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Background: Sepsis involves aberrant immune responses to infection, but the exact nature of this immune
dysfunction remains poorly defined. Bacterial endotoxins like lipopolysaccharide (LPS) are potent inducers of
inflammation, which has been associated with the pathophysiology of sepsis, but repeated exposure can also
induce a suppressive effect known as endotoxin tolerance or cellular reprogramming. It has been proposed
that endotoxin tolerance might be associated with the immunosuppressive state that was primarily observed
during late-stage sepsis. However, this relationship remains poorly characterised. Herewe clarify the underlying
mechanisms and timing of immune dysfunction in sepsis.
Methods:Wedefined a gene expression signature characteristic of endotoxin tolerance. Gene-set test approaches
were used to correlate this signature with early sepsis, both newly and retrospectively analysing microarrays
from 593 patients in 11 cohorts. Then we recruited a unique cohort of possible sepsis patients at first clinical
presentation in an independent blinded controlled observational study to determine whether this signature
was associated with the development of confirmed sepsis and organ dysfunction.
Findings: All sepsis patients presented an expression profile strongly associated with the endotoxin tolerance

signature (pb 0.01; AUC96.1%). Importantly, this signature further differentiated between suspected sepsis patients
who did, or did not, go on to develop confirmed sepsis, and predicted the development of organ dysfunction.
Interpretation: Our data support an updated model of sepsis pathogenesis in which endotoxin tolerance-mediated
immune dysfunction (cellular reprogramming) is present throughout the clinical course of disease and related to
disease severity. Thus endotoxin tolerance might offer new insights guiding the development of new therapies
and diagnostics for early sepsis.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
1. Introduction

Sepsis continues to be themajor infection-related cause of death glob-
ally. In the United States alone, more than 120,000 persons die of sepsis
each year (Martin et al., 2003). Despitemodernmedical advances includ-
ing new antibiotics and vaccines, best practice treatments, and well-
equipped intensive care units (Angus et al., 2001), sepsis mortality rates
often remain high at ~30% (Lyle et al., 2014; Jawad et al., 2012). Bacterial
endotoxins, such as lipopolysaccharide (LPS), are potent inducers of
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inflammation and have been suggested as triggers for the observed
hyper-inflammation in sepsis, as well as the early life-threatening cyto-
kine storm causing septic shock (Salomao et al., 2012). However despite
these inflammatory components of sepsis, more than 30 clinical trials
testing anti-inflammatory agents for the treatment of sepsis have
shown no benefit (Lyle et al., 2014; Hotchkiss et al., 2013). This has con-
tributed to a shift in our understanding of sepsis, from a condition of
hyper-inflammation to one characterised by phases of inflammation
and immune dysfunction/immunosuppression (Hotchkiss et al., 2013).
Whilst our understanding of the immune dysfunction phase in sepsis re-
mains limited (Lyle et al., 2014; Hotchkiss et al., 2013), one of the many
hypotheses attempting to characterise the immune state in sepsis has
suggested a role for endotoxin tolerance in the later stages of this process
(Cavaillon et al., 2005; Otto et al., 2011; Schefold et al., 2008). Endotoxin
tolerance, also termed cell reprogramming, can be defined as the severely
the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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reduced capacity of a cell to respond to LPS during a second exposure to
this stimulus and represents an immune amnesia rather than an anti-
inflammatory response (Cavaillon and Adib-Conquy, 2006). Other bacte-
rial products can similarly induce reprogramming (Buckley et al., 2006).
Despite some similarities in the cytokine production profiles of cells iso-
lated from sepsis patients at late-stage sepsis time-points and in cells
from in vitro endotoxin tolerance models (Cavaillon et al., 2005; Otto
et al., 2011; Schefold et al., 2008), a robust link has yet to be made be-
tween sepsis and endotoxin tolerance. Obtaining a clear understanding
of the inflammatory and immunosuppressive phases, including the clini-
cal timepoints at which each occurs or predominates, is likely crucial to
improving sepsis outcomes.

Here, we applied robust bioinformatics approaches to in-house and
previously-published cohorts of early-stage sepsis patients.We showed
that sepsis is characterised by an endotoxin tolerance phenotype that
occurs very early during the clinical course of disease and is linked to
disease severity. This places endotoxin tolerance as a novel therapeutic
and diagnostic target in sepsis that may be used to predict the develop-
ment of sepsis and organ failure in critically ill patients.

2. Materials and Methods

2.1. Gene Signature Definition and Analysis

Endotoxin tolerance and inflammatory gene signatures were de-
rived from our previously-published (Pena et al., 2011) microarray
analyses of human PBMC identifying differentially-expressed genes
compared to control PBMCs (GSE22248), with the inflammatory signa-
ture being delimited to genes that overlapped with a human volunteer
endotoxin challenge (Calvano et al., 2005), as described in Fig. 1. Gene
lists for the signatures are found in Supplementary Tables 1 and 2. Anal-
ysis of the presence or absence of the endotoxin tolerance and inflam-
matory signatures in patients and controls was performed using the
well-established, statistically-rigorous gene set test ROAST (Wu et al.,
2010), that asks whether a given set of genes/signature is enriched in
a dataset. The ROAST method increases the strength of the test by addi-
tionally allowing the consideration of the direction of gene expression
(Wu et al., 2010). The ROAST test is designed for any linear modelled
data and was therefore suitable for both the microarray and RNA-Seq
Fig. 1. Definition of the ‘endotoxin tolerance signature’. Schematic representation of the meth
endotoxin tolerance signature was obtained from our previously published dataset (Pena et a
human PBMCs (treated twice with LPS), but not inflammatory human PBMCs (treated once w
et al., 2011 for more details regarding this dataset). The inflammatory signature was reduced
common 93 gene signature, by selecting genes that were consistently differentially expressed
data, evaluated using the linear model in the Limma package (Wu
et al., 2010; Smyth, 2004), ROAST, which delivers a specific p-value for
the association of a given gene set with a particular condition (e.g. sep-
sis), was run with 99,999 rotations and so the lowest possible p-value
arising from this test is 0.00001.

2.2. Meta-Analysis Datasets

A search without filter restrictions was performed in the US National
Library of Medicine (PubMed) Database, the public repositories National
Centre for Biotechnology Information-Gene Expression Omnibus (NCBI-
GEO) and the European Bioinformatics Institute (EBI-ArrayExpress). The
search terms used individually or in combination, include “sepsis”, “septic
shock”, “septicaemia”, “bacteraemia”, “microarrays”, “RNA-Seq”, “cluster
analysis”, “transcription profiling”, “gene expression”, “LPS”, “endotoxin”,
“inflammation”, and “infection”. Datasets were alsomanually searched in
review articles.

The final selection of datasets was based on the inclusion and exclu-
sion criteria described in Supplementary Table 3. Within datasets, select-
ed samples were excluded if they did not meet the inclusion criteria (e.g.
SIRS patients that could not be classified as having sepsis due to lack of
clinical information). In addition, exclusion criteria were: 1) studies only
analysing a small number of genes (e.g.: RT-qPCR); 2) single-nucleotide
polymorphism studies; 3) studies analysing only a single gene or path-
way; 4) studies using resident immune cells (e.g. alveolar macrophages);
and 5) studies using solid organ tissues.

It is important to mention that we found several datasets (espe-
cially with adult populations) using SIRS patients as controls. How-
ever, for this meta-analysis we selected datasets using healthy
controls, as these allowed us to observe even minor transcriptional
changes present in sepsis despite the stage of the disease (i.e. early
or late stage). Parallel with this, we performed an initial in-house
clinical study of 22 sepsis patients by analysing gene expression
responses using RNA-Seq.

2.3. Patient Selection and New Clinical Study Design

In a blinded, observational, controlled cohort study, patients with
suspected sepsis were identified when the attending physician activated
od used to define the endotoxin tolerance signature and the inflammatory signature. The
l., 2011) and defined as 99 genes uniquely differentially expressed in endotoxin-tolerant
ith LPS), as compared to controls (fold change N 2, p-value b0.05) (please see ref. Pena

from the 178 genes uniquely differentially expressed in inflammatory human PBMCs to a
in an in vivo human volunteer endotoxin challenge dataset (Calvano et al., 2005).
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the Institutional Severe Sepsis Order Set (Supplementary Fig. 1). Patients
were enrolled from St. Paul's Hospital, Vancouver Canada, at the time of
the first microbiological culture drawn for suspected sepsis. To determine
the appropriate sample size for this study we used a standard power cal-
culation for adequate sensitivity (Jones et al., 2003). To achieve a sensitiv-
ity of at least 0.9 at a 95% confidence level, we estimated a required
sample size of 35 sepsis patients and 70 patients total (assuming that
50% of patients with a suspicion of sepsis actually have sepsis). We re-
cruited 72 total patients which proved subsequently to include 37 sepsis
patients. The inclusion criteria for this study were the suspicion of sepsis
by the attending physician, activation of the Institutional Severe Sepsis
Order Set, and successfully obtaining samples for microbial cultures. The
majority of patients (83%) were enrolled from the emergency room. As
shown in Supplementary Table 4, these individuals were heterogeneous.
Our UBC ethical approval protocol enabled deferred consent allowing
early patient recruitment in cohorts that spanned from non-infected to
septic shock. As controls, we recruited consented healthy individuals,
with no evidence of infection, who were scheduled for non-urgent sur-
gery. Bloodwas collected in EDTA tubes at the timeof initial blood culture,
and immediately placed on ice. Plasma and buffy coatwere separated and
two 1-ml aliquots transferred into bar-coded cryovials at −20 °C until
they were transferred to a secure, alarmed−80 °C freezer. Study identi-
fication numbers were assigned to the secured enrolment forms and
used during all subsequent analyses; thus researchers analysing gene ex-
pression in these patients were blinded as to patient identity or clinical
course, which was only revealed during final data analysis. Clinical data
was stored in an ORACLE-based database on a firewalled, RSS encrypted
server at St Paul's Hospital.

Clinical data was collected retrospectively by physician researchers
blinded to the RNA-Seq data. Sepsis was retrospectively defined as
suspected or proven infection in addition to at least two of the following
assessments: Initial WBC, b4000 or N12,000 per μl; Triage Temperature
b36C or N38 °C; and Triage Heart Rate, N90 bpm. New organ dysfunc-
tion was defined as outlined in Supplementary Table 5 and based on
laboratory values collected in the electronic medical record system. Ini-
tial vital signs were retrospectively extracted from the paper records.

2.4. Ethical Conduct of Research

All studies were performed under UBC ethics approval [IDs H11-
00505 for patient sample collection and H08-00293 for RNA-Seq analy-
sis]. Our UBC ethical approval protocol H11-00505 enabled deferred
consent allowing early patient recruitment in cohorts that spanned
from non-infected to septic shock and subsequent approval by patients.

2.5. RNA-Seq

Transcriptomic analysis was performed by the high throughput
sequencing of cDNAs (RNA-Seq). cDNA libraries were prepared from
total RNA using the TruSeq Stranded Total RNA Sample Prep Kit with a
Ribo-Zero sample preparation guide (Illumina). RNA-Seq was per-
formed on a GAIIx instrument (Illumina), using a single read run of
63 bp-long sequence reads (+adapter/index sequences). A standard
analysis protocol was used whereby raw basecall data was converted
to FASTQ sequence files using Off-Line Basecaller 1.9.4 (Illumina) and
a custom Perl script. Reads were aligned to the hg19 human genome
with TopHat version 2.06 and Bowtie2 2.0.0-beta6 (Trapnell et al.,
2009) and mapped to Ensembl transcripts. Raw data was deposited
into NCBI GEO.

2.6. Data Analysis

All data processing was performed in R using Bioconductor
modules (Gentleman et al., 2004). For the meta-analysis, normalised
datasets were downloaded from NCBI GEO using the Bioconductor
package GEOquery (Davis andMeltzer, 2007). An additional quantile
normalisation step was included if the data required further normal-
isation. For the RNA-Seq analysis, data was normalised using the
Voom function in the Limma package which converts read counts
to weighted log base 2 counts per million. For both the meta-
analysis and RNA-Seq analyses, data was summarised using the line-
ar model in the Limma package (Smyth, 2004; Gentleman et al.,
2004).

2.7. Classification Analysis

Each datasetwas split into training (containing 2/3 of sepsis patients
and controls) and test (containing 1/3 of sepsis patients and controls)
sets, using random sampling. A model was defined on the training set
and then assessed on the test set using the randomForest package
(Liaw andWiener, 2002) with ntree set to 1000. The procedure was re-
peated 100 times, and the average AUC values were recorded for each
dataset. Note that AUC (also known as AUROC)= Area Under Receiver
Operator Curve (TPR (Sensitivity) vs. FPR (1-Specificity) curve) is an in-
dicator of the accuracy of diagnosis, based on the Endotoxin Tolerance
Signature, for the compared groups. AUC values were calculated using
the ROCR package (Sing et al., 2005).

3. Results

3.1. Endotoxin Tolerance Signature in Early Sepsis

To assess whether endotoxin tolerance (cellular reprogramming)
contributes to the immune dysfunction observed in sepsis, we first de-
fined genetic signatures of endotoxin tolerance and inflammation
(Fig. 1). The ‘endotoxin tolerance signature’ (Supplementary Table 1)
comprised 99 genes that were uniquely differentially expressed in
endotoxin-tolerant PBMCs, but not inflammatory PBMCs, as compared
to non-LPS-exposed controls (Pena et al., 2011). An ‘inflammatory sig-
nature’ (Supplementary Table 2) was defined based on genes differen-
tially regulated in inflammatory PBMCs but not in endotoxin-tolerant
PBMCs by combining dysregulated genes present in our published
dataset (Pena et al., 2011) and an experimental human endotoxin-
challenge dataset (Calvano et al., 2005).

We first recruited an initial cohort of 22 adult patients with con-
firmed sepsis at various timepoints (1 to 3 days after the initial clinical
suspicion of sepsis) throughout the early clinical course of disease. To
increase the number of sepsis patients in this analysis and to reduce
the limitations of a single-centre study, we also performed a retro-
spective global meta-analysis on 10 published, independent and
blinded clinical sepsis cohorts, encompassing 571 early sepsis
patients (1 or 3 days post-ICU admission) and 160 healthy controls
(Supplementary Table 3). Healthy controls were used as the basis
for comparison to allow for the detection of smaller changes in
gene expression and to limit study–study variability in the control
population used as baseline.

To assess the relative expression of the Endotoxin Tolerance and in-
flammatory signatures in sepsis patients versus healthy controls, we
used a gene-set test approach, which examines whether there is differ-
ential enrichment of a given signature (gene-set) between groups (Wu
et al., 2010). We found that sepsis patients in all 11 cohorts (in-house
and meta-analysis) showed an immunological expression profile
strongly associated with the endotoxin tolerance signature when com-
pared to controls (Fig. 2).Whilst the inflammatory signature was signif-
icantly associated with eight of the datasets, this association was
consistently weaker than for the endotoxin tolerance signature (Sup-
plementary Fig. 2). In contrast to previous reports associating endotoxin
tolerance only with late stage sepsis (Cavaillon et al., 2005; Otto
et al., 2011; Schefold et al., 2008), the association with the ‘endotox-
in tolerance signature’ was present in sepsis patients as early as Day
1 post-ICU admission, and was maintained on Day 3, consistent with
the early development of a ‘stable’ endotoxin tolerance profile in



Fig. 2. Sepsis patients from published datasets showed a strong association with the
‘endotoxin tolerance signature’. A gene-set test approach, ROAST (Wu et al., 2010), testing
the statistically significant presence of a signature (collection) of genes, was used to
characterise the enrichment of ‘Endotoxin Tolerance’ in sepsis patients versus controls
from a small study performed by us and 10 previously published datasets. All datasets
contained sepsis patients recruited at day 1 or 3 post-ICU admission and were compared
to ‘healthy’ controls. The ROAST gene-set test was run with 99,999 rotations so the most
significant p-value resulting from this test is 0.00001. p-Values from the ROAST gene-set
test were graphed as log (1/p-value), and untransformed p-values are shown for ease of
visualization.
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sepsis patients (Fig. 2). Thus the early immune dysfunction in Sepsis
appeared to be characterised by endotoxin tolerance/cellular
reprogramming.

3.2. Endotoxin Tolerance Signature at First Clinical Presentation

We next sought to better understand the timing of endotoxin
tolerance development in early sepsis. To do this, we recruited a
unique blinded, prospective, observational cohort of patients at the
earliest possible stage of clinical disease. Patients were recruited im-
mediately after clinical suspicion of sepsis (i.e. prior to diagnosis),
based on the attending physician's physical examination and re-
quest for microbial culture testing. RNA-Seq was performed on
RNA isolated from the initial blood sample taken for cultures to aid
in sepsis diagnosis/microbial identification. We recruited 72 very
early suspected sepsis patients (sufficient power to achieve 90%
sensitivity, see the Materials and Methods), as well as 11 control
patients recruited prior to elective surgery with no underlying mor-
bidities (Supplementary Table 4). Since only a subset of the patients
in this ‘critically ill’ patient cohort would go on to develop true sep-
sis, this cohort represented a clinically-challenging cohort of pa-
tients who initially presented with variable serious derangements
in physiology (potentially caused by sepsis).

Based on secondary clinical assessments following sample isolation
(Supplementary Table 4), patients were retrospectively classified as
‘Sepsis’ (n= 37), or ‘No Sepsis’ (n= 35), consistent with current sepsis
diagnostic criteria (see the Materials and Methods) (Lyle et al., 2014;
Bone et al., 1992; Vincent et al., 2013; Levy et al., 2003). Strikingly,
even at the earliest stage of clinical sepsis, the endotoxin tolerance sig-
nature was significantly enriched in patients who were subsequently
confirmed to have sepsis (‘Sepsis’ group), but not in those with other
diagnoses (‘No Sepsis’ group) (Fig. 3a). Whilst the inflammatory signa-
ture did not reach statistical significance in the ‘No Sepsis’ group, the
contrasting relative enrichment of the Endotoxin Tolerance and inflam-
matory signatures in the 2 groups may indicate a fundamental differ-
ence in the balance of endotoxin tolerance and inflammation unique
to sepsis patients (Fig. 3a).

The endotoxin tolerance signature was also enriched in the ‘Sepsis’
group when directly compared to the ‘No Sepsis’ group (Fig. 3b),
which supports the specificity of endotoxin tolerance to sepsis and not
just to ‘ill’ patients. To further exclude the possibility that the signature
was only detecting critically ill patients, we also determined that the
endotoxin tolerance signature was not significantly enriched in acute
kidney transplant rejection (p value = 0.213) or myocardial infarction
(p value = 0.433) patients (Kurian et al., 2014; Silbiger et al., 2013),
compared to healthy controls. Together these data suggest that endo-
toxin tolerance is present throughout the initial clinical course of sepsis,
detectable before ‘diagnosis’, and can be used to differentiate patients
who develop sepsis in a cohort of patients where there was a suspicion
of sepsis.

Current definitions of sepsis (Lyle et al., 2014; Bone et al., 1992;
Vincent et al., 2013; Levy et al., 2003) refer to suspected or confirmed in-
fection together with other systemic abnormalities such as initial WBC
count, triage temperature andheart rate,whilst severe sepsis usually in-
volves one or more organ failures. All patients here were suspected to
have infection upon first clinical presentation which was confirmed in
19 of the 37 individuals who were eventually diagnosed with sepsis
(Supplementary Table 4). Nevertheless, similar levels of significance of
association of the endotoxin tolerance signature with sepsis were ob-
served for this group as a whole, and for that subset of the group with
confirmed infections (p b 0.01). To further highlight this concept, we
compared signature enrichment in the ‘Sepsis’ and ‘No Sepsis’ groups
following further separation based onmicrobial culture results. Separat-
ing the groups based on culture results did not change the overall asso-
ciations between endotoxin tolerance and the ‘No Sepsis’ group
(Fig. 3d). Indeed amongst the ‘Sepsis’ group, the endotoxin tolerance
signature was significantly enriched in the culture positive group, al-
though there was a trend towards enrichment in the culture negative
group (Fig. 3c). This is consistent with the sensitivity issues of bacterial
culturing methods and the challenge in diagnosing true infection-
positive patients in those with suspected infection. Moreover, since
our RNA-Seq analysis was performed on the same blood samples used
for diagnostic microbial cultures, the strong association between sepsis
and our endotoxin tolerance signature suggests that this signature
might provide amore sensitive tool for diagnosis thanmicrobial culture.

It has been commonly postulated that the immunosuppressive state
in sepsis is related to the end-stage development of organ dysfunction,
and so we sought to address this using our clinical cohort. Subsequent
organ dysfunction development (cardiovascular, coagulation, kidney,
liver, and respiratory, Supplementary Tables 4, 5) was assessed up to
48 h after study enrolment, with patients retrospectively grouped into
organ-dysfunction positive and negative groups, independent of sepsis
diagnosis. These groups were then subjected to the same gene-set test
analysis, as above. Interestingly, the endotoxin tolerance signature
was found to be significantly associated with the development of sever-
al individual and multiple (3+) organ dysfunction(s) (Fig. 4a). Al-
though ICU admission may depend on the inherent subjectivity of
hospital practice, such as space or number of beds available in each de-
partment, patients that are moved to the ICU are generally in a deterio-
rating condition with an increased risk of mortality. Therefore, we also
assessed the requirement for ICU admission as a second, less precise
measure of disease severity and showed that endotoxin tolerance signa-
ture was again associatedwith this indicator of increased disease sever-
ity (Fig. 4b). These results indicated that endotoxin tolerance appears to
be associatedwith sepsis severity and specifically with the downstream
development of organ failure.

image of Fig.�2


Fig. 3. The ‘endotoxin tolerance signature’was strongly associatedwith sepsis patients at first clinical presentation. A gene-set test approach (Wu et al., 2010) was used to characterise the
enrichment, cf. controls as well as non-sepsis critically ill patients, of the ‘Endotoxin Tolerance’ and ‘Inflammatory’ signatures in prospective sepsis patients from a unique in-house cohort
recruited on first clinical suspicion of sepsis (i.e. generally in the emergencyward and before ICU admission cf. the studies described in Fig. 2 thatwere post-ICU admission). Patient groups
were subsequently defined based on retrospective clinical characteristics as ‘Sepsis’ or ‘No Sepsis’ consistent with the current sepsis criteria3,15,16,36 (Supplemental Table 4). Analyseswere
performed comparing (a) the ‘Sepsis’ and ‘No Sepsis’ groups vs. controls and (b) the ‘Sepsis’ and the ‘No Sepsis’ groups to each other. Additionally, enrichment of the signature was also
analysed based on microbial culture results within (c) the ‘Sepsis’ group and (d) the ‘No Sepsis’ group.
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3.3. Prognostic Potential

Given the strong association between endotoxin tolerance and sep-
sis across more than 600 patients from 11 independent datasets, we
hypothesised that our signature would be a useful tool in sepsis diagno-
sis. Whilst the full 99 gene, endotoxin tolerance signaturewas useful for
characterising the immune dysfunction in sepsis, a smaller number of
genes would be of more use in a diagnostic test. Thus we first sought
to reduce our 99-gene signature to its essential component, prior to
testing its diagnostic utility. To do this, we selected genes that showed
greater than 1.5 fold differential expression between sepsis patients
and controls across the majority (7+) of the 10 literature datasets.
This identified a core-set of 31 genes from the original 99 gene endotox-
in tolerance signature (Fig. 5). It is worth noting that many of the genes
in our endotoxin tolerance signature are individually dysregulated in
Fig. 4. The ‘endotoxin tolerance signature’was strongly associatedwith sepsis patients at first clini
(Wu et al., 2010)was used to characterise the enrichment, cf. surgical controls, of the ‘Endotoxin T
cohort recruited on first clinical suspicion of sepsis (i.e. generally in the emergencyward prior to IC
organ failure and no-organ failure groups. NB. No patients were observed with sepsis-associated e
transfer to the ICU.
other disease states; however the combination appeared specific
for sepsis.

We then used the classification algorithm randomForest to prelimi-
narily assess the diagnostic utility of our 31 gene core-set to classify sep-
sis patients. We divided each dataset (external and internal) into
training and test sets and performed randomForest classification inde-
pendently on each dataset. The core-set showed excellent performance
when separating sepsis patients from controls across all datasets (aver-
age AUC of 96.1%), andwhen separating patients who subsequently de-
veloped sepsis or individual/combined organ failure in our cohort of
patients with a suspicion of sepsis (AUCs from 74.1 to 84.7%, with
liver failure lower at 54.1%) (Table 1). The core-set showed improved
performance when classifying Sepsis patients with confirmed infection
(70.4%), requiring ICU admission (73.6%), and with at least 1 organ fail-
ure (75.2%) suggesting that our endotoxin tolerance signature shows
cal presentation andwas associatedwith the severity of the disease. A gene-set test approach
olerance’ and ‘Inflammatory’ signatures in prospective sepsis patients from a unique in-house
U admission). (a) Patientswere grouped into individual-, combined- (3+), individual type of
ncephalopathy. (b) Patients were also grouped into those requiring and those not-requiring

image of Fig.�3
image of Fig.�4


Fig. 5. A core-set of endotoxin tolerance genes characteristic of sepsis patients. A core-set of 31 of the 99 genes from the ‘endotoxin tolerance signature’was determined based on themost
frequently differentially expressed genes observed literature sepsis datasets. For better visual comparison across different studies, each individual dataset was further transformed by
dividing gene expression values into six equal bins. Data is presented as a heatmap with blue and red representing relatively low and high expression, respectively.

69O.M. Pena et al. / EBioMedicine 1 (2014) 64–71
increased diagnostic performance (and clinical relevance) when identi-
fying patients who go on to develop definitive sepsis and more serious
disease (Table 1). Similar resultswere obtainedwith the full 99 gene en-
dotoxin tolerance signature (Table 1). The strong performance of our
classifier across multiple distinct datasets and at a clinically relevant
timepoint (blood draw for diagnostic cultures) supports the potential
use of our classifier in the diagnosis of sepsis.

4. Discussion

The association between the endotoxin tolerance signature and con-
firmed sepsis was strong and statistically significant in a total of 12 dis-
tinct datasets (Figs. 2, 3) and as such was independent of sample size,
location, method, gender, age and ethnicity. These results are consistent
with our hypothesis that the endotoxin tolerance signature is robustly
associated with very early sepsis. The endotoxin tolerance signature
was also associated with disease severity measured primarily by the
development of organ dysfunction. Therefore, we propose here an
updated model of sepsis pathogenesis mediated by an endotoxin
tolerance-mediated immune dysfunction. This is consistent with but
further clarifies a recent study (Hotchkiss et al., 2013) that suggested
that early sepsis was associated with coincident inflammatory and
anti-inflammatory/immunosuppressive responses. It is worthmention-
ing that endotoxin tolerance is not an anti-inflammatory state per se but
rather a cellular reprogramming (which also occurs with Gram positive
bacteria) that leads to immune amnesia, disabling responses to agonists
like endotoxin (Cavaillon and Adib-Conquy, 2006; Buckley et al., 2006;
Pena et al., 2011). We also demonstrated that this immune dysfunction
could be detected at a clinically relevant ‘diagnostic’ time-point, provid-
ing unique information regarding the patients' functional immune
status. In the future, our genetic classifier could help to define a subset
of patients who might benefit from immunomodulation (e.g. anti-
endotoxin tolerance) and supportive therapies.

Sepsis has been traditionally classified as an early stage excessive
inflammatory state followed by a transition to a late stage anti-
inflammatory/immunosuppressive state (e.g. endotoxin tolerance)
(Cavaillon et al., 2005; Otto et al., 2011; Schefold et al., 2008). However,
a model of concurrent immunosuppression and hyperinflammation has

image of Fig.�5


Table 1
Diagnostic potential of the endotoxin tolerance signature. Each datasetwas split into training (containing 2/3 of sepsis patients and controls) and test (containing 1/3 of sepsis patients and
controls) sets using random sampling. Datasets GSE13015 and GSE11755were omitted from this analysis due to low numbers of controls (N = 3) in each dataset. For each of the remain-
ing 8 datasets, themodel was defined on the training set and then assessed on the test set using the randomForest package (Xiu and Jeschke, 2013) with ntree set to 1000. The procedure
was repeated 1000 times, and the average AUC (Area Under Receiver Operator Curve) values (representing the accuracy of the diagnosis), recorded for each dataset. This analysis was
repeated on our dataset to classify patients with an initial suspicion of sepsis who did or did not go on to develop sepsis or organ failure.

Variable AUC using 31 gene endotoxin tolerance core-set AUC using 99 gene endotoxin tolerance signature

Sepsis (patient numbers in brackets) vs. controls
In-house Sepsis study #1 (22) vs. controls 78.4% 77.8%
In-house Sepsis study #2 (37) vs. controls 98.1% 97.1%
GSE28750 study (30) vs. controls 100% 100%
GSE9692 study (45) vs. controls 99.4% 99.3%
GSE13904 study (227) vs. controls 97.8% 97.9%
GSE26440 study (130) vs. controls 99.2% 99.1%
GSE4607 study (84) vs. controls 98.4% 98.3%
GSE8121 study (71) vs. controls 98.1% 98.1%
GSE26378 study (70) vs. controls 100% 100%
GSE54514 study (35) vs. controls 91.5% 94.4%
Mean 96.1% 95.9%

Sepsis vs. No Sepsis — study #2
Sepsis vs. No Sepsis 63.9% 66.4%
Sepsis (Positive Culture vs. No Sepsis) 70.4% 75.7%
Sepsis (ICU vs. No Sepsis) 73.6% 75.6%
Sepsis (1+ Organ Failure vs. No Sepsis) 75.2% 74.5%

Organ Failure vs. No Organ Failure — study #2
Respiratory 84.7% 84.8%
Cardiovascular 84.1% 82.0%
Liver 54.1% 55.3%
Acute kidney injury 76.7% 79.4%
Coagulation 74.4% 77.3%
Combined (3+) 78.4% 77.6%
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been recently hypothesised to explain the complex pathogenesis of sepsis
at various timepoints (Hotchkiss et al., 2013). The current study indicates
that immunosuppression is being driven by endotoxin tolerance that oc-
curs at amuch earlier stage of clinical disease thanpreviously appreciated,
consistent with the failure of immunosuppressive treatments in more
than 30 clinical trials (Lyle et al., 2014). In agreementwith the concurrent
inflammation/immunosuppression model, we observed significant en-
richment of both the endotoxin tolerance and inflammatory signatures
at all early-stages of disease, although the endotoxin tolerance signature
dominated. If there is an immunological phase characterised solely by
excessive inflammation, our data would suggest that this occurs
pre-clinically (Supplementary Fig. 3). Although ‘pre-clinical’ disease can
represent a relatively large time frame, it is less clinically relevant
from a therapeutic/intervention perspective. One possible explana-
tion for the concurrent occurrence of both inflammation and immu-
nosuppression may lie at the immune cell population level. Due to
their continuous replenishment from the bone marrow (Summers
et al., 2010), neutrophils, which show very little gene expression,
are potential drivers of pro-inflammatory cytokine responses, even
as longer-lived monocyte/macrophage populations and other perhaps
antigen presenting cells (dendritic cells and B lymphocytes) are being
locked into and driving the endotoxin tolerance/cellular reprogramming
response (Parnell et al., 2013). Therefore, at a systemic level, sepsis
appears to be typified by a combination of neutrophilic inflammation,
driving vascular leakage, coagulation, lymphocyte death, etc. (Hotchkiss
and Karl, 2003; de Jong et al., 2010), and monocytic/macrophage
reprogramming, impairing immune responses to primary and secondary
infections (Hotchkiss et al., 2013; Leentjens et al., 2013; Xiu and Jeschke,
2013). Future studies aimed at assessing the development of cellular
reprogramming over time (instead of a single timepoint) and at a cellular
level will help clarify these processes. In addition, it will be interesting to
examine patientswith severe trauma (Hotchkiss et al., 2013) to see if they
also have the endotoxin tolerance signature, despite the possibility that
they are non-infectious. However, performing longitudinal studies on
suspected sepsis patients recruited with deferred consent is logistically
challenging.
The other important observation in relation to the balance between
inflammation and endotoxin tolerance, is the relative enrichment of
each signature in critically ill patients who do or do not develop sepsis
(Fig. 3). From a biological perspective, our observations may suggest
that in individuals with localized infections (e.g. patients in the No
Sepsis group), when an initial insult occurs, the brief inflammatory re-
sponse quickly subsides to balance inflammation and bring the system
to homeostasis. However, in sepsis, where there is an uncontrolled
source of infection, and possible contributing genetic factors (Murkin
and Walley, 2009), the immunological balance between inflammation
and endotoxin tolerance becomes detrimentally unbalanced towards a
state increasingly dominated by endotoxin tolerance (Supplementary
Fig. 3). This model is supported by our observed association between
the endotoxin tolerance signature and disease severity/organ dysfunc-
tion (Fig. 4). Organ dysfunction is considered themain factor contribut-
ing to patient deterioration and ultimately death. Importantly, the
endotoxin tolerance signaturewas present up to 48 h prior to the devel-
opment of organ dysfunction, suggesting that this signature might be
additionally used as a screening method to assess which patients are
at a higher risk for developing a worsening condition. Moreover,
network analysis (Xia et al., 2014) of the Endotoxin Tolerance genes
revealed that 53 of the genes formed a very tight protein–protein-
interaction sub-network suggesting that the signature may identify
key genes related to immune dysfunction (and possibly susceptibility to
infection) in sepsis patients (Supplementary Fig. 4).

Whilst the current study was primarily focused on classifying the
immune dysfunction in sepsis, the extremely strong association be-
tween endotoxin tolerance and sepsis leads us to explore the potential
use of our signature in diagnosis. Indeed, both the gene-set and classifi-
cation analyses support this use (Table 1, Figs. 1–3). However, one lim-
itation of this analysiswas the relatively lowpatient numbers in someof
the datasets (including our in-house datasets). Whilst the ROAST gene-
set test (Wu et al., 2010) was designed for much lower group numbers,
classification tests (such as randomForest (Xiu and Jeschke, 2013)) are
optimally used with larger patient numbers. Thus larger cohort studies,
specifically designed for assessing the potential of this signature as a

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE11755
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE11755
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28750
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE9692
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13904
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26440
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE4607
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE8121
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diagnostic tool (especially for the prediction of organ failure in sepsis pa-
tients), will likely be required to confirm its potential as a diagnostic sig-
nature. However, as the association of endotoxin tolerance and sepsiswas
robustly identified in 12 distinct datasets, endotoxin tolerance is likely to
be clinically relevant (as a potential key factor in sepsis aetiology and/or
therapeutic target), regardless of the diagnostic utility of our specific
signatures. In this regard there are a number of agents in development
for unlocking an M2 macrophage state (Sica and Mantovani, 2012) that
drives endotoxin tolerance (Pena et al., 2011).

In conclusion, we have provided a description of a unique endotoxin
tolerance gene expression profile, present very early in the course of
sepsis, and linked to sepsis pathogenesis and the risk of developing
organ dysfunction. The results of this study should be further tested
prospectively in a large multicenter cohort of patients with sepsis
using current definitions for infection, sepsis, severe sepsis, andmultiple
system organ failure.
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