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Modern myoelectric prostheses can perform multiple functions (e.g., several grasp types

and wrist rotation) but their intuitive control by the user is still an open challenge. It has

been recently demonstrated that semi-autonomous control can allow the subjects to

operate complex prostheses effectively; however, this approach often requires placing

sensors on the user. The present study proposes a system for semi-autonomous control

of a myoelectric prosthesis that requires a single depth sensor placed on the dorsal side

of the hand. The system automatically pre-shapes the hand (grasp type, size, and wrist

rotation) and allows the user to grasp objects of different shapes, sizes and orientations,

placed individually or within cluttered scenes. The system “reacts” to the side from which

the object is approached, and enables the user to target not only the whole object

but also an object part. Another unique aspect of the system is that it relies on online

interaction between the user and the prosthesis; the system reacts continuously on the

targets that are in its focus, while the user interprets the movement of the prosthesis to

adjust aiming. Experimental assessment was conducted in ten able-bodied participants

to evaluate the feasibility and the impact of training on prosthesis-user interaction. The

subjects used the system to grasp a set of objects individually (Phase I) and in cluttered

scenarios (Phase II), while the time to accomplish the task (TAT) was used as the

performance metric. In both phases, the TAT improved significantly across blocks. Some

targets (objects and/or their parts) were more challenging, requiring thus significantly

more time to handle, but all objects and scenes were successfully accomplished by all

subjects. The assessment therefore demonstrated that the system is indeed robust and

effective, and that the subjects could successfully learn how to aim with the system after

a brief training. This is an important step toward the development of a self-contained

semi-autonomous system convenient for clinical applications.

Keywords: myoelectric hand prosthesis, semi-autonomous control, grasping, computer vision, point cloud

processing, object segmentation

1. INTRODUCTION

The control of robotic hand prostheses at a human-like level of dexterity remains unsolved
despite the recent advancements in human-machine interfacing (HMI) (Farina et al., 2014,
2021; Geethanjali, 2016; Yang et al., 2019). To achieve such capabilities, both robotic hardware
and control methods need to be mature enough. Whereas, in terms of hardware, robotic hand
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prostheses can already match fairly well the versatility (e.g.,
Laffranchi et al., 2020) and even the number of Degrees-of-
Freedom (DoF) of a human hand, the HMI methods still struggle
to offer reliable control solutions for dexterous systems (Asghari
Oskoei and Hu, 2007; Fougner et al., 2012).

The conventional approaches to prosthesis control are based
on intent detection from surface electromyography (sEMG).
The direct control used in most commercial hand prostheses
is characterized by a direct mapping between a specific sEMG
channel and a pre-defined prosthesis DoF. To access different
DoF, the user needs to generate switching commands, which
makes this approach slow, difficult, and non-intuitive, especially
in the case of more advanced prostheses with many functions.
Classification-based control relies on pattern recognition (Atzori
et al., 2016; Geng et al., 2016) to recognize a predefined set of
gestures and, similarly to direct control, operates the prosthesis
sequentially but eliminates the need for explicit switching.
Regression-based approaches seem to be the most promising
as they enable simultaneous control of multiple DoFs, allowing
the prosthesis to move naturally (Hahne et al., 2018). However,
the reliable control is limited to two-DoFs (Hahne et al., 2014).
Both regression and classification rely on training data, which
has to be collected a priori, and require subsequent recalibrations
(Ortiz-Catalan et al., 2014; Parajuli et al., 2019). Furthermore,
the performance of these control strategies is affected by the
factors that change muscle activation patterns (i.e., controller
inputs) such as sweat, arm position, electrode shift, and force
levels (Farina et al., 2014; Parajuli et al., 2019). Lastly, in these
methods, the cognitive burden is on the user’s side as he/she is
responsible for explicit control of all functions. Together, these
factors might have a negative impact on the acceptance rates of
these devices (Østlie et al., 2012), which have been low for nearly
four decades despite the advancements in research (Biddiss and
Chau, 2007; Salminger et al., 2020).

One approach to address these challenges is to use
multi-modal control strategies that offer potential for semi-
autonomous prosthesis control (Jiang et al., 2012). The main
idea is to equip a prosthesis with additional sensors that provide
information about the environment, thereby allowing the system
to perform some tasks automatically, under the supervision of
the user. This reduces the cognitive burden of control and allows
operating complex systems with simple command interfaces.

For instance, imaging sensors that can retrieve RGB data
(Došen et al., 2010; Ghazaei et al., 2017; Gardner et al., 2020;
Zhong et al., 2020), depth data (Markovic et al., 2014, 2015;
Ghazaei et al., 2019; Mouchoux et al., 2021), and a combination
of both (Maymo et al., 2018; Shi et al., 2020) can be used
for prosthesis control. These exteroceptive sensors enable the
prosthesis controller to estimate the shape, dimension, and
orientation of target objects and use this information to adjust
prosthesis configuration automatically.

Došen et al. (2010) employed an RGB camera and a laser depth
sensor placed on a prosthesis to estimate the size and shape of a
target object and select prosthesis grasp type and size appropriate
for grasping the object. Markovic et al. (2014) exploited
augmented reality (AR) glasses with stereovision to model target
objects by fitting geometric primitives and to provide visual

feedback to the user. In the next study, Markovic et al. (2015)
replaced stereovision with a depth sensor and included an
inertial measurement unit to additionally estimate and adjust
the prosthesis wrist orientation. In a recent work, Mouchoux
et al. (2021) advanced the system further by enhancing depth
data processing and using sensor fusion to enable the system
to function in cluttered environments and without an explicit
triggering of automatic operation.

Ghazaei et al. (2017) introduced the use of deep learning,
namely convolutional neural networks, to classify images taken
from an RGB camera and separate objects into categories
corresponding to specific grasp types. The same authors (Ghazaei
et al., 2019) later proposed to extend this classification approach
using depth data, so that similar object shapes could be grouped
in different grasp types based on the similarity of point cloud
features. Zhong et al. (2020) used Bayesian neural networks to
recognize target objects from RGB images, even in cluttered
scenes, and quantify the uncertainty of the respective predictions.
Shi et al. (2020) acquired an RGB-D dataset of objects for
grasping tasks and found out that gray-scaled images plus
depth data (both 2D-tensor inputs) improved the classification
accuracy of grasp patterns compared to RGB data (3D-tensor),
when using convolutional neural networks. Gardner et al.
(2020) tested a framework for shared autonomy based on a
multimodal sensor approach, where RGB data were used for
object recognition while inertial data enhanced the intention
prediction based on the subject’s grasping trajectory.

Most of the aforementioned studies have presented systems
where the vision sensors were placed on the user (Markovic
et al., 2014, 2015; Gardner et al., 2020). This choice provides the
best view in terms of scene-analysis but it requires the user to
wear an additional component beyond the prosthesis [e.g., smart
glasses with an embedded camera (Markovic et al., 2014) or an
AR set (Mouchoux et al., 2021)]. A recent example presented
in Mouchoux et al. (2021) describes a solution that provides
extensive functionality (e.g., scene modeling, prosthesis tracking,
and interaction prediction) but it is also rather cumbersome to
wear. So far, only three systems have proposed a hand placement
of the vision sensor (Došen et al., 2010; Ghazaei et al., 2017;
Zhong et al., 2020), with a camera positioned on the dorsal side of
a prosthesis or gripper. The advantage of such placement is that
it resembles a self-contained system. However, it also represents
a challenge as it limits the field-of-view of the camera and the
sensor orientation depends on the prosthesis movements. In
addition, the aforementioned self-contained approaches all relied
on an RGB camera, which provides a limited functionality in
terms of computer vision.

The semi-autonomous prosthesis control used in most of
these studies relies on controllers that need to be explicitly
triggered by the user. In such sequential scheme, a myoelectric
command is performed to activate the controller to detect a
given target object, process the visual information and adjust
the configuration of the prosthesis to enable grasping. The
semi-autonomous control has been shown to outperform direct
control with switching (Markovic et al., 2015) as well as pattern
classification (Mouchoux et al., 2021), especially in cases of
complex systems with many DoFs. In addition, it also decreases

Frontiers in Neurorobotics | www.frontiersin.org 2 March 2022 | Volume 16 | Article 814973

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Castro and Dosen Continuous Semi-autonomous Prosthesis Control

the use of muscles during prosthesis control, thus reducing the
physical effort.

The present manuscript proposes a novel, continuous semi-
autonomous prosthesis control approach that uses a depth sensor
placed on the dorsal side of the prosthetic hand. A closed-loop
controller employs depth perception and enables the prosthesis
to operate continuously by reacting to where the user aims at
each moment. Thus, to grasp a target, the user needs to approach
the object and point the camera. Once the target is detected and
analyzed, the prosthesis automatically adjusts its configuration
(wrist orientation, grasp type, and size) to align and pre-
shape the hand for grasping. Importantly, the computer vision
pipeline runs continuously, even while the prosthesis adjusts its
configuration, and the controller is capable of perceiving not
only whole objects but also their components (e.g., a tip) and
segments/portions (e.g., a side). The automatic controller and the
user operate the prosthesis in parallel, and the user interacts with
the system by adjusting their aim to grasp a desired object part
or an object lying within a cluttered scene. This is therefore, a
closed-loop control scheme in which the user-system interaction
(collaboration) is critical for successful task accomplishment. To
investigate the development of these interactions in different
scenarios as well as the feasibility of such a solution, the proposed
system was tested in ten able-bodied individuals, who used the
system to grasp individual objects or object parts placed on a table
and within cluttered scenes.

2. MATERIALS AND METHODS

2.1. System Components
A two-DoF left hand prosthesis (Michelangelo Hand, Ottobock,
Duderstadt, Germany) was used in this study. The prosthesis
is capable of rotating the wrist and opening/closing its fingers
in two different grasp types—palmar (max. aperture 110 mm)
and lateral (max. aperture 70 mm). The prosthesis was mounted
on a forearm splint in order to enable testing in able-bodied
participants.

The myoelectric interface comprised two double-differential
surface EMG (sEMG) active/dry electrodes (Model 13E200 = 50,
Ottobock, Duderstadt, Germany), which provided rectified and
pre-amplified signals used for intent detection. The two sEMG
channels were placed on the subject’s right forearm (ipsilateral-
side), above the wrist flexor and extensor muscles according
to Cram’s guidelines (Criswell, 2010). The communication
between the prosthesis and the main processing unit (laptop)
was established through a Bluetooth connection, which enabled
reading of prosthesis sensor data (wrist angle, hand aperture,
grasp type, and grasping force) and sEMG channels as well as
sending velocity control commands to the prosthesis at a rate of
100 Hz.

The depth perception was provided by a RealsenseTM active
infrared stereo camera (Model D435i, Intel, US) using a depth
stream with a resolution of 424 × 240 px and refresh rate of
90 fps. The camera was mounted on the dorsal side of the
prosthetic hand and connected to a Microsoft Windows laptop
(Intel R© CoreTM i7-8665U CPU @1.90 GHz, 2.1 GHz, 4 Cores, 8
Logical Processors, with 32 GB RAM) using an extra 2 m active

USB-A 3.0 extension cable (DELTACO Prime, SweDeltaco AB,
Stockholm, Sweden).

2.2. Control Scheme
The novel semi-autonomous control approach is depicted in
Figure 1. The prosthesis is configured to start in autonomous
mode, in which it reacts to the surrounding environment by
continuously adjusting its configuration (wrist orientation, grasp
type, and size), depending on the object or object part at which
the user aims.

Computer vision closed-loop control uses depth sensing to
continuously estimate the dimensions and orientation of a given
target object or object part that is presently in the focus of the
camera. This estimation is performed regardless of (1) the camera
orientation (e.g., the hand being horizontal, tilted, or vertical),
or (2) the side from which the target is approached. Based
on the estimated object properties, the controller automatically
orients and pre-shapes the prosthesis appropriately for grasping
the identified target. Since the prosthesis continuously reacts to
the environment, the user can rely on implicit visual feedback
provided by the prosthesis movements to understand what the
system is doing and adjust his/her aiming if required. Once the
user is satisfied with the momentary prosthesis configuration,
in which the system is aligned with the target and pre-shaped
into a suitable grasp type and size, he/she can take over the
control from the autonomous controller and proceed to grasping
and manipulating the object using volitional direct control.
The user takes over the control by extending the wrist, thus
generating amyoelectric command. From thatmoment, the hand
is controlled volitionally using direct proportional approach with
two EMG electrodes, and the automatic control is reactivated by
opening the hand and releasing the object.

The semi-autonomous control was implemented in C++
(Visual Studio 2019, Microsoft, US). The control loop is depicted
in Figure 2 (top) together with an illustrative example (Figure 2,
bottom). A proportional controller continuously changes the
prosthesis configuration state x (until convergence) based on the
momentary error (1x) with respect to the target configuration
xREF . The controller generates velocity commands (u) and the
gains (K1 and K2) are adjusted heuristically to achieve a trade-
off, namely, a responsive prosthesis that reacts to aimed objects
but which, at the same time, does not move too fast so that the
user can easily perceive and interpret the prosthesis behavior. The
latter aspect is particularly important to close the control loop
through visual feedback as indicated in Figure 1. The prosthesis
state comprises three variables: two continuous (the wrist angle
x1 and the grasp size x2) and one discrete (the grasp type x3). The
wrist angle and grasp size are adjusted in normalized units, where
[0, 1] interval corresponds to the range of motion, while the grasp
type, takes two states, i.e., palmar or lateral grasp. The reference
prosthesis configuration xREF is estimated from the depth data
using computer vision as described in the next section.

In the example shown in Figure 2 (bottom panel), the hand is
initially rotated so that the camera is vertical. The subject aims
to the plastic cap at the top of a cylindrical can. The computer
vision detects the object, rotates the hand using visual servoing
(Figures 2A,B), selects the lateral grasp and adjusts the aperture
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FIGURE 1 | A semi-autonomous control strategy. The user orients the prosthesis to aim at the target. The prosthesis responds continuously to objects identified as

the target, and the subject uses visual assessment and interpretation of the prosthesis motion to adjust the aiming.

size (hand horizontal, lateral grasp, small aperture). If at any
moment during this process, the subject would aim a little below,
the prosthesis would start configuring to grasp the can body
(hand vertical, palmar grasp, medium aperture). The subject
observes the hand motion, and when it assumes appropriate
configuration, he/she takes over the control, closes the hand and
lifts the object (Figures 2C,D).

2.3. Depth Perception and Object Modeling
The processing pipeline for depth data was implemented using
the well-known open-source Point Cloud Library v11.0 (Rusu
and Cousins, 2011). To decrease the amount of irrelevant depth
data and prevent additional computational effort, the depth
acquisition volume was confined to a virtual cropping box
(hereafter referred to as “the scene”) with dimensions 150 × 150
× 250 mm. This volume was adopted by considering the task,
namely, grasping objects in front of the hand. The data were
downsampled using an approximate voxel grid with a voxel size
of 2 × 2 × 2 mm. Given the hardware limitations imposed by
the depth camera (minimum resolving depth distance) and the
prosthesis fingers (violating that volume and appearing within
the scene), the cropping box was positioned at a distance of
115 mm in front of the camera, i.e., along the z-axis of the
hand/camera (Figure 3, left).

As shown in Figure 3 (left), the system considers two reference
frames: one placed on the hand/camera (the moving frame
X’Y’Z’) and another placed at the prosthesis socket (the static
frame XYZ). Since the socket reference frame is static in relation
to the user’s forearm, the system can identify a target object
or object part regardless of the prosthesis or the user’s arm
orientation in the real-world. For example, the system will react
exactly the same whether a target lies on a table, is placed on
a wall or is hanging from the ceiling. This is an additional
flexibility compared to the semi-autonomous systems presented
in the literature (Markovic et al., 2014, 2015; Mouchoux et al.,
2021), which often assume that the objects are placed on a
supporting surface that is detected and then removed. In order
to make the automated wrist motion more natural, the range of
motion of the prosthetic wrist is limited to 70◦ of supination and
90◦ of pronation. Hence, when the prosthesis is fully pronated,
the hand/camera X’Y’Z’ frame aligns with the prosthesis socket
XYZ frame.

The depth data processing pipeline (Figures 3A,B) involves
three main steps: (1) point cloud segmentation, (2) target
selection, and (3) geometric primitive fitting.

The segmentation is performed using the Locally Convex
Connected Patches (LCCP) (Stein et al., 2014) algorithm that
involves the clustering of distinct convex regions within the
point cloud. The regions may correspond to isolated objects or
different parts/portions within the same object (Figure 3A) and
this enables the system to operate in cluttered environments. The
segmentation output is a list of labeled centroids of the point
clouds that fulfill a minimum size threshold.

The target selection step uses the list of labeled centroids and
infers the aimed target by projecting all centroids onto the X’OY’-
plane of the camera and selecting the one that is closest to the
origin, as exemplified in Figure 3A. This grants robustness to the
aiming process as the subject does not need to aim directly at an
object, but to its vicinity.

Finally, the Random Sample Consensus (RANSAC) (Fischler
and Bolles, 1981) algorithm is used to simultaneously (i.e.,
parallel processing with multiple threading) fit each of the three
pre-defined geometric primitive models (a sphere, a cylinder, and
a cuboid) to the selected point cloud and choose the best fitting
model (Figure 3B).

While the RANSAC fitting of the parametric sphere and
cylinder models is trivial, the cuboid primitive is obtained by
fitting of up to two perpendicular plane models. These are
consecutively fitted to the selected sub point cloud until more
than 70% of the points in the point cloud are inliers. Once
the point cloud of the first plane is obtained, the first two
axes of the cuboid primitive are determined by applying the
principal component analysis to the 3-D points to find the
first two principal components. All points on that plane are
then projected along these two axes to obtain the first two
dimensions, width and height, of the cuboid primitive. If a
second perpendicular plane can still be fitted to the remaining
points of the sub-point cloud, the third axis is defined by
the cross-product between the first two principal components.
The third dimension of the cuboid primitive, the depth, is
then found by projecting all points of the second plane’s point
cloud along that third axis. Otherwise, if only plane model
could be fitted, the depth is considered to be 5 mm by default
(“thin” object).
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FIGURE 2 | Semi-autonomous control scheme. A proportional controller (B) continuously adjusts the prosthesis configuration (x) to match the reference (xREF )

provided by computer vision (A). The computer vision module determines the reference configuration by estimating the properties of a target object. When the subject

observes that the prosthesis is pre-shaped conveniently for the grasp, he/she takes over the control and closes the hand around an object (C,D). Annotation: x and

xREF—the current and desired prosthesis state; u—prosthesis commands; x1, x2, and x3—angle, grasp size, and type (0—palmar, 1—lateral).

2.4. Estimation of Grasp Type, Size, and
Wrist Orientation
The computer vision module estimates the desired prosthesis
configuration (xREF) by considering the properties of the
grasping target (object or object part) retrieved from the
best fitting model. To decide the grasp type and size, the
model properties (length l and diameter d, or width w) and
approaching angle α (cylindrical model only) are processed by
a decision tree (Figure 3C), one per model type, similarly to the
approach initially proposed by Došen et al. (2010). The trees are
constructed so that the long and/or thick objects are grasped
using palmar grip, while lateral grip is used for smaller thin

objects. In the case of cylindrical targets, an approaching angle

α measured between the longitudinal axis of the cylinder and

the Z’-axis of the prosthesis frame is used to understand if the

cylinder is being approached frontally or from above, using an
angular threshold of 45◦. The approaching angle α allows the
system to grasp a cap of a jar or a bottle, using a palmar grasp
(as a surrogate of a three-finger pinch) when the cap is larger.

The cuboid model is however treated as a special case. This is

not only to grant robustness to the system but also because this
primitive can present itself with a single face or multiple faces.
Therefore, in the presence of a full cuboid object with multiple
faces, it is necessary to infer to which face the user aims at, as the
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A B D

C

FIGURE 3 | Depth perception pipeline. The scene is segmented in the point clouds belonging to different objects/object parts and the partitioned point cloud with the

closest centroid (A) is selected for shape fitting (B). In the present example, the plastic cap is chosen as the target and the best model to fit the point cloud is the

cylinder. The coordinate system of the camera (X’Y’Z’ frame, moving) and the socket (XYZ frame, static) is shown on the left. (A) Shows the projection of the point

cloud centroids onto the X’OY’ plane of the camera, and the arrows represent the distance of the centroids from the origin of the camera coordinate system. (C) The

decision tree for the selection of grasp type uses object properties such as length l, diameter d (or width w) and approaching angle α (cylinder only), and enables

selecting a palmar (PLM) or a lateral (LAT) grasp. (D) Derivation of the grasping direction vector from the model to calculate the orientation of the object in the static

XYZ frame and the respective target wrist angle. The grasp size can be trivially obtained from the model.

grasping strategy depends on the dimensions (length l and width
w) of the targeted face. For that reason, a ray casting procedure
is implemented if two or three faces of the cuboid primitive can
be seen from the aiming perspective. The approach comprises
the following steps: (1) find the closest face among each pair of
opposing faces of the cuboid and calculate its center; (2) find the
intersection point between the Z-axis of the socket frame and
each of the closest face planes; (3) calculate the distance vector
from each face center to the respective co-planar intersection
point; (4) verify if the intersection point is located outside the
dimensions of the current face in the direction of an adjacent and
perpendicular face; (5) if it is, reject the current face, otherwise
select the face corresponding to the shortest distance vector. Once
the face is selected, the longest dimension is set as length l and
the smallest as the width w. The obtained parameters then allow
selecting the grasp type using a dedicated decision tree.

Other control variables, namely wrist orientation and grasp
size, are computed after the grasp type x3 has been selected. As
illustrated in Figure 3D (purple arrow), the grasping direction
vector is obtained from the local reference frame of the target’s
primitive model. This vector is by default set along the direction
about which the length l of the model is measured. Thus, it
corresponds to the longer axis of a cuboid model or to the
longitudinal axis of a cylinder (as shown in the figure). In the case
of a spherical model, the grasping direction vector assumes the

direction of the X-axis of the prosthesis socket reference frame.
As the palmar and lateral grasps of the Michelangelo hand differ
by the positioning of the prosthesis thumb, the grasping direction
vector is rotated clockwise (Figure 3D, orange arrow) in case
lateral grasp is selected for the given target. The projection of the
grasping direction vector onto the X’OY’-plane of the moving
frame of the hand/camera defines a reference prosthesis wrist
orientation angle x1 as measured from the socket reference frame
(XYZ). Since the zero angle of the hand moving frame matches
the full/maximum pronation (∼90◦), an horizontally oriented
target that requires a larger pronation angle (with respect to
the socket reference frame) will be interpreted as a supination
angle, i.e., the grasping direction vector is automatically
flipped 180◦. This may therefore require a slight socket
inclination, for instance, while picking a long object lying on
a table.

The grasp size x2 is given by diameter d (spherical or
cylindrical model) or width w (cuboid model) to which an offset
is added to introduce a safe zone (aperture somewhat larger than
the object size). A smooth transition between different grasps and
aperture sizes, which can be triggered as the user reorients the
prosthesis and/or cameramoves, is ensured by applying amoving
average filter with a window size of 20 samples, for the control
variables x1 and x2, and majority voting window of 10 samples
for the grasp type x3.
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2.5. Participants
Ten able-bodied participants (6M/4F, 30 ± 5 yrs) were enrolled
in the experimental assessment, which was approved by the
Research Ethics Committee for North Jutland (approval N-
20190036). The participants were informed about the experiment
details, both written and orally, before providing written
informed consent.

2.6. Experimental Procedure
The experiment comprised repetitive grasp and move tasks with
objects of daily living to test the feasibility of the novel approach
to prosthesis control and assess whether the participants can
use the system efficiently. More specifically, the aim was to
evaluate (i) if they could learn how to aim at an indicated
target object or object part by manipulating the prosthesis
and observing its online response (Figure 1), and (ii) if the
system can be successfully used in a difficult scenario such as a
cluttered environment. The experiment consisted of two phases:
(i) an initial training phase (Phase I), in which the participants
practiced how to accurately aim and grasp a sequence of ten
individual objects, and (ii) a cluttered environment phase (Phase
II), in which the participants grasped four objects arranged in
four cluttered scenes. The latter setup was more challenging for
computer vision pipeline, in terms of detecting, segmenting and
analyzing objects, as well as for the subjects, as they needed to aim
to a particular object (or part) within a crowded scene. While in
Phase I the subjects practiced strategies to grasp different types of
objects, in Phase II, they were expected to apply those strategies
in a more challenging context.

Two areas, A and B, separated by a distance of 50 cm were
marked on a table (Figure 4A) as the positions for picking up
and dropping objects, respectively. While standing in front of the
table, the participants were instructed to grasp and move each
object placed on the table by an experimenter in the following
manner: (1) they moved the prosthesis from the resting place and
approached the object placed at position A; (2) adjusted their aim
toward the target in order to grasp it according to the defined
task requirements; (3) when they judged that the prosthesis was
properly configured, they took over the control and closed the
hand; and (4) finally, they transported and dropped the object at
position B. The participants were instructed to grasp and move
the targets as fast as possible and encouraged to try improving
their performance over the trials.

The objects included in this study were selected to test
the system’s robustness and capabilities. Table 1 specifies the
dimensions, the orientation of the object with respect to table
surface, the side from which it is approached, and the expected
grasp type. As can be seen from the table, in Phase I, the task was
to grasp objects with distinct sizes and shapes as well as different
parts within the same object. Phase II introduced some of the
previous objects but in different orientations and in clutters, as
well as new objects that the participant had not seen during Phase
I.

The experimenter stayed in the front of the participant during
the experiment, across the table, and indicated the grasp type
he/she was supposed to use in the current trial. The target object
(or part) and the grasping side were indicated directly on the

object by a sticker. The participants were initially familiarized
with the system for 10–15 min, and the experimenter provided
minimal aiming instructions. The experiment then started with
Phase I. The objects were individually placed on the table at
position “A” following the order listed in Table 1, which was
devised to maximally challenge the system and the participant.
More specifically, each time an object was dropped at position
“B” (end of trial), the prosthesis would remain in the attained
configuration and the following object would always require a
change in the wrist angle, even if the grasp type was the same
between two consecutive objects. The participants performed five
blocks of the ten-objects sequence. After that, the experiment
proceeded to Phase II, in which six new objects were added
to the object pool (objects 11–16, Table 1). The sixteen objects
were then clustered in four scenes of four objects as shown
in Figure 4B. Each scene was placed at position A following a
randomized order per block. The participants performed three
blocks of these four scenes.

2.7. Data Analyses
The outcome measure in the experiment was the “time to
accomplish the task” (TAT) defined as the time interval from
the moment the participant started moving toward the target
until he/she released the object. The TAT was measured by
the experimenter, who started the timer after giving a verbal
command to the subject to begin the task and stopped the timer
when he heard a beep generated by the software to indicate
the loss of contact force. To assess whether the participants
improved across blocks, the median TAT was computed for each
subject across all trials/objects in each block (assessment 1). To
test if the subjects improved the performance when grasping a
particular object across blocks, the median TAT for each object
over all participants was computed in each block (assessment 2).
Finally, to determine whether grasping some objects was more
challenging overall, the median TAT was computed for each
object over all participants and blocks (assessment 3).

A Shapiro-Wilk normality test was used to assess if the
data was normally distributed. After finding that the data were
not normally distributed, a Friedman test was used to evaluate
if there was statistically significant difference in performances
overall, for the multiple conditions in each assessment. If the test
indicated significant difference, post-hoc pairwise comparisons
were performed using either the Wilcoxon signed rank test with
Bonferroni correction (assessments 1 and 2), or the Tukey’s
Honestly Significant Difference test (assessment 3).

Lastly, the differences in performance when handling the
ten objects that were present in both Phase I and II were also
investigated. The median TAT for each object obtained in Phase
I was statistically compared to that achieved in Phase II using the
Wilcoxon signed rank test. This evaluated whether aiming at and
grasping a target object or object part in a cluttered environment
posed an extra level of difficulty. The threshold for statistical
significance was set at p ≤ 0.05 and the results are reported in the
text as M{IQR}, where M is the median and IQR the interquartile
range.

Frontiers in Neurorobotics | www.frontiersin.org 7 March 2022 | Volume 16 | Article 814973

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Castro and Dosen Continuous Semi-autonomous Prosthesis Control

FIGURE 4 | (A) Illustration of the experimental environment comprising a table where two marked areas, separated by a distance of 50 cm, defined the positions for

grasping and dropping objects. (B) All 16 objects organized in four different cluttered scenes (A, B, C, and D). Six new objects were introduced in Phase II and no

training was provided for them. The labels placed on each object were used as cues to indicate from where the object should be approached and they also provided

the number regarding the grasping order.

TABLE 1 | List of objects used in the experiment.

ID Object tag Dim. [mm] P.I angle P.I approach P.II angle P.II approach P.II scene Model Grasp

01 box_rs_front 52 ×91 × 143 Vertical Side Vertical Side D3 Cuboid Palmar

02 cap_wd_spray 34 × 27 On top of 03 Front On top of 03 Front A2 Cylinder Lateral

03 can_wd_spray 53 × 132 Vertical Front Vertical Front A3 Cylinder Palmar

04 ball_deo_rollon 33 On table Top On table Top B2 Sphere Lateral

05 tube_paper 31 × 300 Vertical Front Horizontal Top D4 Cylinder Palmar

06 can_potato_chips 75 × 230 Horizontal Top Vertical Front C3 Cylinder Palmar

07 box_slim_white 34 × 67 × 175 Vertical Side Tilted Front C1 Cuboid Palmar

08 box_rs_top 52 × 91 × 143 Horizontal Top Horizontal Top B4 Cuboid Palmar

09 bottle_pepsi_transp 63 × 55* Vertical Front Vertical Front D1 Cylinder Palmar

10 ball_yarn 85 On table Top On table Top D2 Sphere Palmar

11 mini_milk_carton 55 × 55 × 95 N/A N/A Vertical Side A1 Cuboid Palmar

12 ball_blue 65 N/A N/A On table Top A4 Sphere Palmar

13 box_brufen_pills 25 × 65 × 101 N/A N/A Horizontal Front B1 Cuboid Lateral

14 large_wallet 26 × 100 × 200 N/A N/A Tilted Front B3 Cylinder Palmar

15 box_matches 17 × 36 × 58 N/A N/A Vertical Front C2 Cuboid Lateral

16 cap_deo_transp 38* N/A N/A On table Top C4 Sphere Lateral

The subset 1–10 was used in Phase I (P.I), while all objects were used in Phase II (P.II). Annotation: bold, target grasping dimension; *, object containing a transparent part; N/A, not

applicable.

3. RESULTS

3.1. System Performance and Versatility
The computer vision processing pipeline allowed the system
to function at frame rates between 5 and 16 Hz. The frame
rate was variable as the processing time depended on several
factors (e.g., object size, shape, and clutter, as well as aiming)
and could therefore vary across different objects and trials. For
instance, large cuboids were the most computationally heavy
(larger point clouds), resulting in processing times up to 200 ms
(5 Hz), whereas smaller cylinder and spherical objects (smaller

point clouds) could be processed, on average, in 60 ms (16 Hz).
Moreover, all objects but one were almost always successfully
fitted to their corresponding shape model (overall accuracy
of ∼97%). The smallest cylinder object, 02 (spray cap), was
mistaken for a spherical object 20% of the times due to the
reduced amount of points captured, meaning that 20% of the
times the sphere model presented a better fitting percentage
than the cylinder model. Yet, the implemented majority voting
approach enabled the system to function as expected in terms of
grasp size. Finally, it should be noted that the size of the smallest
spherical and cylindrical objects (02—spray cap, 04—small ball,

Frontiers in Neurorobotics | www.frontiersin.org 8 March 2022 | Volume 16 | Article 814973

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Castro and Dosen Continuous Semi-autonomous Prosthesis Control

and 16—spherical cap) tended to be overestimated by ∼1 cm on
average, which resulted in ∼20% of grasp type misclassifications
especially for object 16 due to one of the dimension rules (d ≤ 5)
imposed by the grasp selection decision tree.

As soon as the automatic controller generated a new decision
(desired hand configuration), it sent the commands to the hand
for the grasp type, size, and wrist rotation. The movement
velocity of the robotic hand was, however, limited to at most a
half of its maximum speed (i.e., 12.5 rpm for wrist rotation and
162.5 mm/s for gripping speed) to avoid an uncanny feeling to
the user and facilitate the interpretation of the system behavior.
The pilot tests demonstrated that such speeds also successfully
accommodated the computer vision pipeline processing rates.

Figures 5–7 depict illustrative examples of the system
operation recorded during the experiment. The snapshots in
Figure 5 are captured during Phase I and they report captured
point clouds and resulting system decisions, namely, estimated
grasp type, size, and wrist rotation, when grasping three different
objects from Table 1 (10, 02, and 01). Figures 5A,B show
that the system can detect a target object (ball, 10) and a
part of the object (plastic cap, 02) while it is not necessary
for the subject to aim directly at the target but only in its
vicinity. Figures 5C,D demonstrate that the subject can use the
system to grasp different sides of a cuboid object (box, 01)
by adjusting the aiming, where depending on the dimensions
of the two sides this can lead to different grasp sizes and/or
types. A complete run over a block of ten objects in Phase
I was recorded and provided as Supplementary Video 1. In
Figure 6, a cluttered scene from Phase II is shown, in which
the subject successfully marked a single small object, tightly
surrounded by much larger objects. This is further illustrated
in Supplementary Video 2, which shows the use of the system
to grasp objects arranged in the cluttered scenes of Phase II.
The adjustment of wrist orientation is depicted in Figure 7. In
Figure 7A, the participant aimed at the body of the spray can
(object 03), while in Figure 7B, the target was the plastic cap
(object 02). The first snapshots show that the two targets were
approached with the hand (camera) in different initial positions,
hence different orientation of the camera with respect to the
object. Snapshots 2–4 show the rotation of the prosthesis from
initial into final position, namely, hand horizontal. Note that the
computer vision loop operated continuously, which means that
the frames were continuously captured and reanalyzed while the
hand was moving. If the participant, at any moment, changed
the target, the hand would react momentarily. This is shown
in Supplementary Video 3, where a subject uses the system to
consecutively target at several objects placed on a table or stacked
vertically. Each time the hand is pointed toward a different object,
the prosthesis automatically readjusts its configuration. Finally,
Supplementary Video 4 shows that the system can grasp objects
that are not necessarily placed on a table surface. In the video, a
subject uses the prosthesis to grasp objects that are handed to him
by another person.

3.2. Phase I: Training
A general trend of decreasing TAT was observed across blocks in
Phase I as shown in Figure 8A. The TAT in the third (7.9{1.0}s),

fourth (7.3{1.6}s), and fifth (6.8{1.8}s) block was significantly
lower (p ≤ 0.05) compared to that in the first block (9.9{1.9}s).
The reduction in the median TAT between the first and the fifth
block was∼32%.

The median TAT per individual object across blocks is shown
in Figure 8B. There was a decreasing trend in TAT across
blocks for all objects, but the improvement in performance was
statistically significant (p ≤ 0.05) for objects 01 (larger box), 03
(spray can), 04 (small ball), 05 (paper tube), and 06 (potato chips
can). The median TAT for objects 01 (larger box, 11.3{4.3}s),
02 (spray cap, 13.5{5.26}s), and 06 (potato chips can, 12.5{1.4}s)
was initially above 10 s, i.e., in the first block, indicating that
those objects were more difficult to grasp. Nevertheless, object
01 was also characterized with the greatest decrease (11.4{4.3}–
6.5{4.6}s) in median TAT over blocks. The object with the least
improvement in performance from the first (8.6{2.6}s) to the fifth
block (7.4{1.4}s) was 04 (small ball), followed by objects 05 (tube
paper) and 07 (slim box), in which TAT decreased from 7.4{1.1}
to 5.8{1.1}s and from 8.1{2.8} to 6.4{2.5}s, respectively.

Figure 8C depicts the comparison of the overall median TAT
for each object in Phase I. The participants were significantly
slower when grasping objects 02 (spray cap, p ≤ 0.001) and 06
(potato chips can, p ≤ 0.05 or p ≤ 0.01) compared to most of the
remaining objects. These two objects were thereforemost difficult
for the participants to handle.

3.3. Phase II: Cluttered Scenes
The general trend of decreasing TAT was also present across the
three blocks of Phase II, as reported in Figure 9A. The statistically
significant decrease (p ≤ 0.05) in median TAT was observed
between the first (9.2{1.8} s) and the last (7.8{1.9} s) block.

At the object level (Figure 9B), the only statistically significant
improvement in performance across blocks (p ≤ 0.05) was
registered for object 12 (blue ball), with a median TAT decrease
from the first (6.6{1.5} s) to the second (5.5{1.2} s) block.

The differences in median TAT between the objects in
Phase II are reported in Figure 9C. Three objects (13/B1—
box of pills, 04/B2—small ball, and 15/C2—match box) were
markedly different than the others, as their TAT was statistically
significantly higher compared to most other objects. These three
objects were therefore the most challenging to grasp while in
clutters, especially object 15/C2 (match box). Two of these
objects, namely 13/B1 and the 15/C2, were not presented and
therefore not trained by the participants during Phase I.

3.4. Between Phases Comparison
As shown in Figure 10, four of the objects handled in both
Phase I and Phase II showed statistically significant differences
in TAT performance: 04 (small ball), 05 (paper tube), 06 (potato
chips can), and 07 (slim box). With the exception of object 06
(potato chips can) that showed a significant decrease in TAT, the
other three exhibited a significant increase in TAT, showing that
cluttered environments in some cases worsened the performance,
despite the previous training.
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A B

C D

FIGURE 5 | Snapshots captured while grasping example objects in Phase I. The system correctly detected spherical, cylindrical and cube shaped objects or object

parts. The point cloud centroids are rendered as small white spheres in the figures. The point cloud with the closest centroid to the Z’-axis of the hand/camera frame

was selected for fitting (purple shape primitives). The user selected the ball (A) and plastic cap (B) by aiming at the vicinity of these objects. In (C,D), the user marked

different faces of the same cuboid object (highlighted shades). Each panel reports the selected grasp type, size, and wrist orientation. The coordinate frame

represents the X’OY’ plane of the camera.

4. DISCUSSION

The present work investigated the feasibility of a novel
depth-embedded, yet robust and reliable, approach for semi-
autonomous prosthesis control using computer vision. The tests
conducted in 10 participants aimed to assess (1) the capabilities
of the system enabled by the developed depth processing
and decision-making pipeline, and (2) the interaction of the
subject with the semi-autonomous system that constantly reacts
to his/her movements and the environment, i.e., the user-
prosthesis integration.

The experiments demonstrated that the novel context-aware
system was indeed effective. Despite the camera was placed on
the hand, thus limiting the field-of-view, the system guided by
the subject (aiming) successfully automated the prosthesis pre-
shaping phase while grasping a diverse set of targets (Table 1).
The set included objects and object parts of various shapes and
sizes, individually, and in clutters. The participants successfully
handled all target objects, and the system reacted appropriately
when the objects were approached from different sides (top or
front) and orientations. They could use the system to grasp

specific object parts, when the target was isolated on the table or
placed within a cluttered scene.

The experimental results demonstrated a successful user-
prosthesis interaction. The participants learned how to aim with
the camera from distinct perspectives/positions, regardless of the
prosthesis wrist rotation (prosthetic hand horizontal or vertical)
as shown in Figure 7. They also learned how to “read” the
prosthesis behavior while it reacted to how they aimed at a given
target object or object part.

The participants improved consistently during the grasp and
move tasks in Phase I (section 3.2), and they became faster the
more they practiced. As they learned the system behavior, most
of them started anticipating prosthesis movements during aiming
and they took over control earlier in the task. They did not wait
for the prosthesis to converge to a perfect alignment for grasping
a particular target. Once they perceived that the prosthesis was in
an approximately suitable position for grasping, they took control
and grasped the object.

Nevertheless, some target objects or object parts were initially
more difficult to handle than others (Figure 8B). For instance,
object 01 (large box) was the largest in the set, and it was more
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FIGURE 6 | Grasping an object from a cluttered scene in Phase II. The user successfully marked a small ball for grasping. The annotations are the same as in

Figure 5.

A

B

FIGURE 7 | A sequence of snapshots taken while the system approached two different cylindrical parts of the same object: the body (A) and the cap (B) of a spray

can. The annotations are the same as in Figure 5. Note that the can body was approached with a fully pronated prosthetic hand, while the cap was approached with

the hand in the neutral position.

challenging to grasp stably after aiming because of the finger
configuration of Michelangelo hand. The presence of an extra
wrist flexion/extension DoF may improve this. Object 04 (small

ball) was the smallest object and thus difficult to properly aim
at, often leading to a point cloud of lower quality, which was
sometimes mixed up with the larger point cloud of the table
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FIGURE 8 | The results obtained in Phase I. The boxplots show: (A) median time to accomplish the task (TAT) for each subject in each block, (B) median TAT of all

subjects for each object in each block, and (C) median TAT per object across all blocks. The stars indicate statistical significance (*p < 0.5; **p < 0.01; ***p < 0.001).
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FIGURE 9 | The results obtained in Phase II. The boxplots show: (A) median time to accomplish the task (TAT) for each subject in each block, (B) median TAT of all

subjects for each object in each block, and (C) median TAT per object across all blocks. The boxplots (objects) in each scene are ordered as in Table 1. The stars

indicate statistical significance (*p < 0.5; **p < 0.01; ***p < 0.001).
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FIGURE 10 | The performance for each of the 10 objects in Phase I vs. Phase II. The boxplots show median TAT per object across all blocks in Phase I (left-hand side)

and Phase II (right-hand side). The stars indicate statistical significance (*p < 0.5; **p < 0.01).

surface in the background. Object 06 (potato chips can) is a long
cylindrical object lying on the table for which the participants had
to perform a slight elbow compensation, as mentioned earlier
in section 2.4. Still, the participants significantly improved in
all these cases as they learned how to handle them. However,
the same did not occur when grasping object 02 (spray cap).
This case posed a particular challenge during the training given
that it included a small object (similar to object 04), which was
additionally a part of another object (03, spray can). Hence,
successful grasping required precise aiming, as a small deviation
would cause the system to recognize the body of the spray can
as the target. As explained in section 2.3, the system is robust
enough to select a target even if the camera was not directly aimed
at it. This simplified the aiming process for the participants;
however, in the case of object 02, such assistance was still not
enough to lead to a significantly better performance with training.

The participants improved performance over blocks in Phase
II (Figure 9A). They acquired strategies on how to use the system
to grasp isolated objects in Phase I, and they employed those
strategies successfully in Phase II to grasp the same objects when
they were placed within a cluttered scene. Nevertheless, aiming in
Phase II was more challenging as the objects in a cluttered scene
were close to each other, and a small deviation in aiming might
cause the system to pick a centroid that belongs to another object
close to the desired target. This was especially expressed for the
smallest objects (Figure 9C), such as 13/B1 (box of pills), 04/B2
(small ball) 15/C2, matches box).

When comparing the same objects across the two phases
(Figure 10), the largest difference was obtained for object 04

(small ball) and object 06 (potato chips can). For object 04, the
performance substantially decreased when it was placed in the
cluttered scene due to its small size. Contrarily, object 06 was
handled faster when in a clutter; this “paradoxical” result can
be explained by the fact that in Phase II, the object was placed
vertically—a long vertical object was an easy target for aiming.

The first system in the literature that used a camera placed on
the hand relied on a laser to mark the target object (Došen et al.,
2010). This was an effective approach, but might be challenging
to translate into clinical application (e.g., user acceptance). In
another study (Ghazaei et al., 2017), the subjects were first trained
how to aim using visual feedback on the computer screen and
later on, they were able to use the system when the feedback
was removed. Compared to these systems, the solution presented
here used depth sensing instead of an RGB camera, allowing
thereby more flexibility in reacting to the environment (e.g.,
identifying object parts, composite objects). In addition, in both
RGB-based systems as well as in previous solutions that used
depth sensing (Markovic et al., 2014, 2015; Mouchoux et al.,
2021), the user needed to activate the automatic controller
explicitly (myoelectric command), which then processed the
scene and generated a “one-shot” response. In this novel system,
however, the automatic control is active from start, adjusting
the prosthesis configuration continuously using visual servoing
based on user aiming.

The present study showed that prosthesis motion in response
to subject movements provided meaningful feedback about the
aiming process. The participants judged whether the prosthesis
achieved an appropriate configuration for grasping by estimating
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grasp type and wrist rotation. If this was appropriate, they would
proceed and grasp, and if not, they would try to reposition
the prosthesis to “trigger” the right target. The participants
reported they were not always able to interpret the prosthesis
movement correctly (e.g., distinguish themomentary grasp type),
especially in the initial trials. A simple approach to overcome this
drawback, could be to provide a cue about the grasping type and
wrist movement through electrotactile or vibrotactile feedback
(Stephens-Fripp et al., 2018; Sensinger and Došen, 2020). This
could also enable the subject to decrease the visual attention to
the prosthesis, which is presently required to monitor the aiming.

The camera is placed on the dorsal aspect of the prosthetic
hand with an offset with respect to the axis of the wrist joint.
Therefore, when the hand rotates, the participants needed to
slightly adjust their aim to maintain the selected target object
in the focus of the camera. A self-contained system designed
from scratch would allow to overcome this problem since the
components could be positioned in the most convenient manner.
For instance, the camera could be integrated into the hand so that
its optical axis is aligned to the axis of the wrist joint. Another
interesting point that could be considered is the integration of
more cameras (depth and/or RGB) to maximize the assessment
of the scene as well as simplify the aiming. Currently, the system
only handles depth data, which is approximated by one of three
primitive shapes (sphere, cylinder, or cuboid). Nevertheless, as
the system can isolate whole objects but also object parts, this
means that it can still handle a diverse set of objects with simple
but also composite shapes (i.e., theoretically, any combination of
the three primitives). Even when the object does not resemble one
of these three shapes, the system is versatile enough to pick the
best approximation among the three models.

Overall, this study demonstrated that a continuous semi-
autonomous control can be implemented using a sensor
placement on the prosthetic hand. Hence, the user does not
need to wear an extra piece of equipment, as for instance in
similar systems presented recently (Markovic et al., 2014, 2015;
Mouchoux et al., 2021). This solution has similar capabilities to
those advanced implementations, such as the ability to handle
cluttered scenes, and such functionality is achieved using a
compact setup. The pervasive analysis of the environment from
the user perspective, as proposed in those studies, eliminates
the need for aiming. In the present study, the participant
has to engage during aiming, but this also gives him/her a
unique possibility to “select” not only the whole object (as
in all other cases in literature) but also an object part (e.g.,
a cap on the top). To grasp an object, the subjects need to
orient the prosthesis properly, but the semi-autonomous system
commands the prosthesis, which decreases the cognitive burden
of controlling multiple DoF as well as the muscle effort, i.e., the
amount of muscle activation. Importantly, the conducted tests
demonstrated that the subjects successfully learned to aim with
the system after a brief training. Some objects were more or less
challenging, hence requiring more or less time to handle, but
none of the objects was too difficult for the subjects to prevent
the eventual successful completion of the task.

The proposed approach has not been, however, compared
to the conventional interfaces (e.g., direct control and pattern

classification) since the advantages of semi-autonomous control
have been demonstrated before (Markovic et al., 2015;Mouchoux
et al., 2021). Thus, this system should not be regarded as an
ultimate solution but rather as an alternative to conventional
control. If such control framework is implemented in a prosthesis
with an embedded “on-hand” sensor, a self-contained system can
potentially be built. To achieve this, the proposed framework
would need to be packaged and deployed onto an embedded
platform, such as the Nvidia’s Jetson, as used in a recent
work (Ragusa et al., 2021). While such boards are still more
powerful than standard clinically used prosthesis controllers,
this is likely to change in the near future as new designs with
embedded cameras are being presented and tested (Choudhry
and Khan, 2018; Weiner et al., 2018). The present system
was not tested on amputees, however, from the functional
viewpoint, the use of the system by an amputee is not
different compared to an able-bodied subject. In fact, since
the socket is aligned with the arm (residual limb), the aiming
could be even easier. For manual control, the system relies
on the classic two-channel EMG interface, which is a clinical
standard and hence known to prosthesis users. Therefore, we
assume that an amputee could use the system after a brief
training, similarly to able-bodied subjects tested in this study.
Nevertheless, subjective experience and clinical utility of this
approach still needs to be investigated in a population of
prosthesis users.

5. CONCLUSION

This work presents a depth-embedded system comprising a
prosthesis with a dorsally mounted depth camera, which enables
semi-autonomous control of grasping actions. The experimental
assessment showed that the participants could use the system to
grasp a very diverse set of objects or object parts, approached
from different directions and placed individually or in cluttered
environments. The participants easily learned to adapt to the
system and “read” its online behavior (response to targeted
objects), and they significantly improved their performance after
a brief training.
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