3643

10 5.4507

https://doi.org/10.1371/journal.pone.0201868.t022
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Table 23. Comparison between CTSPMRSILS and GA, parameter cost, minimum values.

Cost (Distance)

CTSPMRSILS GA CTSPMRSILS GA CTSPMRSILS GA

Instance 30 runs 30 runs 50 runs 50 runs 100 runs 100 runs

ei51 491.04 506.07 442.78� 665.85 442.78 486.66

berlyn52 8226.30 8285.09 7785.53 8285.09 7440.13 8040.86

eil76 613.81 663.04 586.94 665.85 599.16 653.71

pr76 113868.00 138224.12 111083.63 137632.47 117142.17 137632.47

kroE100 24986.22 28857.30 23247.92 29774.02 24582.31 28857.29

kroB200 34537.99 47513.69 34523.88 47513.69 33811.15 47513.69

gil262 2857.89 4079.95 2785.60 4079.95 2785.60 4058.39

lin318 49847.67 70550.33 49707.42 70550.33 49407.42 70550.33

pcb442 61465.07 98082.15 61733.09 98082.15 61456.08

rat783 10463.17 10510.75 10593.16

�The best results are shaded

https://doi.org/10.1371/journal.pone.0201868.t023

Table 24. Comparison between CTSPMRSILS and GA, parameter time, minimum values.

Time (seconds)

CTSPMRSILS GA CTSPMRSILS GA CTSPMRSILS GA

Instance 30d-min 30d-min 50d-min 50d-min 100d-min 100d-min

ei51 2.3944 26.1599 2.4114 21.5184 2.3354 21.790338

berlyn52 0.6235 15.3622 0.6639 17.127 0.5895 16.9816

eil76 6.8367 74.7216 6.9575 75.044 6.6536 77.5025

pr76 1.5168 73.987037 1.5526 60.969714 1.6365 59.8227

kroE100 13.575 143.9848 13.9632 140.8241 13.386 145.0725

kroB200 18.6667 817.2188 75.50791 861.5537 73.4575 852.7318

gil262 163.469459 1554.1547 158.7468881 1542.3231 152.8723163 1583.0809

lin318 256.4025 2741.5503 63.0805 2841.9702 274.5424 2812.898

pcb442 156.691797 5755.6338 166.6814 6265.4428 149.0371

rat783 661.92 712.58 705.09

https://doi.org/10.1371/journal.pone.0201868.t024

Table 25. Confidence intervals and p value, cost.

Cost

30 runs 50 runs 100 runs

Confidence interval p-value Confidence interval p-value Confidence interval p-value

ei51 (-50.60, -17.22) 0.0000 (-59.48, -30.54) 0.0000 (-43.52, -25.18) 0.0000

berlyn52 (-1336, -664)� 0.0000 (-1212, -703) 0.0000 (-1117.1, -747.0) 0.0000

eil76 (-80.24, -54.93) 0.0000 (-92.11, -66.55) 0.0000 (-79.31, -63.21) 0.0000

pr76 (-28595, -20033) 0.0000 (-26384, -20620) 0.0000 (-24328, -20151) 0.0000

kroE100 (-6767, -5044) 0.0000 (-6305, -4984) 0.0000 (-6481, -5509) 0.0000

kroB200 (-14854, -13247) 0.0000 (-14715, -13491) 0.0000 (-14905, -13694) 0.0000

gil262 (-1400.9, -1279.8) 0.0000 (-1413.6, 1308.1) 0.0000 (-1401.1, -1330.5) 0.0000

lin318 (-26517, -23757) 0.0000 (-26937, -24712) 0.0000 (-26052, -24519) 0.0000

pcb442 (-38309, -36287) 0.0000 (-38177, -36699) 0.0000

�The non-shaded results are those where equal variances are assumed to perform the means test, the shaded are with unequal variances

https://doi.org/10.1371/journal.pone.0201868.t025
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comparing two methods: CTSPMRSILS and GA when are used in clusters. For made that com-

parison, a GA was programmed and evaluate in cost and time with CTSPMRSILS. Also, some

instances found in the literature with clusters and GA [11] are compared.

As can be seen in the previous section, the CTSPMRSILS improves the results of the GA

when clusters are applied to the TSP. This can be seen in the confidence intervals of both cost

and time, since they make inference of the difference that will exist with some confidence

between the difference in the results of the compared algorithms, favoring the proposed

method. Additionally, when comparing the results obtained by Piethrankul [11] and the pro-

posed method with the best-known found, better results were obtained with the CTSPMRSILS

in all instances. Even in the case of berlyn52 the best-know of TSLIB [50] was improved. More-

over, it can be seen in Table 24, that the best results in 9 of the 10 instances were obtained at 50

runs, so it is suggested in a future work to analyze if the number of runs could be a halt

criterion.

7 Conclusions

There are a lot of methods to solve the TSP, exact algorithms like branch and cut that are diffi-

cult to programming and implement. In the other hand, there are a lot of metaheuristics to

Table 26. Confidence intervals and p-value, time.

30 runs 50 runs 100 runs

Confidence interval p-value Confidence Interval p-value Confidence interval p-value

ei51 (-25.887, -25.227) 0.00 (-24.450, 23.838) 0.00 (-24.9907, -24.6556) 0.00

berlyn52 (-26.340, -23.925)� 0.00 (-27.923, -26.453) 0.00 (-27.449, -26.711) 0.00

eil76 (-70.425, -69.402) 0.00 (-70.448, -69.457) 0.00 (-77.870, -76.932) 0.00

pr76 (-72.9670, -72.6858) 0.00 (-70.992, -70.031) 0.00 (-70.202, -69.069) 0.00

kroE100 (-133.414, -131.414) 0.00 (-128.697, -127.451) 0.00 (-133.125, -132.072) 0.00

kroB200 (-818.23, -810.95) 0.00 (-795.74, -785.87) 0.00 (-782.791, -779.615) 0.00

gil262 (-1397.38, -1390.80) 0.00 (-1389.92, -1384.37) 0.000 (-1432.69, -1427.50) 0.00

lin318 (-2537.5, -2484.2) 0.00 (-2833.48, -2809.21) 0.00 (-2586.94, -2564.63) 0.00

pcb442 (-5974.1, -5920.2) 0.00 (-6303.5, -6218.7) 0.00

�The non-shaded results are those where equal variances are assumed to perform the means test, the shaded are with unequal variances

https://doi.org/10.1371/journal.pone.0201868.t026

Table 27. Relative error, piethtraankul [11] and CTSPMRSILS.

Instance k-means- Piethrankul [11] CTSPMRSILS Best known in TSLIB[50] Relative error� Piethrankul [11] Relative error� CTSPMRSILS

ei51 484 442.7835 426 13.62% 3.94%

berlyn52 8416 7440.1273 7542 11.59% -1.35%

eil76 624 586.938 538 15.99% 9.10%

pr76 125243 111083.63 108159 15.80% 2.70%

kroE100 25918 23247.92 22068 17.45% 5.35%

kroB200 34879 33811.15 29437 18.49% 14.86%

gil262 2801 2785.6 2378 17.79% 17.14%

lin318 51746 49707.4202 42029 23.12% 18.27%

pcb442 63851 61465.0688 50778 25.75% 21.05%

rat783 14370 10463.1679 8806 63.18% 18.82%

Average 22.28% 10.99%

�The relative error is with respect to the best-know in TSLIB[50]

https://doi.org/10.1371/journal.pone.0201868.t027
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deal with the complexity of the problem but any of them do not ensures finding the optimum

in polynomial time. For this reason, we presented in our proposal a new algorithm.

Our proposal is a combination of NEH and a modification of the metaheuristic Multi

Restart Iterated Local Search MRSILS that are used to solve the TSP with clusters, in the litera-

ture there is no one who has used this algorithm to solve the TSP when it is divided into clus-

ters. Phietrankul made a comparison between different algorithms, and GA with cluster was

the algorithm that would find the best results (minimum cost). The aim of this article is to

demonstrate that the proposed algorithm CTSPMRILS is more efficient than Genetic Algo-

rithms when clusters are used.

We compare CTSPMRSILS with GA with the same parameters of [11] and we get better

results with the proposed method. Also, we did the comparison with the results published by

Piehthrankul and we obtained better results in all the instances tested. We conclude that

method proposed in this article is a viable candidate to solve problems as required by

manufacturing companies and obtain better results in cost and time compare with GA.

In addition, the following recommendations are proposed for future research:

1. The clustering is perfectible so that different methods could be for optimizing the allocation

of the nodes to the different clusters.

2. It is feasible to consider the combination of the MRSILS with some Metaheuristic different

from the NEH in the search of better results.

3. It could also be applied as a halt criterion for predetermined runs in the MRSILS.

4. One more recommendation may focus on proposing a different method for joining clus-

ters, after metaheuristics give a result.
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