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local sensor-based gait phase recognition
system using a logistic model decision tree
for orthosis-control
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Abstract

Background: Functionality and versatility of microprocessor-controlled stance-control knee-ankle-foot orthoses
(M-SCKAFO) are dictated by their embedded control systems. Proper gait phase recognition (GPR) is required to
enable these devices to provide sufficient knee-control at the appropriate time, thereby reducing the incidence
of knee-collapse and fall events. Ideally, the M-SCKAFO sensor system would be local to the thigh and knee, to
facilitate innovative orthosis designs that allow more flexibility for ankle joint selection and other orthosis components.
We hypothesized that machine learning with local sensor signals from the thigh and knee could effectively distinguish
gait phases across different walking conditions (i.e., surface levels, walking speeds) and that performance would
improve with gait phase transition criteria (i.e., current states depend on previous states).

Methods: A logistic model decision tree (LMT) classifier was trained and tested (five-fold cross-validation) on gait data
that included knee flexion angle, thigh-segment angular velocity, and thigh-segment acceleration. Twenty features were
extracted from 0.1 s sliding windows for 30 able-bodied participants that walked on different surfaces (level, down-slope,
up-slope, right cross-slope, left cross-slope) at a various walking speeds (self-paced (1.33 m/s, SD = 0.04 m/s), 0.8,
0.6, 0.4 m/s). The LMT-based GPR model was also tested with another validation set containing similar features
and surfaces from 12 able-bodied volunteers at self-paced walking speeds (1.41 m/s, SD = 0.34 m/s). A “Transition
Sequence Verification and Correction” (TSVC) algorithm was applied to correct for continuous class prediction
and to improve GPR performance.

Results: The LMT had a tree size of 1643 with 822 leaf nodes, with a logistic regression model at each leaf
node. The local sensor LMT-based GPR model identified loading response, push-off, swing, and terminal swing
phases with overall classification accuracy of 98.38 for the initial training set (five-fold cross-validation) and 90.
60% for the validation set. Applying TSVC increased classification accuracy to 98.72% for the initial training set
and 98.61% for the validation set. Sensitivity, specificity, precision, F-score, and Matthew’s correlation coefficient
results suggest strong evidence for the feasibility of an LMT-based GPR system for real-time orthosis control.

Conclusions: The novel machine learning GPR model that used sensor features local to the thigh and knee was
viable for dynamic knee-ankle-foot orthosis-control. This highly accurate GPR model was generalizable when combined
with TSVC. Our approach could reduce sensor system complexity as compared with other M-SCKAFO approaches,
thereby enabling customizable advantages for end-users through modular unit orthosis designs.
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Introduction
Stance-Control Knee-Ankle-Foot Orthoses (SCKAFO) are
wearable walk-assist devices that prevent the knee from col-
lapsing during weight-bearing and provide unhindered knee
motion during swing. SCKAFO can improve mobility and
provide more natural gait than conventional fixed-knee
KAFOs for people with knee-extensor pathologies [1–5].
Fewer compensatory gait mechanisms (i.e., knee
hyperextension, hip-hiking, circumduction, vaulting
[1]) can reduce associated joint loads, reduce energy
consumption [6, 7], increase foot clearance, increase
walking speeds, and improve overall user satisfaction
[1, 2, 4–6].
SCKAFO mechanical knee joint designs have their own

advantages and disadvantages [4, 5]. Some designs use
weighted/spring-loaded pawls or belt clamping [1, 2, 4] to
lock the knee at initial contact and disengage at foot-off,
based on leg position. Most mechanically-controlled
SCKAFO require full knee extension to engage knee-lock
[4, 5, 8]. This can present difficulties for individuals who
cannot extend their leg at each step, making continuous
and reliable stance-control more difficult. Persons with
knee-extensor weakness that have sufficient hip-flexion
control could also use angular velocity based stance-control
[3, 8, 9], where mechanical components at the knee engage
knee-flexion resistance at any knee angle once an angu-
lar velocity threshold is passed, such as during a knee
collapse or fall event (i.e., body weight sensing not
required).
The main advantages of mechanically-controlled

SCKAFO include free knee motion during swing, simpler
stance-control systems that do not require external power
sources, low profile, lightweight, and ability to fit under
trousers. Unfortunately, mechanically-controlled SCKAFO
can have inconsistent stance/swing phase recognition,
leading to unreliable locking and unlocking and poor
functional versatility across different walking conditions.
Mechanically-controlled SCKAFO can also have difficulty
negotiating between different walking speeds, gait modes,
terrains, and daily living environments (i.e., stairs, ramps,
uneven ground) [3–5, 8, 10–12].
Microprocessor-controlled SCKAFO (M-SCKAFO) guide

knee control by regulating between stance and swing using
multiple electronic sensors attached to various orthotic-
limb segments [4–6, 9, 10, 12–20]. These electronic sen-
sors, coupled with computational algorithms, dictate when
to engage/disengage knee-flexion resistance. This provides
enhanced knee-control functionality, reliability, and versa-
tility across surfaces and walking speeds. M-SCKAFO may
also toggle between different gait modes (i.e., ramps, curbs,
stairs) [4, 5, 12]. These devices rely on many sensors and
complex algorithms that can have high computational costs
and require external power sources that require regular
charging. M-SCKAFO drawbacks include sensors located

at many orthosis segments, bulk (i.e., cannot fit under
trousers), lack of aesthetics, high cost, and fewer orthotic
component choices.
The Otto Bock C-Brace [21] is currently the most versa-

tile commercially available M-SCKAFO, using a hydraulic
linear damper for knee control. C-Brace is the only
M-SCKAFO on the market with in-stance knee flexion
dampening (i.e., gradually allows the knee to flex during
stance). With partial knee-flexion resistances, some individ-
uals with lower limb muscle impairment could re-establish
sufficient strength and mobility to eliminate the need for
ambulatory assistance. The C-Brace uses two sets of sen-
sors at the knee to determine knee angle and a dorsal shank
spring (strain-gauge ankle-moment sensor) to determine
when the person is weight-bearing [5].
Electronic sensors, such as inertial measurement units

(IMU), enable signal-processing algorithms to determine
limb orientation and/or position in the gait cycle and
prompt the knee joint mechanism to switch to a locked,
free, or partial knee flexion-resistance setting. Ideally, an ef-
fective stance-control system would provide support during
stance and unhampered knee motion during swing, for nat-
ural gait. Knee stability is of paramount importance for safe
gait, but does not always require knee extensor contribu-
tions [22]. During stance, knee motion is predominantly in
extension. However, the onset of knee flexion occurs be-
tween terminal stance and pre-swing. The body has for-
ward impetus during this phase, with controlled ankle and
hip removing the need for knee extensor control [22]. Safe
knee-release must occur without active quadriceps muscle
activation, prior to knee-flexion during swing, and after the
contralateral limb is in contact with the floor. Moreover,
stance-control systems must identify loading response to
securely lock and keep the knee from collapsing. These cri-
teria provide knee-release transition points that ensure
safe-gait by not imposing unmanageable loads on weak
knee-extensors. Consequently, accurate gait phase recogni-
tion (GPR) from wearable sensor data becomes essential
for real-time orthosis-control.
Emerging gait analysis techniques use embedded sensors

in wearables and offer practical modalities for gait monitor-
ing, human activity recognition (HAR), and prosthesis and
orthosis control. Electronic sensors such as strain gauges
[21], pressure sensors [23], electromyography (EMG) [17],
force sensitive resistors [24–26], goniometers [27, 28], and
IMU [10, 12, 23–26, 29–34] can be combined to give highly
accurate and real-time gait monitoring.
Liu, et al. [35] placed a two-axis accelerometer and three

gyroscopes on the foot, shank and thigh to detect gait
phases (initial contact, loading response, mid-stance, ter-
minal stance, pre-swing, initial swing, mid-swing, terminal
swing) and provide limb segment orientation. Pappas et al.
[25] reported a rule-based gait phase identification system
across able-bodied and impaired individuals, with states
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identified by prior characterization of IMU signals. Their
system used foot angular velocity and three force sensitive
resistors to determine weight-bearing. To improve GPR
performance, they implemented knowledge-based gait
phase transitions to determine possible changes of state
during the gait cycle. Gorsic et al. [23] developed a gait
phase identification system to provide feedback for a
lower-limb robotic prosthesis. The system used IMU at-
tached to body segments and shoe insole sensors to deter-
mine four gait phases (left stance, left-right double stance,
right stance, right-left double stance). Another study [36]
attempted to localize a GPR sensor system using a single
IMU in a trouser pocket. They did not implement a
computer-based algorithm to determine gait phases but
showed that major gait phases could be visually identified
from the thigh-angle signature. This is important for lower
limb orthosis-control since many M-SCKAFO can benefit
from computer-based/real-time GPR, along with modular
electronic components located only at the thigh [10, 12].
Machine learning and artificial intelligence ap-

proaches related to HAR are becoming increasingly
popular [31, 37–40]. Machine learning classifiers can
provide robust, fast, and accurate classification from sim-
ple features extracted from biomechanical data, making
them highly attractive for use in GPR [10, 23, 24, 41]. Ma-
chine learning algorithms coupled with local sensor sys-
tems have demonstrated sufficiently good performance to
make this a potentially viable approach for identifying
current states and recognizing human intent for control
system feedback.
The objective of this research is to propose a method for

identifying walking phases with only local gait data from
the thigh and knee. Accurate GPR would provide essential
information for M-SCKAFO control if the approach works
in real-time, across different surface-levels, and across walk-
ing speeds. We hypothesized that signal features from the
thigh and knee with a logistic decision tree machine learn-
ing model could provide highly accurate GPR performance.
Secondly, a “Transition Sequence Verification and Correc-
tion” (TSVC) algorithm should improve classification
results. The model should classify walking phases regardless
of surface-level, walking speed, or individual walking vari-
ability. Appropriate GPR with sensors about the knee will
enable new M-SCKAFO approaches that allow orthotists to
use the most appropriate ankle and foot designs for the
user, without limitations due to ankle-foot sensor system
requirements in current devices.

Methods
Data set
A de-identified data set from 30 able-bodied partici-
pants was used in this study (Ottawa Health Science
Network Research Ethics Board approval (20140825-01H).
Walking data were collected in a Computer-Assisted

Rehabilitation Environment (CAREN-Extended) (Motek
Medical, Amsterdam, NL) virtual environment system.
CAREN-Extended consists of a six degree-of-freedom
force-plate platform with 1m × 2m dual tread instru-
mented treadmill (Bertec Corp., Columbus, OH), 180°
screen for virtual world projection, and a 12-camera 3D
motion capture system (Vicon Inc., Oxford, UK). A full
body marker set defined all joint and body-segment posi-
tions [42, 43]. Marker data were recorded at 100 Hz and
ground reaction forces were recorded at 1000Hz.
Each volunteer walked in a custom-built virtual park ap-

plication on level (LG), 7° declination down-slope (DS), 7°

inclination up-slope (US), 5° inclination right cross-slope
(RS), and 5° inclination left cross-slope (LS), at self-paced
(SP) speed (1.33 m/s, SD = 0.04m/s), 0.8 m/s, 0.6 m/s, and
0.4 m/s. Joint and body-segment trajectories were
imported into Visual 3D (C-Motion Inc., Germantown,
MD) for biomechanical analyses. A fourth order low
pass Butterworth filter with 10 Hz cut-off frequency
was applied to the marker data before calculating joint
and segment kinematics.
Ten strides for knee flexion-extension angle (KA),

thigh-segment angular velocity in each axis (AngVel),
and thigh-segment acceleration in each axis (Acc) were
extracted from each walking condition (surface and
speed) and imported into Matlab. All data were linearly
interpolated to 200 Hz to mimic an IMU internal sam-
pling rate for M-SCKAFO control systems.

Validation set
A separate de-identified data set from 12 able-bodied
participants provided analogous gait data to the training
data set, using the same testing protocol. Six strides
from each surface condition were extracted for SP walk-
ing (1.41 m/s, SD = 0.34 m/s). This set can be considered
as unseen data.

Gait phase recognition
Gait phase segmentation was implemented using a cus-
tom Matlab program with predefined gait events that
directly corresponded to gait signatures used. KA, AngVel
(x, y, z), and Acc (x, y, z) signals were partitioned into four
gait phases: Loading Response (LR), Push-Off (PO),
Swing, and Terminal Swing (TSw) according to initial
contact, mid-stance, foot-off, and maximum knee flexion
angle gait events [10, 12]. AngVel and Acc resultants were
used as supplementary signals from which features were
extracted for machine learning implementation. Equation
(1) describes the resultant signal for AngVel and Acc.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2x þ a2y þ a2z ;

q
ð1Þ

where ax, ay, and az are the AngVel and Acc signals
from x, y, z orientations, respectively.
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Correlation-based feature selection was applied in a pre-
liminary analysis [12], providing 20 features: KA mean
(x-axis), AngVel mean (x-axis, y-axis), Acc mean (y-axis,
z-axis), KA variance (x-axis), KA maximum difference
(x-axis), AngVel maximum difference (x-axis), KA mini-
mum (x-axis), AngVel minimum (y-axis), Acc maximum
(y-axis), AngVel sign-sum (x-axis, y-axis, z-axis), Acc sign-
sum (x-axis, y-axis, z-axis), resultant Acc sum of peaks
(total number of peaks), AngVel principal frequency (the
frequency component with the greatest magnitude with a
Fast Fourier Transform (FFT), y-axis), and the correlation
coefficient between the z-axis (parallel to gravity during
stance) and y-axis (parallel to heading during stance and
swing) acceleration. The sign-sum was defined as the sum
of scores for each data point in a sliding window (negative
values were scored as − 1, and positive values were scored
as + 1). All features were extracted from a 0.1-s sliding win-
dow with 90% overlap (incremented at 0.01 s) and labelled
as LR, PO, swing, or TSw according to the last data point
[10, 12] in each window.

Logistic model decision tree
The feature vector was imported into the Waikato Environ-
ment for Knowledge Analysis (WEKA) for machine learn-
ing implementation. A logistic model decision tree (LMT)
[44] classifier was trained and tested with 5-Fold Cross Val-
idation (5-FCV) using stratified data splits. Performance
metrics were obtained by reiterating through the supplied
training set. The LMT was constructed as a J-48 Decision
Tree with logistic regression models at terminal leaf nodes.
Node splitting involved the C4.5 decision tree splitting
criterion [44–46], using information gain on the class vari-
able. Logistic regression functions at leaf nodes were deter-
mined using LogitBoost heuristic [44]. Default LMT
parameters were used to construct the tree (i.e., convert-
Nominal = False, debug = False, errorOnProbabilities =
False, fastRegression =True, minNumInstances = 15, num-
BoostingIterations = − 1, splitOnResiduals = False, useAIC
= False, weightTrimBeta = 0).
The LMT was manually implemented into a Matlab

script as a function. The function took instances (vector
containing features computed from sliding window signa-
ture) as input and returned the gait phase corresponding
to the LMT model with the greatest probability as the gait
phase prediction. The logistic function, shown by Eq. (2) is
a sigmoid function and computes the probability of being
in a gait phase.

P γ i
� � ¼ eγi

1þ eγ i
ð2Þ

where γi contains the coefficients of determination that
form the linear combination of multiple variables (i.e.,

features) for logistic regression and correspond to the
gait phase, i.

Transition sequence verification and correction
A “transition sequence verification and correction”
(TSVC) algorithm was applied after the GPR function
class output to resolve discontinuous class complica-
tions. The continuous sequence was defined as LR, PO,
Swing, TSw, and repeated for the following stride. TSVC
checks if the current instance is different than the three
previous instances. If different and not the next phase in
the sequence, the instance would be relabeled as the pre-
vious instance (e.g., “LR, LR, LR, Swing” relabelled as
“LR, LR, LR, LR”). Additionally, if an outlier classification
occurred between four consecutive instances, the set of
three previous and a single next instance are evaluated for
an outlier classification where the outlier would be re-
labelled as the previous instance (e.g., “LR, LR, LR, PO, LR”
relabelled as “LR, LR, LR, LR, LR”). This GPR model and
TSVC process also indirectly identified gait events (e.g.,
transition between TSw and LR indicates initial contact).
As shown in Fig. 1, sensor input from KA, AngVel, and

Acc were stored in a 0.1 s sliding window (20 data points,
200Hz sampling rate) for feature extraction and LMT-
based GPR would be performed. TSVC verified and cor-
rected for continuous gait phase sequence and output a
classification. The system then incremented the sliding win-
dow by 0.01 s to classify the next instance.

Classifier evaluation
Classification performance metrics included tree size,
number of leaf nodes, overall classification accuracy, sensi-
tivity (Sens), specificity (Spec), precision (Prec), F-score
(FS), Matthews Correlation Coefficient (MCC). Classifica-
tion metrics were computed from true positives (TP), true
negatives (TN), false positives (FP), and false negatives
(FN) using WEKA by supplying the feature matrix as the
test set. Classification metrics for LMT with TSVC were
computed from a confusion matrix implemented in
Matlab2016b, with weighted averages given by

Wm ¼
P

imi
�IiP

iI i
; ð3Þ

where m denotes a classification metric, i denotes a spe-
cific gait phase, I denotes the total number of instances in
the total feature matrix relating to each gait phase.

Results
Gait phase recognition
The LMT size was 1643 with 822 leaf nodes, with a logistic
regression function at each leaf node. Predicted gait phases
for KA (Fig. 2), resultant AngVel (Fig. 3), and resultant Acc
(Fig. 4) show partitioned gait phases during strides with
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Fig. 1 Gait phase recognition flow diagram

Fig. 2 Average knee angle (degrees) and standard deviation from a single participant for each surface condition (rows) and walking speed (columns),
showing classified gait phases: Loading Response (blue), Push-Off (red), Swing (cyan), Terminal Swing (teal) for the training set. Shaded areas behind
the signatures show true classes along the stride and vertical lines represent gait events
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LMT classification and coincide well with true classes
(shaded areas). Vertical lines shown between shaded areas
represent gait events used for stride segmentation. Apply-
ing LMT classification indicates that our GPR model can
indirectly detect those events across walking conditions.
Similar curve shapes are observed across different surfaces
and signal variation increases for slower walking speeds.
Fig. 2 shows that for slower speeds the stance phase (i.e.,
LR, PO), knee motion decreases. However, the GPR model
was able to distinguish all gait phases regardless of surface
condition and walking speed.
Table 1 presents the confusion matrix for the training

set and Table 2 presents the confusion matrix for the
validation set. Shaded boxes represent TP classifications
where the GPR model successfully identified gait phases,
whereas off-diagonal boxes indicate a misclassification.
Table 3 presents the LMT classification metrics for

training set (30 able-bodied participants) and validation
set (12 able-bodied participants). Weighted averages are
with and without TSVC.
Gait phase classification performed well for the training

set, with 98.38% overall accuracy and all classification met-
rics greater than 0.98. TSVC increased accuracy by 0.38%;
sensitivity, and FS decreased by 1%; MCC decreased by 2%;
and specificity remained the same.

Validation set metrics were less than the training set,
with lower accuracy (− 7.78%), sensitivity (− 7%), specifi-
city (− 2%), precision (− 7%), FS (− 7%), and MCC (− 11%).
However, after applying TSVC, all validation set classifica-
tion metrics improved. Accuracy increased by 8.01%, sen-
sitivity, precision and FS increased by 6%, specificity
increased by 2%, and MCC increased by 9%, with all re-
sults greater than 0.96.
Table 4 shows classification metrics for each gait phase.

All classification metrics were greater than or equal to
0.97 across all gait phases. TSw performed the best with
all classification metrics at 0.99. Swing had the lowest pre-
cision and FS. For the validation set, excluding PO, classi-
fication metrics were all greater than 0.85. PO had the
lowest sensitivity, FS, MCC. LR had the second lowest
sensitivity and the lowest specificity. In terms of classifica-
tion performance metrics, Swing and TSw performed
similarly and outperformed LR and PO for unseen data.
Table 5 shows performance metrics for the LMT with

TSCV, for specific gait phases. All results were greater
than 0.91, for the training set. Compared to results in
Table 4, sensitivity decreased for PO and Swing, and
remained the same for LR and TSw. Swing had the low-
est sensitivity, FS, and MCC. TSw had the best perform-
ance across all classification metrics equal to 0.99, apart

Fig. 3 Average thigh-segment angular velocity (rad/s) and standard deviation (shaded) from a single participant for each surface condition (rows)
and walking speed (columns), showing classified gait phases: Loading Response (blue), Push-Off (red), Swing (cyan), Terminal Swing (teal) for the
training set. Shaded areas behind the signatures show true classes along the stride and vertical lines represent gait events
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from MCC. However, MCC was still greater for the TSw
phase than MCC for all other gait phases.
For the validation set, all but one metric (0.87) was

greater than 0.90. Compared to the training set, all classifi-
cation metrics increased for LR and TSw. All metrics in-
creased for PO for the validation set apart from precision
(decreased by 8%). Swing decreased for sensitivity (9%), FS
(3%), MCC (3%). LR classification performance for the val-
idation set outperformed all other gait phases.

Discussion
This research demonstrated the viability of a local sensor,
machine learning-based, gait phase recognition system to
guide decision-making for orthosis-control and safe mobil-
ity. The LMT machine learning classifier successfully per-
formed GPR for small data windows, enabling real-time

device control across different surfaces and walking speeds
encountered throughout daily living activities.

Gait phase recognition classifier design and development
The machine-learning model reliably recognized LR,
PO, Swing, and TSw, defined by gait events [10], across
LG, DS, US, RS, and LS at different walking speeds. In
the literature, most GPR models were trained and tested
on level-ground walking at self-paced speeds [10, 24, 26,
30, 41], with few studies testing on a variety of surfaces
[12, 25]. Models trained with multiple walking conditions
that occur throughout daily living activities could enhance
generalizability [15] and overall system functionality
across daily living activities.
Since our GPR model was trained from a data set that

contained simple data features extracted from small data
windows (overlapping 0.1 s sliding window) from local
thigh and knee signals across a variety of walking condi-
tions, results can be directly translated to real-time
lower-limb orthosis control. These features are not compu-
tationally intensive, facilitating fast GPR decision-making
throughout the gait cycle on embedded joint electronics.
In a preliminary analysis [10, 12], a J-48 DT was chosen

as the machine learning classifier due to success in activity
recognition and gait applications [25, 29, 38–40], excep-
tional gait phase classification performance [10, 12], and

Fig. 4 Average thigh-segment acceleration (m/s2) from a single participant for each surface condition (rows) and walking speed (columns), showing
classified gait phases; Loading Response (blue), Push-Off (red), Swing (cyan), Terminal Swing (teal) for the training set. Shaded areas behind the
signatures show true classes along the stride and vertical lines represent gait events

Table 1 Training Set Confusion Matrix

True Class Classified As

Loading
Response

Push-Off Swing Terminal
Swing

Loading Response 240,409 3972 0 178

Push-Off 4884 290,454 2008 1

Swing 1 1192 76,349 696

Terminal Swing 266 0 578 227,101
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ability to work in real-time. In this study, the classifier im-
plemented logistic regression models at each terminal node
to handle multi-class target variables. This provided gait
phase probability estimates rather than just a classification
output, and when correctly pruned produced a smaller tree
than ordinary classification trees [44]. The J-48 DT previ-
ously used for local sensor GPR was very large, with a tree
size of 16,103 and 8052 leaf nodes [12]. Generally, a smaller
decision tree is a simpler model and is expected to provide
computational efficiency in terms of battery consumption
and classification time on a M-SCKAFO onboard micro-
processor. The machine learning classifier constructed in
this study, with the same training data and walking condi-
tions, produced a tree that was approximately 90% smaller
and had 90% fewer terminal leaf nodes than J-48 DT [12].
For GPR in real-time orthosis control, high accuracy and
generalizability becomes more important than tree size, as
long as classification decisions can be made within an ap-
propriate period.
Classification performance also improved for all metrics.

These results are in agreement with Landwehr, et al. [44]
where LMT outperformed C4.5 DT (similar to J-48 DT)
on 14 different data sets and LMT size was significantly
less than C4.5 DT size for 16 data sets. For our study, im-
proved gait phase classification was likely due to the prob-
ability estimates from logistic regression functions at each
node. Branches in the tree would guide input information
towards a node based on our highly representative training
set (i.e., 30 able-bodied participants, surface levels, walking
speeds), and introduced an additional probabilistic measure
(i.e., logistic regression at terminal nodes) to determine
class output. The LMT model’s structure and characteris-
tics enable easier, faster, and more accurate GPR imple-
mentation on a microprocessor simply due to the model’s
size and therefore computational complexity. In addition, a
simpler model is more practical for adding deeper,

supplementary rule-based algorithms (i.e., sequence
transitions, knee-release, stumble control) thereby im-
proving assistive-device designs, and machine
learning-based stance-control feasibility.
Results from 5-FCV on the training set were very good,

across all gait phases. MCC values suggest that, regardless
of class imbalances within our data set, PO and Swing
classifications performed well with TSVC. Sensitivity was
less than specificity in all cases. High sensitivity and speci-
ficity are essential since specificity errors could result in
the system switching to a knee-release setting during
weight-bearing (e.g., mistaking LR for Swing), putting the
user at risk of falling. Similarly, sensitivity errors could re-
sult in the joint failing to switch to knee-release when
transitioning from PO to Swing. In practice, maintaining
knee support during weight bearing is a priority for
fall-prevention. Therefore, high specificity is advantageous
for stance-control applications.
Overall classification accuracy improved with TSVC

algorithm implementation, but some evaluation metrics
diminished slightly. Interestingly, implementing the model
on the full training set with the TSVC algorithm improved
overall classification accuracy. The decrease in sensitivity
for PO and Swing meant that TP were missed (i.e. FN),
likely due to forcing a transition if a particular class was
mistaken for any another class. Swing phase was expected
to occur after PO and had fewer data instances; hence the
greater decrease in sensitivity for Swing. During the transi-
tion from PO to Swing, Swing onset could be classified as
PO for slower walking speeds where the signals appear
similar (Figs. 2, 3 and 4). Stance phase increases for slower
speeds to increase double support time and maintain sta-
bility [47]. Certain implications and difficulties arise
when implementing stance-control at extremely slow
walking speeds, such as 0.4 m/s. This is mainly due to
the lack of signal variation at these locations during the
stride, as the mean standard deviations (MSD) are close
to zero. Ideally, with a sufficient static versus dynamic
state decision algorithm [48], stance-control could be
applied with a local sensor system at very slow walking
speeds. Literature regarding GPR for very slow walking
is sparse. Multiple GPR models trained to particular
walking speeds (i.e., walking speeds ≤0.4 m/s) may be
better to determine appropriate knee flexion resistance
engagement/disengagement. Since this would require
an algorithm for determining walking speed, which is

Table 2 Validation set confusion matrix

True Class Classified As

Loading
Response

Push-Off Swing Terminal
Swing

Loading Response 16,433 841 12 477

Push-Off 2679 19,073 629 1272

Swing 1 323 8309 56

Terminal Swing 0 74 141 19,288

Table 3 Logistic model tree classification performance

Model Data Set Accuracy Sensitivity Specificity Precision F-score MCC

LMT Training 98.38 0.98 0.99 0.98 0.98 0.98

Validation 90.60 0.91 0.97 0.91 0.91 0.87

LMT + TSVC Training 98.76 0.97 0.99 0.97 0.97 0.96

Validation 98.61 0.97 0.99 0.97 0.97 0.96
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difficult to accurately determine from IMU data, surro-
gate measures such as cadence or step time could be
considered.
The GPR model had promising classification perfor-

mances and demonstrated that our model could be a
viable solution in localized intelligent sensor systems for
M-SCKAFO applications. Based on overall classification
accuracy, both of hypotheses are valid (i.e., sensor signal
features from the thigh and knee with a LMT model could
provide highly accurate GPR performance; a TSVC algo-
rithm should improve classification results). However,
given that decision trees are low-bias classifiers, they are
expected to capture regularities in the training data.
Hence, the GPR model was also evaluated with a different
data (validation set).

Validation set evaluation
As expected, LMT classifier results were less with the val-
idation set (12 different participants) than the training set.
While overall classification accuracy was still greater than
90% for all evaluation metrics, a 10% error rate is not ap-
propriate for assistive device-control, indicating that our
initial hypothesis was not valid when the model was ap-
plied generally. The TSVC algorithm improved classifica-
tion accuracy with the validation set since gait phases are
sequential when walking. This suggests that transition cor-
rection algorithms may improve GPR models and vali-
dates the second hypothesis for new gait data.

Knowing where and when misclassifications occur is
important for knee engagement/disengagement in M-
SCKAFO implementation. FN occurred during gait phase
transitions, where gait signals exit one phase and enter the
next. For small data windows (0.1 s), feature values could
be similar for consecutive windows with 90% overlap.
Therefore, at regions where one gait phase transitions
into another, class distributions will not vary without
compelling gradient-changes in the signal. For example,
if misclassifications are present at the beginning of
swing, these instances would be classified as PO,
thereby engaging knee-release. However, misclassifying
instances near the middle or end of Swing may engage
knee-flexion-resistance too early and perturb free knee-
motion. As shown by Fig. 2 (KA), Fig. 3 (AngVel), and
Fig. 4 (Acc) gait phase transitions are late for LR to PO.
For the LMT tested with the validation set and TSVC,
results showed that 1.8% of instances were classified as
PO but were actually Swing and 0.5% of instances
were classified as Swing but were actually TSw (i.e.,
misclassification at the beginning of swing, rather than at
the end). Misclassifications at the beginning of Swing are
shown in Figs. 2, 3 and 4 for US and LS surfaces at 0.4 m/
s walking speed. Since this study involved analysis on right
limb data only, right limb range of motions are similar for
US and LS surfaces. This is important for misclassified in-
stances at the beginning of swing for initiating knee-en-
gagement or knee-disengagement. For an M-SCKAFO,

Table 4 LMT-GPR performance by gait phase

Data Set Gait Phase Sensitivity Specificity Precision F-score MCC

Training Loading Response 0.98 0.99 0.98 0.98 0.97

Push-Off 0.98 0.99 0.98 0.98 0.97

Swing 0.98 0.99 0.97 0.97 0.97

Terminal Swing 0.99 0.99 0.99 0.99 0.99

Validation Loading Response 0.91 0.95 0.87 0.89 0.85

Push-Off 0.82 0.97 0.93 0.87 0.81

Swing 0.96 0.99 0.92 0.94 0.93

Terminal Swing 0.99 0.96 0.91 0.95 0.93

Table 5 LMT + TSVC GPR performance by gait phase

Data Set Gait Phase Sensitivity Specificity Precision F-score MCC

Training Loading Response 0.98 0.99 0.97 0.98 0.97

Push-Off 0.96 0.99 0.94 0.95 0.94

Swing 0.91 0.99 0.97 0.94 0.93

Terminal Swing 0.99 0.99 0.99 0.99 0.98

Validation Loading Response 0.99 0.99 0.99 0.99 0.99

Push-Off 0.98 0.98 0.90 0.94 0.93

Swing 0.87 0.99 0.95 0.91 0.90

Terminal Swing 0.97 0.99 0.99 0.98 0.98
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knee-release would ideally occur during PO, at the earliest
safe knee-release point (i.e., onset of knee flexion during
in pre-swing, when weight-bearing is declining). Custom
M-SCKAFO control adjustments for the participant could
help achieve this ideal PO-swing transition point.
In summary, GPR model classification performance with

the validation set improved with TSVC and was compar-
able to training set results.

Limitations
The Vicon motion analysis system provided very accurate
thigh and knee data. Depending on the sensors used in the
orthotic application (i.e., IMU, etc.), data in practice may be
of lower quality, or have additional noise and errors due
to the environment. Appropriate sensor technologies are
needed to ensure translation of the research outcomes.

Conclusion
A logistic decision tree gait phase recognition model suc-
cessfully identified loading response, push-off, swing, and
terminal swing gait phases for five different surfaces and a
range of walking speeds, with input data localized to the
thigh and knee. The logistic model decision tree classifier
was robust for many simulated walking conditions experi-
enced throughout daily living and was generalizable to
unseen data from a different participant group. A gait phase
transition sequence verification and correction algorithm
was essential to achieve appropriate GPR performance
results. This research provides supporting evidence that
machine learning can provide enhanced gait phase recogni-
tion for real-time orthosis-control across multiple real-
world walking scenarios. Local sensors at the thigh and
knee reduce sensor system complexity and help to provide
an integrated, modular unit for microprocessor-controlled
stance-control knee-ankle-foot orthoses.
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